Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Core registration and callback routines for MTD
 * drivers and users.
 *
 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
 * Copyright © 2006      Red Hat UK Limited 
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <linux/ioctl.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/proc_fs.h>
#include <linux/idr.h>
#include <linux/backing-dev.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/reboot.h>
#include <linux/leds.h>
#include <linux/debugfs.h>
#include <linux/nvmem-provider.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>

#include "mtdcore.h"

struct backing_dev_info *mtd_bdi;

#ifdef CONFIG_PM_SLEEP

static int mtd_cls_suspend(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return mtd ? mtd_suspend(mtd) : 0;
}

static int mtd_cls_resume(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	if (mtd)
		mtd_resume(mtd);
	return 0;
}

static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
#else
#define MTD_CLS_PM_OPS NULL
#endif

static struct class mtd_class = {
	.name = "mtd",
	.owner = THIS_MODULE,
	.pm = MTD_CLS_PM_OPS,
};

static DEFINE_IDR(mtd_idr);

/* These are exported solely for the purpose of mtd_blkdevs.c. You
   should not use them for _anything_ else */
DEFINE_MUTEX(mtd_table_mutex);
EXPORT_SYMBOL_GPL(mtd_table_mutex);

struct mtd_info *__mtd_next_device(int i)
{
	return idr_get_next(&mtd_idr, &i);
}
EXPORT_SYMBOL_GPL(__mtd_next_device);

static LIST_HEAD(mtd_notifiers);


#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)

/* REVISIT once MTD uses the driver model better, whoever allocates
 * the mtd_info will probably want to use the release() hook...
 */
static void mtd_release(struct device *dev)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	dev_t index = MTD_DEVT(mtd->index);

	/* remove /dev/mtdXro node */
	device_destroy(&mtd_class, index + 1);
}

static ssize_t mtd_type_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	char *type;

	switch (mtd->type) {
	case MTD_ABSENT:
		type = "absent";
		break;
	case MTD_RAM:
		type = "ram";
		break;
	case MTD_ROM:
		type = "rom";
		break;
	case MTD_NORFLASH:
		type = "nor";
		break;
	case MTD_NANDFLASH:
		type = "nand";
		break;
	case MTD_DATAFLASH:
		type = "dataflash";
		break;
	case MTD_UBIVOLUME:
		type = "ubi";
		break;
	case MTD_MLCNANDFLASH:
		type = "mlc-nand";
		break;
	default:
		type = "unknown";
	}

	return snprintf(buf, PAGE_SIZE, "%s\n", type);
}
static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);

static ssize_t mtd_flags_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
}
static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);

static ssize_t mtd_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%llu\n",
		(unsigned long long)mtd->size);
}
static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);

static ssize_t mtd_erasesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
}
static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);

static ssize_t mtd_writesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
}
static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);

static ssize_t mtd_subpagesize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;

	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
}
static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);

static ssize_t mtd_oobsize_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
}
static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);

static ssize_t mtd_oobavail_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
}
static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);

static ssize_t mtd_numeraseregions_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
}
static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
	NULL);

static ssize_t mtd_name_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
}
static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);

static ssize_t mtd_ecc_strength_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
}
static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);

static ssize_t mtd_bitflip_threshold_show(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
}

static ssize_t mtd_bitflip_threshold_store(struct device *dev,
					   struct device_attribute *attr,
					   const char *buf, size_t count)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	unsigned int bitflip_threshold;
	int retval;

	retval = kstrtouint(buf, 0, &bitflip_threshold);
	if (retval)
		return retval;

	mtd->bitflip_threshold = bitflip_threshold;
	return count;
}
static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
		   mtd_bitflip_threshold_show,
		   mtd_bitflip_threshold_store);

static ssize_t mtd_ecc_step_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);

}
static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);

static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
}
static DEVICE_ATTR(corrected_bits, S_IRUGO,
		   mtd_ecc_stats_corrected_show, NULL);

static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
}
static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);

static ssize_t mtd_badblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
}
static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);

static ssize_t mtd_bbtblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mtd_info *mtd = dev_get_drvdata(dev);
	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;

	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
}
static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);

static struct attribute *mtd_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_flags.attr,
	&dev_attr_size.attr,
	&dev_attr_erasesize.attr,
	&dev_attr_writesize.attr,
	&dev_attr_subpagesize.attr,
	&dev_attr_oobsize.attr,
	&dev_attr_oobavail.attr,
	&dev_attr_numeraseregions.attr,
	&dev_attr_name.attr,
	&dev_attr_ecc_strength.attr,
	&dev_attr_ecc_step_size.attr,
	&dev_attr_corrected_bits.attr,
	&dev_attr_ecc_failures.attr,
	&dev_attr_bad_blocks.attr,
	&dev_attr_bbt_blocks.attr,
	&dev_attr_bitflip_threshold.attr,
	NULL,
};
ATTRIBUTE_GROUPS(mtd);

static const struct device_type mtd_devtype = {
	.name		= "mtd",
	.groups		= mtd_groups,
	.release	= mtd_release,
};

