/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dce_mem_input.h"
#include "reg_helper.h"
#include "basics/conversion.h"
#define CTX \
dce_mi->base.ctx
#define REG(reg)\
dce_mi->regs->reg
#undef FN
#define FN(reg_name, field_name) \
dce_mi->shifts->field_name, dce_mi->masks->field_name
struct pte_setting {
unsigned int bpp;
unsigned int page_width;
unsigned int page_height;
unsigned char min_pte_before_flip_horiz_scan;
unsigned char min_pte_before_flip_vert_scan;
unsigned char pte_req_per_chunk;
unsigned char param_6;
unsigned char param_7;
unsigned char param_8;
};
enum mi_bits_per_pixel {
mi_bpp_8 = 0,
mi_bpp_16,
mi_bpp_32,
mi_bpp_64,
mi_bpp_count,
};
enum mi_tiling_format {
mi_tiling_linear = 0,
mi_tiling_1D,
mi_tiling_2D,
mi_tiling_count,
};
static const struct pte_setting pte_settings[mi_tiling_count][mi_bpp_count] = {
[mi_tiling_linear] = {
{ 8, 4096, 1, 8, 0, 1, 0, 0, 0},
{ 16, 2048, 1, 8, 0, 1, 0, 0, 0},
{ 32, 1024, 1, 8, 0, 1, 0, 0, 0},
{ 64, 512, 1, 8, 0, 1, 0, 0, 0}, /* new for 64bpp from HW */
},
[mi_tiling_1D] = {
{ 8, 512, 8, 1, 0, 1, 0, 0, 0}, /* 0 for invalid */
{ 16, 256, 8, 2, 0, 1, 0, 0, 0},
{ 32, 128, 8, 4, 0, 1, 0, 0, 0},
{ 64, 64, 8, 4, 0, 1, 0, 0, 0}, /* fake */
},
[mi_tiling_2D] = {
{ 8, 64, 64, 8, 8, 1, 4, 0, 0},
{ 16, 64, 32, 8, 16, 1, 8, 0, 0},
{ 32, 32, 32, 16, 16, 1, 8, 0, 0},
{ 64, 8, 32, 16, 16, 1, 8, 0, 0}, /* fake */
},
};
static enum mi_bits_per_pixel get_mi_bpp(
enum surface_pixel_format format)
{
if (format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616)
return mi_bpp_64;
else if (format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB8888)
return mi_bpp_32;
else if (format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB1555)
return mi_bpp_16;
else
return mi_bpp_8;
}
static enum mi_tiling_format get_mi_tiling(
union dc_tiling_info *tiling_info)
{
switch (tiling_info->gfx8.array_mode) {
case DC_ARRAY_1D_TILED_THIN1:
case DC_ARRAY_1D_TILED_THICK:
case DC_ARRAY_PRT_TILED_THIN1:
return mi_tiling_1D;
case DC_ARRAY_2D_TILED_THIN1:
case DC_ARRAY_2D_TILED_THICK:
case DC_ARRAY_2D_TILED_X_THICK:
case DC_ARRAY_PRT_2D_TILED_THIN1:
case DC_ARRAY_PRT_2D_TILED_THICK:
return mi_tiling_2D;
case DC_ARRAY_LINEAR_GENERAL:
case DC_ARRAY_LINEAR_ALLIGNED:
return mi_tiling_linear;
default:
return mi_tiling_2D;
}
}
static bool is_vert_scan(enum dc_rotation_angle rotation)
{
switch (rotation) {
case ROTATION_ANGLE_90:
case ROTATION_ANGLE_270:
return true;
default:
return false;
}
}
static void dce_mi_program_pte_vm(
struct mem_input *mi,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
enum dc_rotation_angle rotation)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
enum mi_bits_per_pixel mi_bpp = get_mi_bpp(format);
enum mi_tiling_format mi_tiling = get_mi_tiling(tiling_info);
const struct pte_setting *pte = &pte_settings[mi_tiling][mi_bpp];
unsigned int page_width = log_2(pte->page_width);
unsigned int page_height = log_2(pte->page_height);
unsigned int min_pte_before_flip = is_vert_scan(rotation) ?
