Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 | // SPDX-License-Identifier: GPL-2.0-or-later /* * asb100.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com> * * (derived from w83781d.c) * * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>, * Philip Edelbrock <phil@netroedge.com>, and * Mark Studebaker <mdsxyz123@yahoo.com> */ /* * This driver supports the hardware sensor chips: Asus ASB100 and * ASB100-A "BACH". * * ASB100-A supports pwm1, while plain ASB100 does not. There is no known * way for the driver to tell which one is there. * * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA * asb100 7 3 1 4 0x31 0x0694 yes no */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/mutex.h> #include "lm75.h" /* I2C addresses to scan */ static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END }; static unsigned short force_subclients[4]; module_param_array(force_subclients, short, NULL, 0); MODULE_PARM_DESC(force_subclients, "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}"); /* Voltage IN registers 0-6 */ #define ASB100_REG_IN(nr) (0x20 + (nr)) #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2)) #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2)) /* FAN IN registers 1-3 */ #define ASB100_REG_FAN(nr) (0x28 + (nr)) #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr)) /* TEMPERATURE registers 1-4 */ static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17}; static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18}; static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19}; #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr]) #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr]) #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr]) #define ASB100_REG_TEMP2_CONFIG 0x0152 #define ASB100_REG_TEMP3_CONFIG 0x0252 #define ASB100_REG_CONFIG 0x40 #define ASB100_REG_ALARM1 0x41 #define ASB100_REG_ALARM2 0x42 #define ASB100_REG_SMIM1 0x43 #define ASB100_REG_SMIM2 0x44 #define ASB100_REG_VID_FANDIV 0x47 #define ASB100_REG_I2C_ADDR 0x48 #define ASB100_REG_CHIPID 0x49 #define ASB100_REG_I2C_SUBADDR 0x4a #define ASB100_REG_PIN 0x4b #define ASB100_REG_IRQ 0x4c #define ASB100_REG_BANK 0x4e #define ASB100_REG_CHIPMAN 0x4f #define ASB100_REG_WCHIPID 0x58 /* bit 7 -> enable, bits 0-3 -> duty cycle */ #define ASB100_REG_PWM1 0x59 /* * CONVERSIONS * Rounding and limit checking is only done on the TO_REG variants. */ /* These constants are a guess, consistent w/ w83781d */ #define ASB100_IN_MIN 0 #define ASB100_IN_MAX 4080 /* * IN: 1/1000 V (0V to 4.08V) * REG: 16mV/bit */ static u8 IN_TO_REG(unsigned val) { unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX); return (nval + 8) / 16; } static unsigned IN_FROM_REG(u8 reg) { return reg * 16; } static u8 FAN_TO_REG(long rpm, int div) { if (rpm == -1) return 0; if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } static int FAN_FROM_REG(u8 val, int div) { return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div); } /* These constants are a guess, consistent w/ w83781d */ #define ASB100_TEMP_MIN -128000 #define ASB100_TEMP_MAX 127000 /* * TEMP: 0.001C/bit (-128C to +127C) * REG: 1C/bit, two's complement */ static u8 TEMP_TO_REG(long temp) { int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX); ntemp += (ntemp < 0 ? -500 : 500); return (u8)(ntemp / 1000); } static int TEMP_FROM_REG(u8 reg) { return (s8)reg * 1000; } /* * PWM: 0 - 255 per sensors documentation * REG: (6.25% duty cycle per bit) */ static u8 ASB100_PWM_TO_REG(int pwm) { pwm = clamp_val(pwm, 0, 255); return (u8)(pwm / 16); } static int ASB100_PWM_FROM_REG(u8 reg) { return reg * 16; } #define DIV_FROM_REG(val) (1 << (val)) /* * FAN DIV: 1, 2, 4, or 8 (defaults to 2) * REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */ static u8 DIV_TO_REG(long val) { return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1; } /* * For each registered client, we need to keep some data in memory. That * data is pointed to by client->data. The structure itself is * dynamically allocated, at the same time the client itself is allocated. */ struct asb100_data { struct device *hwmon_dev; struct mutex lock; struct mutex update_lock; unsigned long last_updated; /* In jiffies */ /* array of 2 pointers to subclients */ struct i2c_client *lm75[2]; char valid; /* !