#ifndef CONFIG_MMU
unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
{
	switch (mtd->type) {
	case MTD_RAM:
		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
	case MTD_ROM:
		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
			NOMMU_MAP_READ;
	default:
		return NOMMU_MAP_COPY;
	}
}
EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
#endif

static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
			       void *cmd)
{
	struct mtd_info *mtd;

	mtd = container_of(n, struct mtd_info, reboot_notifier);
	mtd->_reboot(mtd);

	return NOTIFY_DONE;
}

/**
 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 * @mtd: pointer to new MTD device info structure
 * @wunit: write unit we are interested in
 * @info: returned pairing information
 *
 * Retrieve pairing information associated to the wunit.
 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 * paired together, and where programming a page may influence the page it is
 * paired with.
 * The notion of page is replaced by the term wunit (write-unit) to stay
 * consistent with the ->writesize field.
 *
 * The @wunit argument can be extracted from an absolute offset using
 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 * to @wunit.
 *
 * From the pairing info the MTD user can find all the wunits paired with
 * @wunit using the following loop:
 *
 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 *	info.pair = i;
 *	mtd_pairing_info_to_wunit(mtd, &info);
 *	...
 * }
 */
int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
			      struct mtd_pairing_info *info)
{
	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);

	if (wunit < 0 || wunit >= npairs)
		return -EINVAL;

	if (mtd->pairing && mtd->pairing->get_info)
		return mtd->pairing->get_info(mtd, wunit, info);

	info->group = 0;
	info->pair = wunit;

	return 0;
}
EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);

/**
 * mtd_pairing_info_to_wunit - get wunit from pairing information
 * @mtd: pointer to new MTD device info structure
 * @info: pairing information struct
 *
 * Returns a positive number representing the wunit associated to the info
 * struct, or a negative error code.
 *
 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 * doc).
 *
 * It can also be used to only program the first page of each pair (i.e.
 * page attached to group 0), which allows one to use an MLC NAND in
 * software-emulated SLC mode:
 *
 * info.group = 0;
 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 * }
 */
int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
			      const struct mtd_pairing_info *info)
{
	int ngroups = mtd_pairing_groups(mtd);
	int npairs = mtd_wunit_per_eb(mtd) / ngroups;

	if (!info || info->pair < 0 || info->pair >= npairs ||
	    info->group < 0 || info->group >= ngroups)
		return -EINVAL;

	if (mtd->pairing && mtd->pairing->get_wunit)
		return mtd->pairing->get_wunit(mtd, info);

	return info->pair;
}
EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);

/**
 * mtd_pairing_groups - get the number of pairing groups
 * @mtd: pointer to new MTD device info structure
 *
 * Returns the number of pairing groups.
 *
 * This number is usually equal to the number of bits exposed by a single
 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 * to iterate over all pages of a given pair.
 */
int mtd_pairing_groups(struct mtd_info *mtd)
{
	if (!mtd->pairing || !mtd->pairing->ngroups)
		return 1;

	return mtd->pairing->ngroups;
}
EXPORT_SYMBOL_GPL(mtd_pairing_groups);

static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
			      void *val, size_t bytes)
{
	struct mtd_info *mtd = priv;
	size_t retlen;
	int err;

	err = mtd_read(mtd, offset, bytes, &retlen, val);
	if (err && err != -EUCLEAN)
		return err;

	return retlen == bytes ? 0 : -EIO;
}

static int mtd_nvmem_add(struct mtd_info *mtd)
{
	struct nvmem_config config = {};

	config.id = -1;
	config.dev = &mtd->dev;
	config.name = mtd->name;
	config.owner = THIS_MODULE;
	config.reg_read = mtd_nvmem_reg_read;
	config.size = mtd->size;
	config.word_size = 1;
	config.stride = 1;
	config.read_only = true;
	config.root_only = true;
	config.no_of_node = true;
	config.priv = mtd;

	mtd->nvmem = nvmem_register(&config);
	if (IS_ERR(mtd->nvmem)) {
		/* Just ignore if there is no NVMEM support in the kernel */
		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
			mtd->nvmem = NULL;
		} else {
			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
			return PTR_ERR(mtd->nvmem);
		}
	}

	return 0;
}

static struct dentry *dfs_dir_mtd;

/**
 *	add_mtd_device - register an MTD device
 *	@mtd: pointer to new MTD device info structure
 *
 *	Add a device to the list of MTD devices present in the system, and
 *	notify each currently active MTD 'user' of its arrival. Returns
 *	zero on success or non-zero on failure.
 */

int add_mtd_device(struct mtd_info *mtd)
{
	struct mtd_notifier *not;
	int i, error;

	/*
	 * May occur, for instance, on buggy drivers which call
	 * mtd_device_parse_register() multiple times on the same master MTD,
	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
	 */
	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
		return -EEXIST;

	BUG_ON(mtd->writesize == 0);

	/*
	 * MTD drivers should implement ->_{write,read}() or
	 * ->_{write,read}_oob(), but not both.
	 */
	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
		    (mtd->_read && mtd->_read_oob)))
		return -EINVAL;

	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
		    !(mtd->flags & MTD_NO_ERASE)))
		return -EINVAL;

	mutex_lock(&mtd_table_mutex);

	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
	if (i < 0) {
		error = i;
		goto fail_locked;
	}

	mtd->index = i;
	mtd->usecount = 0;