pte->min_pte_before_flip_vert_scan :
pte->min_pte_before_flip_horiz_scan;
REG_UPDATE(GRPH_PIPE_OUTSTANDING_REQUEST_LIMIT,
GRPH_PIPE_OUTSTANDING_REQUEST_LIMIT, 0x7f);
REG_UPDATE_3(DVMM_PTE_CONTROL,
DVMM_PAGE_WIDTH, page_width,
DVMM_PAGE_HEIGHT, page_height,
DVMM_MIN_PTE_BEFORE_FLIP, min_pte_before_flip);
REG_UPDATE_2(DVMM_PTE_ARB_CONTROL,
DVMM_PTE_REQ_PER_CHUNK, pte->pte_req_per_chunk,
DVMM_MAX_PTE_REQ_OUTSTANDING, 0x7f);
}
static void program_urgency_watermark(
struct dce_mem_input *dce_mi,
uint32_t wm_select,
uint32_t urgency_low_wm,
uint32_t urgency_high_wm)
{
REG_UPDATE(DPG_WATERMARK_MASK_CONTROL,
URGENCY_WATERMARK_MASK, wm_select);
REG_SET_2(DPG_PIPE_URGENCY_CONTROL, 0,
URGENCY_LOW_WATERMARK, urgency_low_wm,
URGENCY_HIGH_WATERMARK, urgency_high_wm);
}
static void dce120_program_urgency_watermark(
struct dce_mem_input *dce_mi,
uint32_t wm_select,
uint32_t urgency_low_wm,
uint32_t urgency_high_wm)
{
REG_UPDATE(DPG_WATERMARK_MASK_CONTROL,
URGENCY_WATERMARK_MASK, wm_select);
REG_SET_2(DPG_PIPE_URGENCY_CONTROL, 0,
URGENCY_LOW_WATERMARK, urgency_low_wm,
URGENCY_HIGH_WATERMARK, urgency_high_wm);
REG_SET_2(DPG_PIPE_URGENT_LEVEL_CONTROL, 0,
URGENT_LEVEL_LOW_WATERMARK, urgency_low_wm,
URGENT_LEVEL_HIGH_WATERMARK, urgency_high_wm);
}
static void program_nbp_watermark(
struct dce_mem_input *dce_mi,
uint32_t wm_select,
uint32_t nbp_wm)
{
if (REG(DPG_PIPE_NB_PSTATE_CHANGE_CONTROL)) {
REG_UPDATE(DPG_WATERMARK_MASK_CONTROL,
NB_PSTATE_CHANGE_WATERMARK_MASK, wm_select);
REG_UPDATE_3(DPG_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_ENABLE, 1,
NB_PSTATE_CHANGE_URGENT_DURING_REQUEST, 1,
NB_PSTATE_CHANGE_NOT_SELF_REFRESH_DURING_REQUEST, 1);
REG_UPDATE(DPG_PIPE_NB_PSTATE_CHANGE_CONTROL,
NB_PSTATE_CHANGE_WATERMARK, nbp_wm);
}
if (REG(DPG_PIPE_LOW_POWER_CONTROL)) {
REG_UPDATE(DPG_WATERMARK_MASK_CONTROL,
PSTATE_CHANGE_WATERMARK_MASK, wm_select);
REG_UPDATE_3(DPG_PIPE_LOW_POWER_CONTROL,
PSTATE_CHANGE_ENABLE, 1,
PSTATE_CHANGE_URGENT_DURING_REQUEST, 1,
PSTATE_CHANGE_NOT_SELF_REFRESH_DURING_REQUEST, 1);
REG_UPDATE(DPG_PIPE_LOW_POWER_CONTROL,
PSTATE_CHANGE_WATERMARK, nbp_wm);
}
}
static void dce120_program_stutter_watermark(
struct dce_mem_input *dce_mi,
uint32_t wm_select,
uint32_t stutter_mark,
uint32_t stutter_entry)
{
REG_UPDATE(DPG_WATERMARK_MASK_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK_MASK, wm_select);
if (REG(DPG_PIPE_STUTTER_CONTROL2))
REG_UPDATE_2(DPG_PIPE_STUTTER_CONTROL2,
STUTTER_EXIT_SELF_REFRESH_WATERMARK, stutter_mark,
STUTTER_ENTER_SELF_REFRESH_WATERMARK, stutter_entry);
else
REG_UPDATE_2(DPG_PIPE_STUTTER_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK, stutter_mark,
STUTTER_ENTER_SELF_REFRESH_WATERMARK, stutter_entry);
}
static void program_stutter_watermark(
struct dce_mem_input *dce_mi,
uint32_t wm_select,
uint32_t stutter_mark)
{
REG_UPDATE(DPG_WATERMARK_MASK_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK_MASK, wm_select);
if (REG(DPG_PIPE_STUTTER_CONTROL2))
REG_UPDATE(DPG_PIPE_STUTTER_CONTROL2,
STUTTER_EXIT_SELF_REFRESH_WATERMARK, stutter_mark);
else
REG_UPDATE(DPG_PIPE_STUTTER_CONTROL,