=0 if following fields are valid */ u8 in[7]; /* Register value */ u8 in_max[7]; /* Register value */ u8 in_min[7]; /* Register value */ u8 fan[3]; /* Register value */ u8 fan_min[3]; /* Register value */ u16 temp[4]; /* Register value (0 and 3 are u8 only) */ u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */ u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */ u8 fan_div[3]; /* Register encoding, right justified */ u8 pwm; /* Register encoding */ u8 vid; /* Register encoding, combined */ u32 alarms; /* Register encoding, combined */ u8 vrm; }; static int asb100_read_value(struct i2c_client *client, u16 reg); static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val); static int asb100_probe(struct i2c_client *client, const struct i2c_device_id *id); static int asb100_detect(struct i2c_client *client, struct i2c_board_info *info); static int asb100_remove(struct i2c_client *client); static struct asb100_data *asb100_update_device(struct device *dev); static void asb100_init_client(struct i2c_client *client); static const struct i2c_device_id asb100_id[] = { { "asb100", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, asb100_id); static struct i2c_driver asb100_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "asb100", }, .probe = asb100_probe, .remove = asb100_remove, .id_table = asb100_id, .detect = asb100_detect, .address_list = normal_i2c, }; /* 7 Voltages */ #define show_in_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct asb100_data *data = asb100_update_device(dev); \ return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ } show_in_reg(in) show_in_reg(in_min) show_in_reg(in_max) #define set_in_reg(REG, reg) \ static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct i2c_client *client = to_i2c_client(dev); \ struct asb100_data *data = i2c_get_clientdata(client); \ unsigned long val; \ int err = kstrtoul(buf, 10, &val); \ if (err) \ return err; \ mutex_lock(&data->update_lock); \ data->in_##reg[nr] = IN_TO_REG(val); \ asb100_write_value(client, ASB100_REG_IN_##REG(nr), \ data->in_##reg[nr]); \ mutex_unlock(&data->update_lock); \ return count; \ } set_in_reg(MIN, min) set_in_reg(MAX, max) #define sysfs_in(offset) \ static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \ show_in, NULL, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \ show_in_min, set_in_min, offset); \ static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \ show_in_max, set_in_max, offset) sysfs_in(0); sysfs_in(1); sysfs_in(2); sysfs_in(3); sysfs_in(4); sysfs_in(5); sysfs_in(6); /* 3 Fans */ static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long min; int reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); data->fan_div[nr] = DIV_TO_REG(val); switch (nr) { case 0: /* fan 1 */ reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); reg = (reg & 0xcf) | (data->fan_div[0] << 4); asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); break; case 1: /* fan 2 */ reg = asb100_read_value(client, ASB100_REG_VID_FANDIV); reg = (reg & 0x3f) | (data->fan_div[1] << 6); asb100_write_value(client, ASB100_REG_VID_FANDIV, reg); break; case 2: /* fan 3 */ reg = asb100_read_value(client, ASB100_REG_PIN); reg = (reg & 0x3f) | (data->fan_div[2] << 6); asb100_write_value(client, ASB100_REG_PIN, reg); break; } data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } #define sysfs_fan(offset) \ static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \ show_fan, NULL, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \ show_fan_min, set_fan_min, offset - 1); \ static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \ show_fan_div, set_fan_div, offset - 1) sysfs_fan(1); sysfs_fan(2); sysfs_fan(3); /* 4 Temp. Sensors */ static int sprintf_temp_from_reg(u16 reg, char *buf, int nr) { int ret = 0; switch (nr) { case 1: case 2: ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg)); break; case 0: case 3: default: ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg)); break; } return ret; } #define show_temp_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct asb100_data *data = asb100_update_device(dev); \ return sprintf_temp_from_reg(data->reg[nr], buf, nr); \ } show_temp_reg(temp); show_temp_reg(temp_max); show_temp_reg(temp_hyst); #define set_temp_reg(REG, reg) \ static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct i2c_client *client = to_i2c_client(dev); \ struct asb100_data *data = i2c_get_clientdata(client); \ long val; \ int err = kstrtol(buf, 10, &val); \ if (err) \ return err; \ mutex_lock(&data->update_lock); \ switch (nr) { \ case 1: case 2: \ data->reg[nr] = LM75_TEMP_TO_REG(val); \ break; \ case 0: case 3: default: \ data->reg[nr] = TEMP_TO_REG(val); \ break; \ } \ asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \ data->reg[nr]); \ mutex_unlock(&data->update_lock); \ return count; \ } set_temp_reg(MAX, temp_max); set_temp_reg(HYST, temp_hyst); #define sysfs_temp(num) \ static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \ show_temp, NULL, num - 1); \ static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \ show_temp_max, set_temp_max, num - 1); \ static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \ show_temp_hyst, set_temp_hyst, num - 1) sysfs_temp(1); sysfs_temp(2); sysfs_temp(3); sysfs_temp(4); /* VID */ static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); /* VRM */ static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct asb100_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } /* Alarms */ static DEVICE_ATTR_RW(vrm); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7); static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13); /* 1 PWM */ static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f)); } static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm &= 0x80; /* keep the enable bit */ data->pwm |= (0x0f & ASB100_PWM_TO_REG(val)); asb100_write_value(client, ASB100_REG_PWM1, data->pwm); mutex_unlock(&data->update_lock); return count; } static ssize_t pwm1_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct asb100_data *data = asb100_update_device(dev); return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0); } static ssize_t pwm1_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm &= 0x0f; /* keep the duty cycle bits */ data->pwm |= (val ? 0x80 : 0x00); asb100_write_value(client, ASB100_REG_PWM1, data->pwm); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(pwm1); static DEVICE_ATTR_RW(pwm1_enable); static struct attribute *asb100_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_div.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, &dev_attr_alarms.attr, &dev_attr_pwm1.attr, &dev_attr_pwm1_enable.attr, NULL }; static const struct attribute_group asb100_group = { .attrs = asb100_attributes, }; static int asb100_detect_subclients(struct i2c_client *client) { int i, id, err; int address = client->addr; unsigned short sc_addr[2]; struct asb100_data *data = i2c_get_clientdata(client); struct i2c_adapter *adapter = client->adapter; id = i2c_adapter_id(adapter); if (force_subclients[0] == id && force_subclients[1] == address) { for (i = 2; i <= 3; i++) { if (force_subclients[i] < 0x48 || force_subclients[i] > 0x4f) { dev_err(&client->dev, "invalid subclient address %d; must be 0x48-0x4f\n", force_subclients[i]); err = -ENODEV; goto ERROR_SC_2; } } asb100_write_value(client, ASB100_REG_I2C_SUBADDR, (force_subclients[2] & 0x07) | ((force_subclients[3] & 0x07) << 4)); sc_addr[0] = force_subclients[2]; sc_addr[1] = force_subclients[3]; } else { int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR); sc_addr[0] = 0x48 + (val & 0x07); sc_addr[1] = 0x48 + ((val >> 4) & 0x07); } if (sc_addr[0] == sc_addr[1]) { dev_err(&client->dev, "duplicate addresses 0x%x for subclients\n", sc_addr[0]); err = -ENODEV; goto ERROR_SC_2; } data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]); if (!data->lm75[0]) { dev_err(&client->dev, "subclient %d registration at address 0x%x failed.\n", 1, sc_addr[0]); err = -ENOMEM; goto ERROR_SC_2; } data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]); if (!data->lm75[1]) { dev_err(&client->dev, "subclient %d registration at address 0x%x failed.\n", 2, sc_addr[1]); err = -ENOMEM; goto ERROR_SC_3; } return 0; /* Undo inits in case of errors */ ERROR_SC_3: i2c_unregister_device(data->lm75[0]); ERROR_SC_2: return err; } /* Return 0 if detection is successful, -ENODEV otherwise */ static int asb100_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int val1, val2; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { pr_debug("detect failed, smbus byte data not supported!\n"); return -ENODEV; } val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK); val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); /* If we're in bank 0 */ if ((!(val1 & 0x07)) && /* Check for ASB100 ID (low byte) */ (((!(val1 & 0x80)) && (val2 != 0x94)) || /* Check for ASB100 ID (high byte ) */ ((val1 & 0x80) && (val2 != 0x06)))) { pr_debug("detect failed, bad chip id 0x%02x!\n", val2); return -ENODEV; } /* Put it now into bank 0 and Vendor ID High Byte */ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78) | 0x80); /* Determine the chip type. */ val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID); val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN); if (val1 != 0x31 || val2 != 0x06) return -ENODEV; strlcpy(info->type, "asb100", I2C_NAME_SIZE); return 0; } static int asb100_probe(struct i2c_client *client, const struct i2c_device_id *id) { int err; struct asb100_data *data; data = devm_kzalloc(&client->dev, sizeof(struct asb100_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->lock); mutex_init(&data->update_lock); /* Attach secondary lm75 clients */ err = asb100_detect_subclients(client); if (err) return err; /* Initialize the chip */ asb100_init_client(client); /* A