	/* default value if not set by driver */
	if (mtd->bitflip_threshold == 0)
		mtd->bitflip_threshold = mtd->ecc_strength;

	if (is_power_of_2(mtd->erasesize))
		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
	else
		mtd->erasesize_shift = 0;

	if (is_power_of_2(mtd->writesize))
		mtd->writesize_shift = ffs(mtd->writesize) - 1;
	else
		mtd->writesize_shift = 0;

	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;

	/* Some chips always power up locked. Unlock them now */
	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
		error = mtd_unlock(mtd, 0, mtd->size);
		if (error && error != -EOPNOTSUPP)
			printk(KERN_WARNING
			       "%s: unlock failed, writes may not work\n",
			       mtd->name);
		/* Ignore unlock failures? */
		error = 0;
	}

	/* Caller should have set dev.parent to match the
	 * physical device, if appropriate.
	 */
	mtd->dev.type = &mtd_devtype;
	mtd->dev.class = &mtd_class;
	mtd->dev.devt = MTD_DEVT(i);
	dev_set_name(&mtd->dev, "mtd%d", i);
	dev_set_drvdata(&mtd->dev, mtd);
	of_node_get(mtd_get_of_node(mtd));
	error = device_register(&mtd->dev);
	if (error)
		goto fail_added;

	/* Add the nvmem provider */
	error = mtd_nvmem_add(mtd);
	if (error)
		goto fail_nvmem_add;

	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
			pr_debug("mtd device %s won't show data in debugfs\n",
				 dev_name(&mtd->dev));
		}
	}

	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
		      "mtd%dro", i);

	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
	/* No need to get a refcount on the module containing
	   the notifier, since we hold the mtd_table_mutex */
	list_for_each_entry(not, &mtd_notifiers, list)
		not->add(mtd);

	mutex_unlock(&mtd_table_mutex);
	/* We _know_ we aren't being removed, because
	   our caller is still holding us here. So none
	   of this try_ nonsense, and no bitching about it
	   either. :) */
	__module_get(THIS_MODULE);
	return 0;

fail_nvmem_add:
	device_unregister(&mtd->dev);
fail_added:
	of_node_put(mtd_get_of_node(mtd));
	idr_remove(&mtd_idr, i);
fail_locked:
	mutex_unlock(&mtd_table_mutex);
	return error;
}

/**
 *	del_mtd_device - unregister an MTD device
 *	@mtd: pointer to MTD device info structure
 *
 *	Remove a device from the list of MTD devices present in the system,
 *	and notify each currently active MTD 'user' of its departure.
 *	Returns zero on success or 1 on failure, which currently will happen
 *	if the requested device does not appear to be present in the list.
 */

int del_mtd_device(struct mtd_info *mtd)
{
	int ret;
	struct mtd_notifier *not;

	mutex_lock(&mtd_table_mutex);

	debugfs_remove_recursive(mtd->dbg.dfs_dir);

	if (idr_find(&mtd_idr, mtd->index) != mtd) {
		ret = -ENODEV;
		goto out_error;
	}

	/* No need to get a refcount on the module containing
		the notifier, since we hold the mtd_table_mutex */
	list_for_each_entry(not, &mtd_notifiers, list)
		not->remove(mtd);

	if (mtd->usecount) {
		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
		       mtd->index, mtd->name, mtd->usecount);
		ret = -EBUSY;
	} else {
		/* Try to remove the NVMEM provider */
		if (mtd->nvmem)
			nvmem_unregister(mtd->nvmem);

		device_unregister(&mtd->dev);

		idr_remove(&mtd_idr, mtd->index);
		of_node_put(mtd_get_of_node(mtd));

		module_put(THIS_MODULE);
		ret = 0;
	}

out_error:
	mutex_unlock(&mtd_table_mutex);
	return ret;
}

/*
 * Set a few defaults based on the parent devices, if not provided by the
 * driver
 */
static void mtd_set_dev_defaults(struct mtd_info *mtd)
{
	if (mtd->dev.parent) {
		if (!mtd->owner && mtd->dev.parent->driver)
			mtd->owner = mtd->dev.parent->driver->owner;
		if (!mtd->name)
			mtd->name = dev_name(mtd->dev.parent);
	} else {
		pr_debug("mtd device won't show a device symlink in sysfs\n");
	}

	mtd->orig_flags = mtd->flags;
}

/**
 * mtd_device_parse_register - parse partitions and register an MTD device.
 *
 * @mtd: the MTD device to register
 * @types: the list of MTD partition probes to try, see
 *         'parse_mtd_partitions()' for more information
 * @parser_data: MTD partition parser-specific data
 * @parts: fallback partition information to register, if parsing fails;
 *         only valid if %nr_parts > %0
 * @nr_parts: the number of partitions in parts, if zero then the full
 *            MTD device is registered if no partition info is found
 *
 * This function aggregates MTD partitions parsing (done by
 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 * basically follows the most common pattern found in many MTD drivers:
 *
 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 *   registered first.
 * * Then It tries to probe partitions on MTD device @mtd using parsers
 *   specified in @types (if @types is %NULL, then the default list of parsers
 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 *   found this functions tries to fallback to information specified in
 *   @parts/@nr_parts.
 * * If no partitions were found this function just registers the MTD device
 *   @mtd and exits.
 *
 * Returns zero in case of success and a negative error code in case of failure.
 */
int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
			      struct mtd_part_parser_data *parser_data,
			      const struct mtd_partition *parts,
			      int nr_parts)
{
	int ret;

	mtd_set_dev_defaults(mtd);