STUTTER_EXIT_SELF_REFRESH_WATERMARK, stutter_mark);
}
static void dce_mi_program_display_marks(
struct mem_input *mi,
struct dce_watermarks nbp,
struct dce_watermarks stutter_exit,
struct dce_watermarks stutter_enter,
struct dce_watermarks urgent,
uint32_t total_dest_line_time_ns)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
uint32_t stutter_en = mi->ctx->dc->debug.disable_stutter ? 0 : 1;
program_urgency_watermark(dce_mi, 2, /* set a */
urgent.a_mark, total_dest_line_time_ns);
program_urgency_watermark(dce_mi, 1, /* set d */
urgent.d_mark, total_dest_line_time_ns);
REG_UPDATE_2(DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE, stutter_en,
STUTTER_IGNORE_FBC, 1);
program_nbp_watermark(dce_mi, 2, nbp.a_mark); /* set a */
program_nbp_watermark(dce_mi, 1, nbp.d_mark); /* set d */
program_stutter_watermark(dce_mi, 2, stutter_exit.a_mark); /* set a */
program_stutter_watermark(dce_mi, 1, stutter_exit.d_mark); /* set d */
}
static void dce112_mi_program_display_marks(struct mem_input *mi,
struct dce_watermarks nbp,
struct dce_watermarks stutter_exit,
struct dce_watermarks stutter_entry,
struct dce_watermarks urgent,
uint32_t total_dest_line_time_ns)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
uint32_t stutter_en = mi->ctx->dc->debug.disable_stutter ? 0 : 1;
program_urgency_watermark(dce_mi, 0, /* set a */
urgent.a_mark, total_dest_line_time_ns);
program_urgency_watermark(dce_mi, 1, /* set b */
urgent.b_mark, total_dest_line_time_ns);
program_urgency_watermark(dce_mi, 2, /* set c */
urgent.c_mark, total_dest_line_time_ns);
program_urgency_watermark(dce_mi, 3, /* set d */
urgent.d_mark, total_dest_line_time_ns);
REG_UPDATE_2(DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE, stutter_en,
STUTTER_IGNORE_FBC, 1);
program_nbp_watermark(dce_mi, 0, nbp.a_mark); /* set a */
program_nbp_watermark(dce_mi, 1, nbp.b_mark); /* set b */
program_nbp_watermark(dce_mi, 2, nbp.c_mark); /* set c */
program_nbp_watermark(dce_mi, 3, nbp.d_mark); /* set d */
program_stutter_watermark(dce_mi, 0, stutter_exit.a_mark); /* set a */
program_stutter_watermark(dce_mi, 1, stutter_exit.b_mark); /* set b */
program_stutter_watermark(dce_mi, 2, stutter_exit.c_mark); /* set c */
program_stutter_watermark(dce_mi, 3, stutter_exit.d_mark); /* set d */
}
static void dce120_mi_program_display_marks(struct mem_input *mi,
struct dce_watermarks nbp,
struct dce_watermarks stutter_exit,
struct dce_watermarks stutter_entry,
struct dce_watermarks urgent,
uint32_t total_dest_line_time_ns)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
uint32_t stutter_en = mi->ctx->dc->debug.disable_stutter ? 0 : 1;
dce120_program_urgency_watermark(dce_mi, 0, /* set a */
urgent.a_mark, total_dest_line_time_ns);
dce120_program_urgency_watermark(dce_mi, 1, /* set b */
urgent.b_mark, total_dest_line_time_ns);
dce120_program_urgency_watermark(dce_mi, 2, /* set c */
urgent.c_mark, total_dest_line_time_ns);
dce120_program_urgency_watermark(dce_mi, 3, /* set d */
urgent.d_mark, total_dest_line_time_ns);
REG_UPDATE_2(DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE, stutter_en,
