Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | // SPDX-License-Identifier: GPL-2.0-or-later /* bit search implementation * * Copied from lib/find_bit.c to tools/lib/find_bit.c * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * Copyright (C) 2008 IBM Corporation * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au> * (Inspired by David Howell's find_next_bit implementation) * * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease * size and improve performance, 2015. */ #include <linux/bitops.h> #include <linux/bitmap.h> #include <linux/kernel.h> #if !defined(find_next_bit) || !defined(find_next_zero_bit) || \ !defined(find_next_and_bit) /* * This is a common helper function for find_next_bit, find_next_zero_bit, and * find_next_and_bit. The differences are: * - The "invert" argument, which is XORed with each fetched word before * searching it for one bits. * - The optional "addr2", which is anded with "addr1" if present. */ static inline unsigned long _find_next_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start, unsigned long invert) { unsigned long tmp; if (unlikely(start >= nbits)) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; /* Handle 1st word. */ tmp &= BITMAP_FIRST_WORD_MASK(start); start = round_down(start, BITS_PER_LONG); while (!tmp) { start += BITS_PER_LONG; if (start >= nbits) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; } return min(start + __ffs(tmp), nbits); } #endif #ifndef find_next_bit /* * Find the next set bit in a memory region. */ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, 0UL); } #endif #ifndef find_first_bit /* * Find the first set bit in a memory region. */ unsigned long find_first_bit(const unsigned long *addr, unsigned long size) { unsigned long idx; for (idx = 0; idx * BITS_PER_LONG < size; idx++) { if (addr[idx]) return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size); } return size; } #endif #ifndef find_first_zero_bit /* * Find the first cleared bit in a memory region. */ unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size) { unsigned long idx; for (idx = 0; idx * BITS_PER_LONG < size; idx++) { if (addr[idx] != ~0UL) return min(idx * BITS_PER_LONG + ffz(addr[idx]), size); } return size; } #endif #ifndef find_next_zero_bit unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, ~0UL); } #endif #ifndef find_next_and_bit unsigned long find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long offset) { return _find_next_bit(addr1, addr2, size, offset, 0UL); } #endif |