	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
		ret = add_mtd_device(mtd);
		if (ret)
			return ret;
	}

	/* Prefer parsed partitions over driver-provided fallback */
	ret = parse_mtd_partitions(mtd, types, parser_data);
	if (ret > 0)
		ret = 0;
	else if (nr_parts)
		ret = add_mtd_partitions(mtd, parts, nr_parts);
	else if (!device_is_registered(&mtd->dev))
		ret = add_mtd_device(mtd);
	else
		ret = 0;

	if (ret)
		goto out;

	/*
	 * FIXME: some drivers unfortunately call this function more than once.
	 * So we have to check if we've already assigned the reboot notifier.
	 *
	 * Generally, we can make multiple calls work for most cases, but it
	 * does cause problems with parse_mtd_partitions() above (e.g.,
	 * cmdlineparts will register partitions more than once).
	 */
	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
		  "MTD already registered\n");
	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
		register_reboot_notifier(&mtd->reboot_notifier);
	}

out:
	if (ret && device_is_registered(&mtd->dev))
		del_mtd_device(mtd);

	return ret;
}
EXPORT_SYMBOL_GPL(mtd_device_parse_register);

/**
 * mtd_device_unregister - unregister an existing MTD device.
 *
 * @master: the MTD device to unregister.  This will unregister both the master
 *          and any partitions if registered.
 */
int mtd_device_unregister(struct mtd_info *master)
{
	int err;

	if (master->_reboot)
		unregister_reboot_notifier(&master->reboot_notifier);

	err = del_mtd_partitions(master);
	if (err)
		return err;

	if (!device_is_registered(&master->dev))
		return 0;

	return del_mtd_device(master);
}
EXPORT_SYMBOL_GPL(mtd_device_unregister);

/**
 *	register_mtd_user - register a 'user' of MTD devices.
 *	@new: pointer to notifier info structure
 *
 *	Registers a pair of callbacks function to be called upon addition
 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 *	invoked for each MTD device currently present in the system.
 */
void register_mtd_user (struct mtd_notifier *new)
{
	struct mtd_info *mtd;

	mutex_lock(&mtd_table_mutex);

	list_add(&new->list, &mtd_notifiers);

	__module_get(THIS_MODULE);

	mtd_for_each_device(mtd)
		new->add(mtd);

	mutex_unlock(&mtd_table_mutex);
}
EXPORT_SYMBOL_GPL(register_mtd_user);

/**
 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 *	@old: pointer to notifier info structure
 *
 *	Removes a callback function pair from the list of 'users' to be
 *	notified upon addition or removal of MTD devices. Causes the
 *	'remove' callback to be immediately invoked for each MTD device
 *	currently present in the system.
 */
int unregister_mtd_user (struct mtd_notifier *old)
{
	struct mtd_info *mtd;

	mutex_lock(&mtd_table_mutex);

	module_put(THIS_MODULE);

	mtd_for_each_device(mtd)
		old->remove(mtd);

	list_del(&old->list);
	mutex_unlock(&mtd_table_mutex);
	return 0;
}
EXPORT_SYMBOL_GPL(unregister_mtd_user);

/**
 *	get_mtd_device - obtain a validated handle for an MTD device
 *	@mtd: last known address of the required MTD device
 *	@num: internal device number of the required MTD device
 *
 *	Given a number and NULL address, return the num'th entry in the device
 *	table, if any.	Given an address and num == -1, search the device table
 *	for a device with that address and return if it's still present. Given
 *	both, return the num'th driver only if its address matches. Return
 *	error code if not.
 */
struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
{
	struct mtd_info *ret = NULL, *other;
	int err = -ENODEV;

	mutex_lock(&mtd_table_mutex);

	if (num == -1) {
		mtd_for_each_device(other) {
			if (other == mtd) {
				ret = mtd;
				break;
			}
		}
	} else if (num >= 0) {
		ret = idr_find(&mtd_idr, num);
		if (mtd && mtd != ret)
			ret = NULL;
	}

	if (!ret) {
		ret = ERR_PTR(err);
		goto out;
	}

	err = __get_mtd_device(ret);
	if (err)
		ret = ERR_PTR(err);
out:
	mutex_unlock(&mtd_table_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(get_mtd_device);


int __get_mtd_device(struct mtd_info *mtd)
{
	int err;

	if (!try_module_get(mtd->owner))
		return -ENODEV;

	if (mtd->_get_device) {
		err = mtd->_get_device(mtd);

		if (err) {
			module_put(mtd->owner);
			return err;
		}
	}
	mtd->usecount++;
	return 0;
}
EXPORT_SYMBOL_GPL(__get_mtd_device);

