Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
// SPDX-License-Identifier: GPL-2.0+
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 *	Documentation/RCU
 */

#define pr_fmt(fmt) "rcu: " fmt

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate_wait.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/nmi.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
#include <linux/kernel_stat.h>
#include <linux/wait.h>
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include <linux/prefetch.h>
#include <linux/delay.h>
#include <linux/stop_machine.h>
#include <linux/random.h>
#include <linux/trace_events.h>
#include <linux/suspend.h>
#include <linux/ftrace.h>
#include <linux/tick.h>
#include <linux/sysrq.h>
#include <linux/kprobes.h>

#include "tree.h"
#include "rcu.h"

#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

/* Data structures. */

/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif

static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
	.dynticks_nesting = 1,
	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
};
struct rcu_state rcu_state = {
	.level = { &rcu_state.node[0] },
	.gp_state = RCU_GP_IDLE,
	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
	.name = RCU_NAME,
	.abbr = RCU_ABBR,
	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
};

/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0444);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
/* Number of rcu_nodes at specified level. */
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

/*
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
 * optimize synchronize_rcu() to a simple barrier().  When this variable
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
 */
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
			      unsigned long gps, unsigned long flags);
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_data *rdp);
static void rcu_report_exp_rdp(struct rcu_data *rdp);
static void sync_sched_exp_online_cleanup(int cpu);

/* rcuc/rcub kthread realtime priority */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
module_param(kthread_prio, int, 0444);

/* Delay in jiffies for grace-period initialization delays, debug only. */

static int gp_preinit_delay;
module_param(gp_preinit_delay, int, 0444);
static int gp_init_delay;
module_param(gp_init_delay, int, 0444);
static int gp_cleanup_delay;
module_param(gp_cleanup_delay, int, 0444);

/* Retrieve RCU kthreads priority for rcutorture */
int rcu_get_gp_kthreads_prio(void)
{
	return kthread_prio;
}
EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);

/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */

/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
	return READ_ONCE(rnp->qsmaskinitnext);
}

/*
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(void)
{
	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
}

/*
 * Return the number of callbacks queued on the specified CPU.
 * Handles both the nocbs and normal cases.
 */
static long rcu_get_n_cbs_cpu(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);

	if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
		return rcu_segcblist_n_cbs(&rdp->cblist);
	return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
}

void rcu_softirq_qs(void)
{
	rcu_qs();
	rcu_preempt_deferred_qs(current);
}

/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	int seq;

	/*
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	int seq;

	/*
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
		return;
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
}

/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
}

/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
int rcu_dynticks_snap(struct rcu_data *rdp)
{
	int snap = atomic_add_return(0, &rdp->dynticks);

	return snap & ~RCU_DYNTICK_CTRL_MASK;
}

/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
	return !(snap & RCU_DYNTICK_CTRL_CTR);
}

/*
 * Return true if the CPU corresponding to the specified rcu_data
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
{
	return snap != rcu_dynticks_snap(rdp);
}

/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);

	do {
		old = atomic_read(&rdp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
	return true;
}

/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 *
 * The caller must have disabled interrupts and must not be idle.
 */
static void __maybe_unused rcu_momentary_dyntick_idle(void)
{
	int special;

	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
				    &this_cpu_ptr(&rcu_data)->dynticks);
	/* It is illegal to call this from idle state. */
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
	rcu_preempt_deferred_qs(current);
}

/**
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 *
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
 */
static int rcu_is_cpu_rrupt_from_idle(void)
{
	return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
	       __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
}

#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
static long blimit = DEFAULT_RCU_BLIMIT;
#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
static long qhimark = DEFAULT_RCU_QHIMARK;
#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
static long qlowmark = DEFAULT_RCU_QLOMARK;

module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);

static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
static bool rcu_kick_kthreads;

/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = ULONG_MAX;
module_param(jiffies_till_sched_qs, ulong, 0444);
static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */

/*
 * Make sure that we give the grace-period kthread time to detect any
 * idle CPUs before taking active measures to force quiescent states.
 * However, don't go below 100 milliseconds, adjusted upwards for really
 * large systems.
 */
static void adjust_jiffies_till_sched_qs(void)
{
	unsigned long j;