few vars need to be filled upon startup */ data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0)); data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1)); data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2)); /* Register sysfs hooks */ err = sysfs_create_group(&client->dev.kobj, &asb100_group); if (err) goto ERROR3; data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto ERROR4; } return 0; ERROR4: sysfs_remove_group(&client->dev.kobj, &asb100_group); ERROR3: i2c_unregister_device(data->lm75[1]); i2c_unregister_device(data->lm75[0]); return err; } static int asb100_remove(struct i2c_client *client) { struct asb100_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &asb100_group); i2c_unregister_device(data->lm75[1]); i2c_unregister_device(data->lm75[0]); return 0; } /* * The SMBus locks itself, usually, but nothing may access the chip between * bank switches. */ static int asb100_read_value(struct i2c_client *client, u16 reg) { struct asb100_data *data = i2c_get_clientdata(client); struct i2c_client *cl; int res, bank; mutex_lock(&data->lock); bank = (reg >> 8) & 0x0f; if (bank > 2) /* switch banks */ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); if (bank == 0 || bank > 2) { res = i2c_smbus_read_byte_data(client, reg & 0xff); } else { /* switch to subclient */ cl = data->lm75[bank - 1]; /* convert from ISA to LM75 I2C addresses */ switch (reg & 0xff) { case 0x50: /* TEMP */ res = i2c_smbus_read_word_swapped(cl, 0); break; case 0x52: /* CONFIG */ res = i2c_smbus_read_byte_data(cl, 1); break; case 0x53: /* HYST */ res = i2c_smbus_read_word_swapped(cl, 2); break; case 0x55: /* MAX */ default: res = i2c_smbus_read_word_swapped(cl, 3); break; } } if (bank > 2) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); mutex_unlock(&data->lock); return res; } static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value) { struct asb100_data *data = i2c_get_clientdata(client); struct i2c_client *cl; int bank; mutex_lock(&data->lock); bank = (reg >> 8) & 0x0f; if (bank > 2) /* switch banks */ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank); if (bank == 0 || bank > 2) { i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff); } else { /* switch to subclient */ cl = data->lm75[bank - 1]; /* convert from ISA to LM75 I2C addresses */ switch (reg & 0xff) { case 0x52: /* CONFIG */ i2c_smbus_write_byte_data(cl, 1, value & 0xff); break; case 0x53: /* HYST */ i2c_smbus_write_word_swapped(cl, 2, value); break; case 0x55: /* MAX */ i2c_smbus_write_word_swapped(cl, 3, value); break; } } if (bank > 2) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0); mutex_unlock(&data->lock); } static void asb100_init_client(struct i2c_client *client) { struct asb100_data *data = i2c_get_clientdata(client); data->vrm = vid_which_vrm(); /* Start monitoring */ asb100_write_value(client, ASB100_REG_CONFIG, (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01); } static struct asb100_data *asb100_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct asb100_data *data = i2c_get_clientdata(client); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { dev_dbg(&client->dev, "starting device update...\n"); /* 7 voltage inputs */ for (i = 0; i < 7; i++) { data->in[i] = asb100_read_value(client, ASB100_REG_IN(i)); data->in_min[i] = asb100_read_value(client, ASB100_REG_IN_MIN(i)); data->in_max[i] = asb100_read_value(client, ASB100_REG_IN_MAX(i)); } /* 3 fan inputs */ for (i = 0; i < 3; i++) { data->fan[i] = asb100_read_value(client, ASB100_REG_FAN(i)); data->fan_min[i] = asb100_read_value(client, ASB100_REG_FAN_MIN(i)); } /* 4 temperature inputs */ for (i = 1; i <= 4; i++) { data->temp[i-1] = asb100_read_value(client, ASB100_REG_TEMP(i)); data->temp_max[i-1] = asb100_read_value(client, ASB100_REG_TEMP_MAX(i)); data->temp_hyst[i-1] = asb100_read_value(client, ASB100_REG_TEMP_HYST(i)); } /* VID and fan divisors */ i = asb100_read_value(client, ASB100_REG_VID_FANDIV); data->vid = i & 0x0f; data->vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4; data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = (i >> 6) & 0x03; data->fan_div[2] = (asb100_read_value(client, ASB100_REG_PIN) >> 6) & 0x03; /* PWM */ data->pwm = asb100_read_value(client, ASB100_REG_PWM1); /* alarms */ data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) + (asb100_read_value(client, ASB100_REG_ALARM2) << 8); data->last_updated = jiffies; data->valid = 1; dev_dbg(&client->dev, "... device update complete\n"); } mutex_unlock(&data->update_lock); return data; } module_i2c_driver(asb100_driver); MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>"); MODULE_DESCRIPTION("ASB100 Bach driver"); MODULE_LICENSE("GPL"); |