/**
 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 *	device name
 *	@name: MTD device name to open
 *
 * 	This function returns MTD device description structure in case of
 * 	success and an error code in case of failure.
 */
struct mtd_info *get_mtd_device_nm(const char *name)
{
	int err = -ENODEV;
	struct mtd_info *mtd = NULL, *other;

	mutex_lock(&mtd_table_mutex);

	mtd_for_each_device(other) {
		if (!strcmp(name, other->name)) {
			mtd = other;
			break;
		}
	}

	if (!mtd)
		goto out_unlock;

	err = __get_mtd_device(mtd);
	if (err)
		goto out_unlock;

	mutex_unlock(&mtd_table_mutex);
	return mtd;

out_unlock:
	mutex_unlock(&mtd_table_mutex);
	return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(get_mtd_device_nm);

void put_mtd_device(struct mtd_info *mtd)
{
	mutex_lock(&mtd_table_mutex);
	__put_mtd_device(mtd);
	mutex_unlock(&mtd_table_mutex);

}
EXPORT_SYMBOL_GPL(put_mtd_device);

void __put_mtd_device(struct mtd_info *mtd)
{
	--mtd->usecount;
	BUG_ON(mtd->usecount < 0);

	if (mtd->_put_device)
		mtd->_put_device(mtd);

	module_put(mtd->owner);
}
EXPORT_SYMBOL_GPL(__put_mtd_device);

/*
 * Erase is an synchronous operation. Device drivers are epected to return a
 * negative error code if the operation failed and update instr->fail_addr
 * to point the portion that was not properly erased.
 */
int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;

	if (!mtd->erasesize || !mtd->_erase)
		return -ENOTSUPP;

	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
		return -EINVAL;
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;

	if (!instr->len)
		return 0;

	ledtrig_mtd_activity();
	return mtd->_erase(mtd, instr);
}
EXPORT_SYMBOL_GPL(mtd_erase);

/*
 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 */
int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
	      void **virt, resource_size_t *phys)
{
	*retlen = 0;
	*virt = NULL;
	if (phys)
		*phys = 0;
	if (!mtd->_point)
		return -EOPNOTSUPP;
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
		return -EINVAL;
	if (!len)
		return 0;
	return mtd->_point(mtd, from, len, retlen, virt, phys);
}
EXPORT_SYMBOL_GPL(mtd_point);

/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
	if (!mtd->_unpoint)
		return -EOPNOTSUPP;
	if (from < 0 || from >= mtd->size || len > mtd->size - from)
		return -EINVAL;
	if (!len)
		return 0;
	return mtd->_unpoint(mtd, from, len);
}
EXPORT_SYMBOL_GPL(mtd_unpoint);

/*
 * Allow NOMMU mmap() to directly map the device (if not NULL)
 * - return the address to which the offset maps
 * - return -ENOSYS to indicate refusal to do the mapping
 */
unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
				    unsigned long offset, unsigned long flags)
{
	size_t retlen;
	void *virt;
	int ret;

	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
	if (ret)
		return ret;
	if (retlen != len) {
		mtd_unpoint(mtd, offset, retlen);
		return -ENOSYS;
	}
	return (unsigned long)virt;
}
EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);

int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
	     u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len = len,
		.datbuf = buf,
	};
	int ret;

	ret = mtd_read_oob(mtd, from, &ops);
	*retlen = ops.retlen;

	return ret;
}
EXPORT_SYMBOL_GPL(mtd_read);

int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
	      const u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len = len,
		.datbuf = (u8 *)buf,
	};
	int ret;

	ret = mtd_write_oob(mtd, to, &ops);
	*retlen = ops.retlen;

	return ret;
}
EXPORT_SYMBOL_GPL(mtd_write);

/*
 * In blackbox flight recorder like scenarios we want to make successful writes
 * in interrupt context. panic_write() is only intended to be called when its
 * known the kernel is about to panic and we need the write to succeed. Since
 * the kernel is not going to be running for much longer, this function can
 * break locks and delay to ensure the write succeeds (but not sleep).
 */
int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
		    const u_char *buf)
{
	*retlen = 0;
	if (!mtd->_panic_write)
		return -EOPNOTSUPP;
	if (to < 0 || to >= mtd->size || len > mtd->size - to)
		return -EINVAL;
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
	if (!len)
		return 0;
	return mtd->_panic_write(mtd, to, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_panic_write);

static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
			     struct mtd_oob_ops *ops)
{
	/*
	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
	 *  this case.
	 */
	if (!ops->datbuf)
		ops->len = 0;

	if (!ops->oobbuf)
		ops->ooblen = 0;

	if (offs < 0 || offs + ops->len > mtd->size)
		return -EINVAL;

	if (ops->ooblen) {
		size_t maxooblen;

		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
			return -EINVAL;

		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
				      mtd_div_by_ws(offs, mtd)) *
			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
		if (ops->ooblen > maxooblen)
			return -EINVAL;
	}

	return 0;
}

int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
{
	int ret_code;
	ops->retlen = ops->oobretlen = 0;

	ret_code = mtd_check_oob_ops(mtd, from, ops);
	if (ret_code)
		return ret_code;

	ledtrig_mtd_activity();

	/* Check the validity of a potential fallback on mtd->_read */
	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
		return -EOPNOTSUPP;

	if (mtd->_read_oob)
		ret_code = mtd->_read_oob(mtd, from, ops);
	else
		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
				      ops->datbuf);