STUTTER_IGNORE_FBC, 1);
program_nbp_watermark(dce_mi, 0, nbp.a_mark); /* set a */
program_nbp_watermark(dce_mi, 1, nbp.b_mark); /* set b */
program_nbp_watermark(dce_mi, 2, nbp.c_mark); /* set c */
program_nbp_watermark(dce_mi, 3, nbp.d_mark); /* set d */
dce120_program_stutter_watermark(dce_mi, 0, stutter_exit.a_mark, stutter_entry.a_mark); /* set a */
dce120_program_stutter_watermark(dce_mi, 1, stutter_exit.b_mark, stutter_entry.b_mark); /* set b */
dce120_program_stutter_watermark(dce_mi, 2, stutter_exit.c_mark, stutter_entry.c_mark); /* set c */
dce120_program_stutter_watermark(dce_mi, 3, stutter_exit.d_mark, stutter_entry.d_mark); /* set d */
}
static void program_tiling(
struct dce_mem_input *dce_mi, const union dc_tiling_info *info)
{
if (dce_mi->masks->GRPH_SW_MODE) { /* GFX9 */
REG_UPDATE_6(GRPH_CONTROL,
GRPH_SW_MODE, info->gfx9.swizzle,
GRPH_NUM_BANKS, log_2(info->gfx9.num_banks),
GRPH_NUM_SHADER_ENGINES, log_2(info->gfx9.num_shader_engines),
GRPH_NUM_PIPES, log_2(info->gfx9.num_pipes),
GRPH_COLOR_EXPANSION_MODE, 1,
GRPH_SE_ENABLE, info->gfx9.shaderEnable);
/* TODO: DCP0_GRPH_CONTROL__GRPH_SE_ENABLE where to get info
GRPH_SE_ENABLE, 1,
GRPH_Z, 0);
*/
}
if (dce_mi->masks->GRPH_ARRAY_MODE) { /* GFX8 */
REG_UPDATE_9(GRPH_CONTROL,
GRPH_NUM_BANKS, info->gfx8.num_banks,
GRPH_BANK_WIDTH, info->gfx8.bank_width,
GRPH_BANK_HEIGHT, info->gfx8.bank_height,
GRPH_MACRO_TILE_ASPECT, info->gfx8.tile_aspect,
GRPH_TILE_SPLIT, info->gfx8.tile_split,
GRPH_MICRO_TILE_MODE, info->gfx8.tile_mode,
GRPH_PIPE_CONFIG, info->gfx8.pipe_config,
GRPH_ARRAY_MODE, info->gfx8.array_mode,
GRPH_COLOR_EXPANSION_MODE, 1);
/* 01 - DCP_GRPH_COLOR_EXPANSION_MODE_ZEXP: zero expansion for YCbCr */
/*
GRPH_Z, 0);
*/
}
}
static void program_size_and_rotation(
struct dce_mem_input *dce_mi,
enum dc_rotation_angle rotation,
const union plane_size *plane_size)
{
const struct rect *in_rect = &plane_size->grph.surface_size;
struct rect hw_rect = plane_size->grph.surface_size;
const uint32_t rotation_angles[ROTATION_ANGLE_COUNT] = {
[ROTATION_ANGLE_0] = 0,
[ROTATION_ANGLE_90] = 1,
[ROTATION_ANGLE_180] = 2,
[ROTATION_ANGLE_270] = 3,
};
if (rotation == ROTATION_ANGLE_90 || rotation == ROTATION_ANGLE_270) {
hw_rect.x = in_rect->y;
hw_rect.y = in_rect->x;
hw_rect.height = in_rect->width;
hw_rect.width = in_rect->height;
}
REG_SET(GRPH_X_START, 0,
GRPH_X_START, hw_rect.x);
REG_SET(GRPH_Y_START, 0,
GRPH_Y_START, hw_rect.y);
REG_SET(GRPH_X_END, 0,
GRPH_X_END, hw_rect.width);
REG_SET(GRPH_Y_END, 0,
GRPH_Y_END, hw_rect.height);
REG_SET(GRPH_PITCH, 0,
GRPH_PITCH, plane_size->grph.surface_pitch);
REG_SET(HW_ROTATION, 0,
GRPH_ROTATION_ANGLE, rotation_angles[rotation]);
}
static void program_grph_pixel_format(
struct dce_mem_input *dce_mi,
enum surface_pixel_format format)
{
uint32_t red_xbar = 0, blue_xbar = 0; /* no swap */
uint32_t grph_depth = 0, grph_format = 0;
uint32_t sign = 0, floating = 0;
if (format == SURFACE_PIXEL_FORMAT_GRPH_ABGR8888 ||
/*todo: doesn't look like we handle BGRA here,
* should problem swap endian*/
format == SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010 ||
format == SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS ||
format == SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F) {
/* ABGR formats */
red_xbar = 2;
blue_xbar = 2;
}
REG_SET_2(GRPH_SWAP_CNTL, 0,
GRPH_RED_CROSSBAR, red_xbar,
GRPH_BLUE_CROSSBAR, blue_xbar);
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
grph_depth = 0;
grph_format = 0;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
grph_depth = 1;
grph_format = 0;
break;
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
grph_depth = 1;
grph_format = 1;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
grph_depth = 2;
grph_format = 0;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
grph_depth = 2;
grph_format = 1;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
sign = 1;
floating = 1;
/* fall through */
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: /* shouldn't this get float too? */
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
grph_depth = 3;
grph_format = 0;
break;
default:
DC_ERR("unsupported grph pixel format");
break;
}
REG_UPDATE_2(GRPH_CONTROL,
GRPH_DEPTH, grph_depth,
GRPH_FORMAT, grph_format);
REG_UPDATE_4(PRESCALE_GRPH_CONTROL,
GRPH_PRESCALE_SELECT, floating,
GRPH_PRESCALE_R_SIGN, sign,
GRPH_PRESCALE_G_SIGN, sign,
GRPH_PRESCALE_B_SIGN, sign);
}
static void dce_mi_program_surface_config(
struct mem_input *mi,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
union plane_size *plane_size,
enum dc_rotation_angle rotation,
struct dc_plane_dcc_param *dcc,
bool horizontal_mirror)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
REG_UPDATE(GRPH_ENABLE, GRPH_ENABLE, 1);
program_tiling(dce_mi, tiling_info);
program_size_and_rotation(dce_mi, rotation, plane_size);
if (format >= SURFACE_PIXEL_FORMAT_GRPH_BEGIN &&
format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
program_grph_pixel_format(dce_mi, format);
}
static uint32_t get_dmif_switch_time_us(
uint32_t h_total,
uint32_t v_total,
uint32_t pix_clk_khz)
{
uint32_t frame_time;
uint32_t pixels_per_second;
uint32_t pixels_per_frame;
uint32_t refresh_rate;
const uint32_t us_in_sec = 1000000;
const uint32_t min_single_frame_time_us = 30000;
/*return double of frame time*/
const uint32_t single_frame_time_multiplier = 2;
if (!h_total || v_total || !pix_clk_khz)
return single_frame_time_multiplier * min_single_frame_time_us;
/*TODO: should we use pixel format normalized pixel clock here?*/
pixels_per_second = pix_clk_khz * 1000;
pixels_per_frame = h_total * v_total;
if (!pixels_per_second || !pixels_per_frame) {
/* avoid division by zero */
ASSERT(pixels_per_frame);
ASSERT(pixels_per_second);
return single_frame_time_multiplier * min_single_frame_time_us;
}
refresh_rate = pixels_per_second / pixels_per_frame;
if (!refresh_rate) {
/* avoid division by zero*/
ASSERT(refresh_rate);
return single_frame_time_multiplier * min_single_frame_time_us;
}
frame_time = us_in_sec / refresh_rate;
if (frame_time < min_single_frame_time_us)
frame_time = min_single_frame_time_us;
frame_time *= single_frame_time_multiplier;
return frame_time;
}