	/* If jiffies_till_sched_qs was specified, respect the request. */
	if (jiffies_till_sched_qs != ULONG_MAX) {
		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
		return;
	}
	/* Otherwise, set to third fqs scan, but bound below on large system. */
	j = READ_ONCE(jiffies_till_first_fqs) +
		      2 * READ_ONCE(jiffies_till_next_fqs);
	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
	WRITE_ONCE(jiffies_to_sched_qs, j);
}

static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
{
	ulong j;
	int ret = kstrtoul(val, 0, &j);

	if (!ret) {
		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
		adjust_jiffies_till_sched_qs();
	}
	return ret;
}

static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
{
	ulong j;
	int ret = kstrtoul(val, 0, &j);

	if (!ret) {
		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
		adjust_jiffies_till_sched_qs();
	}
	return ret;
}

static struct kernel_param_ops first_fqs_jiffies_ops = {
	.set = param_set_first_fqs_jiffies,
	.get = param_get_ulong,
};

static struct kernel_param_ops next_fqs_jiffies_ops = {
	.set = param_set_next_fqs_jiffies,
	.get = param_get_ulong,
};

module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
module_param(rcu_kick_kthreads, bool, 0644);

static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
static int rcu_pending(void);

/*
 * Return the number of RCU GPs completed thus far for debug & stats.
 */
unsigned long rcu_get_gp_seq(void)
{
	return READ_ONCE(rcu_state.gp_seq);
}
EXPORT_SYMBOL_GPL(rcu_get_gp_seq);

/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the root node of the rcu_state structure.
 */
static struct rcu_node *rcu_get_root(void)
{
	return &rcu_state.node[0];
}

/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gp_seq)
{
	switch (test_type) {
	case RCU_FLAVOR:
		*flags = READ_ONCE(rcu_state.gp_flags);
		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
		break;
	default:
		break;
	}
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
 *
 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
static void rcu_eqs_enter(bool user)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdp->dynticks_nesting == 0);
	if (rdp->dynticks_nesting != 1) {
		rdp->dynticks_nesting--;
		return;
	}

	lockdep_assert_irqs_disabled();
	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
	rdp = this_cpu_ptr(&rcu_data);
	do_nocb_deferred_wakeup(rdp);
	rcu_prepare_for_idle();
	rcu_preempt_deferred_qs(current);
	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
	rcu_dynticks_eqs_enter();
	rcu_dynticks_task_enter();
}

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 * CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_idle_enter(void)
{
	lockdep_assert_irqs_disabled();
	rcu_eqs_enter(false);
}

#ifdef CONFIG_NO_HZ_FULL
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 *
 * If you add or remove a call to rcu_user_enter(), be sure to test with
 * CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_user_enter(void)
{
	lockdep_assert_irqs_disabled();
	rcu_eqs_enter(true);
}
#endif /* CONFIG_NO_HZ_FULL */

/*
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
 *
 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
 * with CONFIG_RCU_EQS_DEBUG=y.
 */
static __always_inline void rcu_nmi_exit_common(bool irq)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdp->dynticks_nmi_nesting != 1) {
		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
			   rdp->dynticks_nmi_nesting - 2);
		return;
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */

	if (irq)
		rcu_prepare_for_idle();

	rcu_dynticks_eqs_enter();

	if (irq)
		rcu_dynticks_task_enter();
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 * with CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_nmi_exit(void)
{
	rcu_nmi_exit_common(false);
}

/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.  The caller must have disabled interrupts.
 *
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture's idle loop violates this assumption, RCU will give you what
 * you deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 *
 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 * CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_irq_exit(void)
{
	lockdep_assert_irqs_disabled();
	rcu_nmi_exit_common(true);
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 *
 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 * with CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
	local_irq_restore(flags);
}

/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
 *
 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 * allow for the possibility of usermode upcalls messing up our count of
 * interrupt nesting level during the busy period that is just now starting.
 */
static void rcu_eqs_exit(bool user)
{
	struct rcu_data *rdp;
	long oldval;

	lockdep_assert_irqs_disabled();
	rdp = this_cpu_ptr(&rcu_data);
	oldval = rdp->dynticks_nesting;
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
	if (oldval) {
		rdp->dynticks_nesting++;
		return;
	}
	rcu_dynticks_task_exit();
	rcu_dynticks_eqs_exit();
	rcu_cleanup_after_idle();
	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
	WRITE_ONCE(rdp->dynticks_nesting, 1);
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 * CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_eqs_exit(false);
	local_irq_restore(flags);
}

#ifdef CONFIG_NO_HZ_FULL
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 *
 * If you add or remove a call to rcu_user_exit(), be sure to test with
 * CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_user_exit(void)
{
	rcu_eqs_exit(1);
}
#endif /* CONFIG_NO_HZ_FULL */

/**
 * rcu_nmi_enter_common - inform RCU of entry to NMI context
 * @irq: Is this call from rcu_irq_enter?
 *
 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
 *
 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
 * with CONFIG_RCU_EQS_DEBUG=y.
 */
static __always_inline void rcu_nmi_enter_common(bool irq)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	long incby = 2;