	/*
	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
	 * similar to mtd->_read(), returning a non-negative integer
	 * representing max bitflips. In other cases, mtd->_read_oob() may
	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
	 */
	if (unlikely(ret_code < 0))
		return ret_code;
	if (mtd->ecc_strength == 0)
		return 0;	/* device lacks ecc */
	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
}
EXPORT_SYMBOL_GPL(mtd_read_oob);

int mtd_write_oob(struct mtd_info *mtd, loff_t to,
				struct mtd_oob_ops *ops)
{
	int ret;

	ops->retlen = ops->oobretlen = 0;

	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;

	ret = mtd_check_oob_ops(mtd, to, ops);
	if (ret)
		return ret;

	ledtrig_mtd_activity();

	/* Check the validity of a potential fallback on mtd->_write */
	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
		return -EOPNOTSUPP;

	if (mtd->_write_oob)
		return mtd->_write_oob(mtd, to, ops);
	else
		return mtd->_write(mtd, to, ops->len, &ops->retlen,
				   ops->datbuf);
}
EXPORT_SYMBOL_GPL(mtd_write_oob);

/**
 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
 * @mtd: MTD device structure
 * @section: ECC section. Depending on the layout you may have all the ECC
 *	     bytes stored in a single contiguous section, or one section
 *	     per ECC chunk (and sometime several sections for a single ECC
 *	     ECC chunk)
 * @oobecc: OOB region struct filled with the appropriate ECC position
 *	    information
 *
 * This function returns ECC section information in the OOB area. If you want
 * to get all the ECC bytes information, then you should call
 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
		      struct mtd_oob_region *oobecc)
{
	memset(oobecc, 0, sizeof(*oobecc));

	if (!mtd || section < 0)
		return -EINVAL;

	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
		return -ENOTSUPP;

	return mtd->ooblayout->ecc(mtd, section, oobecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);

/**
 * mtd_ooblayout_free - Get the OOB region definition of a specific free
 *			section
 * @mtd: MTD device structure
 * @section: Free section you are interested in. Depending on the layout
 *	     you may have all the free bytes stored in a single contiguous
 *	     section, or one section per ECC chunk plus an extra section
 *	     for the remaining bytes (or other funky layout).
 * @oobfree: OOB region struct filled with the appropriate free position
 *	     information
 *
 * This function returns free bytes position in the OOB area. If you want
 * to get all the free bytes information, then you should call
 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_free(struct mtd_info *mtd, int section,
		       struct mtd_oob_region *oobfree)
{
	memset(oobfree, 0, sizeof(*oobfree));

	if (!mtd || section < 0)
		return -EINVAL;

	if (!mtd->ooblayout || !mtd->ooblayout->free)
		return -ENOTSUPP;

	return mtd->ooblayout->free(mtd, section, oobfree);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_free);

/**
 * mtd_ooblayout_find_region - Find the region attached to a specific byte
 * @mtd: mtd info structure
 * @byte: the byte we are searching for
 * @sectionp: pointer where the section id will be stored
 * @oobregion: used to retrieve the ECC position
 * @iter: iterator function. Should be either mtd_ooblayout_free or
 *	  mtd_ooblayout_ecc depending on the region type you're searching for
 *
 * This function returns the section id and oobregion information of a
 * specific byte. For example, say you want to know where the 4th ECC byte is
 * stored, you'll use:
 *
 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
				int *sectionp, struct mtd_oob_region *oobregion,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
	int pos = 0, ret, section = 0;

	memset(oobregion, 0, sizeof(*oobregion));

	while (1) {
		ret = iter(mtd, section, oobregion);
		if (ret)
			return ret;

		if (pos + oobregion->length > byte)
			break;

		pos += oobregion->length;
		section++;
	}

	/*
	 * Adjust region info to make it start at the beginning at the
	 * 'start' ECC byte.
	 */
	oobregion->offset += byte - pos;
	oobregion->length -= byte - pos;
	*sectionp = section;

	return 0;
}

/**
 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
 *				  ECC byte
 * @mtd: mtd info structure
 * @eccbyte: the byte we are searching for
 * @sectionp: pointer where the section id will be stored
 * @oobregion: OOB region information
 *
 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
 * byte.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
				 int *section,
				 struct mtd_oob_region *oobregion)
{
	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
					 mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);

/**
 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
 * @mtd: mtd info structure
 * @buf: destination buffer to store OOB bytes
 * @oobbuf: OOB buffer
 * @start: first byte to retrieve
 * @nbytes: number of bytes to retrieve
 * @iter: section iterator
 *
 * Extract bytes attached to a specific category (ECC or free)
 * from the OOB buffer and copy them into buf.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
				const u8 *oobbuf, int start, int nbytes,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
	struct mtd_oob_region oobregion;
	int section, ret;

	ret = mtd_ooblayout_find_region(mtd, start, &section,
					&oobregion, iter);

	while (!ret) {
		int cnt;

		cnt = min_t(int, nbytes, oobregion.length);
		memcpy(buf, oobbuf + oobregion.offset, cnt);
		buf += cnt;
		nbytes -= cnt;

		if (!nbytes)
			break;

		ret = iter(mtd, ++section, &oobregion);
	}

	return ret;
}

/**
 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
 * @mtd: mtd info structure
 * @buf: source buffer to get OOB bytes from
 * @oobbuf: OOB buffer
 * @start: first OOB byte to set
 * @nbytes: number of OOB bytes to set
 * @iter: section iterator
 *
 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
 * is selected by passing the appropriate iterator.
 *
 * Returns zero on success, a negative error code otherwise.
 */
static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
				u8 *oobbuf, int start, int nbytes,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
	struct mtd_oob_region oobregion;
	int section, ret;