static void dce_mi_allocate_dmif(
struct mem_input *mi,
uint32_t h_total,
uint32_t v_total,
uint32_t pix_clk_khz,
uint32_t total_stream_num)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
const uint32_t retry_delay = 10;
uint32_t retry_count = get_dmif_switch_time_us(
h_total,
v_total,
pix_clk_khz) / retry_delay;
uint32_t pix_dur;
uint32_t buffers_allocated;
uint32_t dmif_buffer_control;
dmif_buffer_control = REG_GET(DMIF_BUFFER_CONTROL,
DMIF_BUFFERS_ALLOCATED, &buffers_allocated);
if (buffers_allocated == 2)
return;
REG_SET(DMIF_BUFFER_CONTROL, dmif_buffer_control,
DMIF_BUFFERS_ALLOCATED, 2);
REG_WAIT(DMIF_BUFFER_CONTROL,
DMIF_BUFFERS_ALLOCATION_COMPLETED, 1,
retry_delay, retry_count);
if (pix_clk_khz != 0) {
pix_dur = 1000000000ULL / pix_clk_khz;
REG_UPDATE(DPG_PIPE_ARBITRATION_CONTROL1,
PIXEL_DURATION, pix_dur);
}
if (dce_mi->wa.single_head_rdreq_dmif_limit) {
uint32_t eanble = (total_stream_num > 1) ? 0 :
dce_mi->wa.single_head_rdreq_dmif_limit;
REG_UPDATE(MC_HUB_RDREQ_DMIF_LIMIT,
ENABLE, eanble);
}
}
static void dce_mi_free_dmif(
struct mem_input *mi,
uint32_t total_stream_num)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mi);
uint32_t buffers_allocated;
uint32_t dmif_buffer_control;
dmif_buffer_control = REG_GET(DMIF_BUFFER_CONTROL,
DMIF_BUFFERS_ALLOCATED, &buffers_allocated);
if (buffers_allocated == 0)
return;
REG_SET(DMIF_BUFFER_CONTROL, dmif_buffer_control,
DMIF_BUFFERS_ALLOCATED, 0);
REG_WAIT(DMIF_BUFFER_CONTROL,
DMIF_BUFFERS_ALLOCATION_COMPLETED, 1,
10, 3500);
if (dce_mi->wa.single_head_rdreq_dmif_limit) {
uint32_t eanble = (total_stream_num > 1) ? 0 :
dce_mi->wa.single_head_rdreq_dmif_limit;
REG_UPDATE(MC_HUB_RDREQ_DMIF_LIMIT,
ENABLE, eanble);
}
}
static void program_sec_addr(
struct dce_mem_input *dce_mi,
PHYSICAL_ADDRESS_LOC address)
{
/*high register MUST be programmed first*/
REG_SET(GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, 0,
GRPH_SECONDARY_SURFACE_ADDRESS_HIGH,
address.high_part);
REG_SET_2(GRPH_SECONDARY_SURFACE_ADDRESS, 0,
GRPH_SECONDARY_SURFACE_ADDRESS, address.low_part >> 8,
GRPH_SECONDARY_DFQ_ENABLE, 0);
}
static void program_pri_addr(
struct dce_mem_input *dce_mi,
PHYSICAL_ADDRESS_LOC address)
{
/*high register MUST be programmed first*/
REG_SET(GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, 0,
GRPH_PRIMARY_SURFACE_ADDRESS_HIGH,
address.high_part);
REG_SET(GRPH_PRIMARY_SURFACE_ADDRESS, 0,
GRPH_PRIMARY_SURFACE_ADDRESS,
address.low_part >> 8);
}
static bool dce_mi_is_flip_pending(struct mem_input *mem_input)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mem_input);
uint32_t update_pending;
REG_GET(GRPH_UPDATE, GRPH_SURFACE_UPDATE_PENDING, &update_pending);
if (update_pending)
return true;
mem_input->current_address = mem_input->request_address;
return false;
}
static bool dce_mi_program_surface_flip_and_addr(
struct mem_input *mem_input,
const struct dc_plane_address *address,
bool flip_immediate)
{
struct dce_mem_input *dce_mi = TO_DCE_MEM_INPUT(mem_input);
REG_UPDATE(GRPH_UPDATE, GRPH_UPDATE_LOCK, 1);
REG_UPDATE(
GRPH_FLIP_CONTROL,
GRPH_SURFACE_UPDATE_H_RETRACE_EN, flip_immediate ? 1 : 0);
