Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Red Hat, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_alloc_btree.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_extent_busy.h" #include "xfs_trace.h" #include "xfs_log.h" STATIC int xfs_trim_extents( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_daddr_t start, xfs_daddr_t end, xfs_daddr_t minlen, uint64_t *blocks_trimmed) { struct block_device *bdev = mp->m_ddev_targp->bt_bdev; struct xfs_btree_cur *cur; struct xfs_buf *agbp; struct xfs_perag *pag; int error; int i; pag = xfs_perag_get(mp, agno); /* * Force out the log. This means any transactions that might have freed * space before we take the AGF buffer lock are now on disk, and the * volatile disk cache is flushed. */ xfs_log_force(mp, XFS_LOG_SYNC); error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp); if (error || !agbp) goto out_put_perag; cur = xfs_allocbt_init_cursor(mp, NULL, agbp, agno, XFS_BTNUM_CNT); /* * Look up the longest btree in the AGF and start with it. */ error = xfs_alloc_lookup_ge(cur, 0, be32_to_cpu(XFS_BUF_TO_AGF(agbp)->agf_longest), &i); if (error) goto out_del_cursor; /* * Loop until we are done with all extents that are large * enough to be worth discarding. */ while (i) { xfs_agblock_t fbno; xfs_extlen_t flen; xfs_daddr_t dbno; xfs_extlen_t dlen; error = xfs_alloc_get_rec(cur, &fbno, &flen, &i); if (error) goto out_del_cursor; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, out_del_cursor); ASSERT(flen <= be32_to_cpu(XFS_BUF_TO_AGF(agbp)->agf_longest)); /* * use daddr format for all range/len calculations as that is * the format the range/len variables are supplied in by * userspace. */ dbno = XFS_AGB_TO_DADDR(mp, agno, fbno); dlen = XFS_FSB_TO_BB(mp, flen); /* * Too small? Give up. */ if (dlen < minlen) { trace_xfs_discard_toosmall(mp, agno, fbno, flen); goto out_del_cursor; } /* * If the extent is entirely outside of the range we are * supposed to discard skip it. Do not bother to trim * down partially overlapping ranges for now. */ if (dbno + dlen < start || dbno > end) { trace_xfs_discard_exclude(mp, agno, fbno, flen); goto next_extent; } /* * If any blocks in the range are still busy, skip the * discard and try again the next time. */ if (xfs_extent_busy_search(mp, agno, fbno, flen)) { trace_xfs_discard_busy(mp, agno, fbno, flen); goto next_extent; } trace_xfs_discard_extent(mp, agno, fbno, flen); error = blkdev_issue_discard(bdev, dbno, dlen, GFP_NOFS, 0); if (error) goto out_del_cursor; *blocks_trimmed += flen; next_extent: error = xfs_btree_decrement(cur, 0, &i); if (error) goto out_del_cursor; if (fatal_signal_pending(current)) { error = -ERESTARTSYS; goto out_del_cursor; } } out_del_cursor: xfs_btree_del_cursor(cur, error); xfs_buf_relse(agbp); out_put_perag: xfs_perag_put(pag); return error; } /* * trim a range of the filesystem. * * Note: the parameters passed from userspace are byte ranges into the * filesystem which does not match to the format we use for filesystem block * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format * is a linear address range. Hence we need to use DADDR based conversions and * comparisons for determining the correct offset and regions to trim. */ int xfs_ioc_trim( struct xfs_mount *mp, struct fstrim_range __user *urange) { struct request_queue *q = bdev_get_queue(mp->m_ddev_targp->bt_bdev); unsigned int granularity = q->limits.discard_granularity; struct fstrim_range range; xfs_daddr_t start, end, minlen; xfs_agnumber_t start_agno, end_agno, agno; uint64_t blocks_trimmed = 0; int error, last_error = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!blk_queue_discard(q)) return -EOPNOTSUPP; /* * We haven't recovered the log, so we cannot use our bnobt-guided * storage zapping commands. */ if (mp->m_flags & XFS_MOUNT_NORECOVERY) return -EROFS; if (copy_from_user(&range, urange, sizeof(range))) return -EFAULT; range.minlen = max_t(u64, granularity, range.minlen); minlen = BTOBB(range.minlen); /* * Truncating down the len isn't actually quite correct, but using * BBTOB would mean we trivially get overflows for values * of ULLONG_MAX or slightly lower. And ULLONG_MAX is the default * used by the fstrim application. In the end it really doesn't * matter as trimming blocks is an advisory interface. */ if (range.start >= XFS_FSB_TO_B(mp, mp->m_sb.sb_dblocks) || range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) || range.len < mp->m_sb.sb_blocksize) return -EINVAL; start = BTOBB(range.start); end = start + BTOBBT(range.len) - 1; if (end > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1) end = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)- 1; start_agno = xfs_daddr_to_agno(mp, start); end_agno = xfs_daddr_to_agno(mp, end); for (agno = start_agno; agno <= end_agno; agno++) { error = xfs_trim_extents(mp, agno, start, end, minlen, &blocks_trimmed); if (error) { last_error = error; if (error == -ERESTARTSYS) break; } } if (last_error) return last_error; range.len = XFS_FSB_TO_B(mp, blocks_trimmed); if (copy_to_user(urange, &range, sizeof(range))) return -EFAULT; return 0; } |