	ret = mtd_ooblayout_find_region(mtd, start, &section,
					&oobregion, iter);

	while (!ret) {
		int cnt;

		cnt = min_t(int, nbytes, oobregion.length);
		memcpy(oobbuf + oobregion.offset, buf, cnt);
		buf += cnt;
		nbytes -= cnt;

		if (!nbytes)
			break;

		ret = iter(mtd, ++section, &oobregion);
	}

	return ret;
}

/**
 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
 * @mtd: mtd info structure
 * @iter: category iterator
 *
 * Count the number of bytes in a given category.
 *
 * Returns a positive value on success, a negative error code otherwise.
 */
static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
				int (*iter)(struct mtd_info *,
					    int section,
					    struct mtd_oob_region *oobregion))
{
	struct mtd_oob_region oobregion;
	int section = 0, ret, nbytes = 0;

	while (1) {
		ret = iter(mtd, section++, &oobregion);
		if (ret) {
			if (ret == -ERANGE)
				ret = nbytes;
			break;
		}

		nbytes += oobregion.length;
	}

	return ret;
}

/**
 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: destination buffer to store ECC bytes
 * @oobbuf: OOB buffer
 * @start: first ECC byte to retrieve
 * @nbytes: number of ECC bytes to retrieve
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
			       const u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
				       mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);

/**
 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
 * @mtd: mtd info structure
 * @eccbuf: source buffer to get ECC bytes from
 * @oobbuf: OOB buffer
 * @start: first ECC byte to set
 * @nbytes: number of ECC bytes to set
 *
 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
			       u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
				       mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);

/**
 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
 * @mtd: mtd info structure
 * @databuf: destination buffer to store ECC bytes
 * @oobbuf: OOB buffer
 * @start: first ECC byte to retrieve
 * @nbytes: number of ECC bytes to retrieve
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
				const u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
				       mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);

/**
 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
 * @mtd: mtd info structure
 * @databuf: source buffer to get data bytes from
 * @oobbuf: OOB buffer
 * @start: first ECC byte to set
 * @nbytes: number of ECC bytes to set
 *
 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
				u8 *oobbuf, int start, int nbytes)
{
	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
				       mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);

/**
 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
 * @mtd: mtd info structure
 *
 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
{
	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);

/**
 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
 * @mtd: mtd info structure
 *
 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
 *
 * Returns zero on success, a negative error code otherwise.
 */
int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
{
	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
}
EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);

/*
 * Method to access the protection register area, present in some flash
 * devices. The user data is one time programmable but the factory data is read
 * only.
 */
int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
			   struct otp_info *buf)
{
	if (!mtd->_get_fact_prot_info)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);

int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
			   size_t *retlen, u_char *buf)
{
	*retlen = 0;
	if (!mtd->_read_fact_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);

int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
			   struct otp_info *buf)
{
	if (!mtd->_get_user_prot_info)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);

int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
			   size_t *retlen, u_char *buf)
{
	*retlen = 0;
	if (!mtd->_read_user_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);

int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, u_char *buf)
{
	int ret;

	*retlen = 0;
	if (!mtd->_write_user_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
	if (ret)
		return ret;

	/*
	 * If no data could be written at all, we are out of memory and
	 * must return -ENOSPC.
	 */
	return (*retlen) ? 0 : -ENOSPC;
}
EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);

int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
{
	if (!mtd->_lock_user_prot_reg)
		return -EOPNOTSUPP;
	if (!len)
		return 0;
	return mtd->_lock_user_prot_reg(mtd, from, len);
}
EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);

/* Chip-supported device locking */
int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	if (!mtd->_lock)
		return -EOPNOTSUPP;
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
		return -EINVAL;
	if (!len)
		return 0;
	return mtd->_lock(mtd, ofs, len);
}
EXPORT_SYMBOL_GPL(mtd_lock);

int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	if (!mtd->_unlock)
		return -EOPNOTSUPP;
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
		return -EINVAL;
	if (!len)
		return 0;
	return mtd->_unlock(mtd, ofs, len);
}
EXPORT_SYMBOL_GPL(mtd_unlock);

int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	if (!mtd->_is_locked)
		return -EOPNOTSUPP;
	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
		return -EINVAL;
	if (!len)
		return 0;
	return mtd->_is_locked(mtd, ofs, len);
}
EXPORT_SYMBOL_GPL(mtd_is_locked);

int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
	if (ofs < 0 || ofs >= mtd->size)
		return -EINVAL;
	if (!mtd->_block_isreserved)
		return 0;
	return mtd->_block_isreserved(mtd, ofs);
}
EXPORT_SYMBOL_GPL(mtd_block_isreserved);

int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
	if (ofs < 0 || ofs >= mtd->size)
		return -EINVAL;
	if (!mtd->_block_isbad)
		return 0;
	return mtd->_block_isbad(mtd, ofs);
}
EXPORT_SYMBOL_GPL(mtd_block_isbad);

int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	if (!mtd->_block_markbad)
		return -EOPNOTSUPP;
	if (ofs < 0 || ofs >= mtd->size)
		return -EINVAL;
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
	return mtd->_block_markbad(mtd, ofs);
}
EXPORT_SYMBOL_GPL(mtd_block_markbad);