switch (address->type) {
case PLN_ADDR_TYPE_GRAPHICS:
if (address->grph.addr.quad_part == 0)
break;
program_pri_addr(dce_mi, address->grph.addr);
break;
case PLN_ADDR_TYPE_GRPH_STEREO:
if (address->grph_stereo.left_addr.quad_part == 0 ||
address->grph_stereo.right_addr.quad_part == 0)
break;
program_pri_addr(dce_mi, address->grph_stereo.left_addr);
program_sec_addr(dce_mi, address->grph_stereo.right_addr);
break;
default:
/* not supported */
BREAK_TO_DEBUGGER();
break;
}
mem_input->request_address = *address;
if (flip_immediate)
mem_input->current_address = *address;
REG_UPDATE(GRPH_UPDATE, GRPH_UPDATE_LOCK, 0);
return true;
}
static const struct mem_input_funcs dce_mi_funcs = {
.mem_input_program_display_marks = dce_mi_program_display_marks,
.allocate_mem_input = dce_mi_allocate_dmif,
.free_mem_input = dce_mi_free_dmif,
.mem_input_program_surface_flip_and_addr =
dce_mi_program_surface_flip_and_addr,
.mem_input_program_pte_vm = dce_mi_program_pte_vm,
.mem_input_program_surface_config =
dce_mi_program_surface_config,
.mem_input_is_flip_pending = dce_mi_is_flip_pending
};
static const struct mem_input_funcs dce112_mi_funcs = {
.mem_input_program_display_marks = dce112_mi_program_display_marks,
.allocate_mem_input = dce_mi_allocate_dmif,
.free_mem_input = dce_mi_free_dmif,
.mem_input_program_surface_flip_and_addr =
dce_mi_program_surface_flip_and_addr,
.mem_input_program_pte_vm = dce_mi_program_pte_vm,
.mem_input_program_surface_config =
dce_mi_program_surface_config,
.mem_input_is_flip_pending = dce_mi_is_flip_pending
};
static const struct mem_input_funcs dce120_mi_funcs = {
.mem_input_program_display_marks = dce120_mi_program_display_marks,
.allocate_mem_input = dce_mi_allocate_dmif,
.free_mem_input = dce_mi_free_dmif,
.mem_input_program_surface_flip_and_addr =
dce_mi_program_surface_flip_and_addr,
.mem_input_program_pte_vm = dce_mi_program_pte_vm,
.mem_input_program_surface_config =
dce_mi_program_surface_config,
.mem_input_is_flip_pending = dce_mi_is_flip_pending
};
void dce_mem_input_construct(
struct dce_mem_input *dce_mi,
struct dc_context *ctx,
int inst,
const struct dce_mem_input_registers *regs,
const struct dce_mem_input_shift *mi_shift,
const struct dce_mem_input_mask *mi_mask)
{
dce_mi->base.ctx = ctx;
dce_mi->base.inst = inst;
dce_mi->base.funcs = &dce_mi_funcs;
dce_mi->regs = regs;
dce_mi->shifts = mi_shift;
dce_mi->masks = mi_mask;
}
void dce112_mem_input_construct(
struct dce_mem_input *dce_mi,
struct dc_context *ctx,
int inst,
const struct dce_mem_input_registers *regs,
const struct dce_mem_input_shift *mi_shift,
const struct dce_mem_input_mask *mi_mask)
{
dce_mem_input_construct(dce_mi, ctx, inst, regs, mi_shift, mi_mask);
dce_mi->base.funcs = &dce112_mi_funcs;
}
void dce120_mem_input_construct(
struct dce_mem_input *dce_mi,
struct dc_context *ctx,
int inst,
const struct dce_mem_input_registers *regs,
const struct dce_mem_input_shift *mi_shift,
const struct dce_mem_input_mask *mi_mask)
{
dce_mem_input_construct(dce_mi, ctx, inst, regs, mi_shift, mi_mask);
dce_mi->base.funcs = &dce120_mi_funcs;
}