/*
 * default_mtd_writev - the default writev method
 * @mtd: mtd device description object pointer
 * @vecs: the vectors to write
 * @count: count of vectors in @vecs
 * @to: the MTD device offset to write to
 * @retlen: on exit contains the count of bytes written to the MTD device.
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
			      unsigned long count, loff_t to, size_t *retlen)
{
	unsigned long i;
	size_t totlen = 0, thislen;
	int ret = 0;

	for (i = 0; i < count; i++) {
		if (!vecs[i].iov_len)
			continue;
		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
				vecs[i].iov_base);
		totlen += thislen;
		if (ret || thislen != vecs[i].iov_len)
			break;
		to += vecs[i].iov_len;
	}
	*retlen = totlen;
	return ret;
}

/*
 * mtd_writev - the vector-based MTD write method
 * @mtd: mtd device description object pointer
 * @vecs: the vectors to write
 * @count: count of vectors in @vecs
 * @to: the MTD device offset to write to
 * @retlen: on exit contains the count of bytes written to the MTD device.
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
	       unsigned long count, loff_t to, size_t *retlen)
{
	*retlen = 0;
	if (!(mtd->flags & MTD_WRITEABLE))
		return -EROFS;
	if (!mtd->_writev)
		return default_mtd_writev(mtd, vecs, count, to, retlen);
	return mtd->_writev(mtd, vecs, count, to, retlen);
}
EXPORT_SYMBOL_GPL(mtd_writev);

/**
 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
 * @mtd: mtd device description object pointer
 * @size: a pointer to the ideal or maximum size of the allocation, points
 *        to the actual allocation size on success.
 *
 * This routine attempts to allocate a contiguous kernel buffer up to
 * the specified size, backing off the size of the request exponentially
 * until the request succeeds or until the allocation size falls below
 * the system page size. This attempts to make sure it does not adversely
 * impact system performance, so when allocating more than one page, we
 * ask the memory allocator to avoid re-trying, swapping, writing back
 * or performing I/O.
 *
 * Note, this function also makes sure that the allocated buffer is aligned to
 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
 *
 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
 * to handle smaller (i.e. degraded) buffer allocations under low- or
 * fragmented-memory situations where such reduced allocations, from a
 * requested ideal, are allowed.
 *
 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
 */
void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
{
	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
	void *kbuf;

	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);

	while (*size > min_alloc) {
		kbuf = kmalloc(*size, flags);
		if (kbuf)
			return kbuf;

		*size >>= 1;
		*size = ALIGN(*size, mtd->writesize);
	}

	/*
	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
	 */
	return kmalloc(*size, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);

#ifdef CONFIG_PROC_FS

/*====================================================================*/
/* Support for /proc/mtd */

static int mtd_proc_show(struct seq_file *m, void *v)
{
	struct mtd_info *mtd;

	seq_puts(m, "dev:    size   erasesize  name\n");
	mutex_lock(&mtd_table_mutex);
	mtd_for_each_device(mtd) {
		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
			   mtd->index, (unsigned long long)mtd->size,
			   mtd->erasesize, mtd->name);
	}
	mutex_unlock(&mtd_table_mutex);
	return 0;
}
#endif /* CONFIG_PROC_FS */

/*====================================================================*/
/* Init code */

static struct backing_dev_info * __init mtd_bdi_init(char *name)
{
	struct backing_dev_info *bdi;
	int ret;

	bdi = bdi_alloc(GFP_KERNEL);
	if (!bdi)
		return ERR_PTR(-ENOMEM);

	bdi->name = name;
	/*
	 * We put '-0' suffix to the name to get the same name format as we
	 * used to get. Since this is called only once, we get a unique name. 
	 */
	ret = bdi_register(bdi, "%.28s-0", name);
	if (ret)
		bdi_put(bdi);

	return ret ? ERR_PTR(ret) : bdi;
}

static struct proc_dir_entry *proc_mtd;

static int __init init_mtd(void)
{
	int ret;

	ret = class_register(&mtd_class);
	if (ret)
		goto err_reg;

	mtd_bdi = mtd_bdi_init("mtd");
	if (IS_ERR(mtd_bdi)) {
		ret = PTR_ERR(mtd_bdi);
		goto err_bdi;
	}

	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);

	ret = init_mtdchar();
	if (ret)
		goto out_procfs;

	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);

	return 0;

out_procfs:
	if (proc_mtd)
		remove_proc_entry("mtd", NULL);
	bdi_put(mtd_bdi);
err_bdi:
	class_unregister(&mtd_class);
err_reg:
	pr_err("Error registering mtd class or bdi: %d\n", ret);
	return ret;
}

static void __exit cleanup_mtd(void)
{
	debugfs_remove_recursive(dfs_dir_mtd);
	cleanup_mtdchar();
	if (proc_mtd)
		remove_proc_entry("mtd", NULL);
	class_unregister(&mtd_class);
	bdi_put(mtd_bdi);
	idr_destroy(&mtd_idr);
}

module_init(init_mtd);
module_exit(cleanup_mtd);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("Core MTD registration and access routines");