	/* Complain about underflow. */
	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (rcu_dynticks_curr_cpu_in_eqs()) {

		if (irq)
			rcu_dynticks_task_exit();

		rcu_dynticks_eqs_exit();

		if (irq)
			rcu_cleanup_after_idle();

		incby = 1;
	}
	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
			  rdp->dynticks_nmi_nesting,
			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
		   rdp->dynticks_nmi_nesting + incby);
	barrier();
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 */
void rcu_nmi_enter(void)
{
	rcu_nmi_enter_common(false);
}
NOKPROBE_SYMBOL(rcu_nmi_enter);

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.  The caller must have disabled interrupts.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to user mode!
 * This code assumes that the idle loop never does upcalls to user mode.
 * If your architecture's idle loop does do upcalls to user mode (or does
 * anything else that results in unbalanced calls to the irq_enter() and
 * irq_exit() functions), RCU will give you what you deserve, good and hard.
 * But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 *
 * If you add or remove a call to rcu_irq_enter(), be sure to test with
 * CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_irq_enter(void)
{
	lockdep_assert_irqs_disabled();
	rcu_nmi_enter_common(true);
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 *
 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
 * with CONFIG_RCU_EQS_DEBUG=y.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
	local_irq_restore(flags);
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 *
 * Return true if RCU is watching the running CPU, which means that this
 * CPU can safely enter RCU read-side critical sections.  In other words,
 * if the current CPU is not in its idle loop or is in an interrupt or
 * NMI handler, return true.
 */
bool notrace rcu_is_watching(void)
{
	bool ret;

	preempt_disable_notrace();
	ret = !rcu_dynticks_curr_cpu_in_eqs();
	preempt_enable_notrace();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_is_watching);

/*
 * If a holdout task is actually running, request an urgent quiescent
 * state from its CPU.  This is unsynchronized, so migrations can cause
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 * is that the CPU's next context switch will be a bit slower and next
 * time around this task will generate another request.
 */
void rcu_request_urgent_qs_task(struct task_struct *t)
{
	int cpu;

	barrier();
	cpu = task_cpu(t);
	if (!task_curr(t))
		return; /* This task is not running on that CPU. */
	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
}

#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)

/*
 * Is the current CPU online as far as RCU is concerned?
 *
 * Disable preemption to avoid false positives that could otherwise
 * happen due to the current CPU number being sampled, this task being
 * preempted, its old CPU being taken offline, resuming on some other CPU,
 * then determining that its old CPU is now offline.
 *
 * Disable checking if in an NMI handler because we cannot safely
 * report errors from NMI handlers anyway.  In addition, it is OK to use
 * RCU on an offline processor during initial boot, hence the check for
 * rcu_scheduler_fully_active.
 */
bool rcu_lockdep_current_cpu_online(void)
{
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	bool ret = false;

	if (in_nmi() || !rcu_scheduler_fully_active)
		return true;
	preempt_disable();
	rdp = this_cpu_ptr(&rcu_data);
	rnp = rdp->mynode;
	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
		ret = true;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */

/*
 * We are reporting a quiescent state on behalf of some other CPU, so
 * it is our responsibility to check for and handle potential overflow
 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 * After all, the CPU might be in deep idle state, and thus executing no
 * code whatsoever.
 */
static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
{
	raw_lockdep_assert_held_rcu_node(rnp);
	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
			 rnp->gp_seq))
		WRITE_ONCE(rdp->gpwrap, true);
	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
 * is in dynticks idle mode, which is an extended quiescent state.
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
		rcu_gpnum_ovf(rdp->mynode, rdp);
		return 1;
	}
	return 0;
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU, or by virtue of having been offline.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	unsigned long jtsq;
	bool *rnhqp;
	bool *ruqp;
	struct rcu_node *rnp = rdp->mynode;

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
		rcu_gpnum_ovf(rnp, rdp);
		return 1;
	}

	/* If waiting too long on an offline CPU, complain. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
	    time_after(jiffies, rcu_state.gp_start + HZ)) {
		bool onl;
		struct rcu_node *rnp1;

		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
			__func__, rnp->grplo, rnp->grphi, rnp->level,
			(long)rnp->gp_seq, (long)rnp->completedqs);
		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
			__func__, rdp->cpu, ".o"[onl],
			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
		return 1; /* Break things loose after complaining. */
	}

	/*
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
	 * variable are safe because the assignments are repeated if this
	 * CPU failed to pass through a quiescent state.  This code
	 * also checks .jiffies_resched in case jiffies_to_sched_qs
	 * is set way high.
	 */
	jtsq = READ_ONCE(jiffies_to_sched_qs);
	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
	     time_after(jiffies, rcu_state.jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
		smp_store_release(ruqp, true);
	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
		WRITE_ONCE(*ruqp, true);
	}

	/*
	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
	 * The above code handles this, but only for straight cond_resched().
	 * And some in-kernel loops check need_resched() before calling
	 * cond_resched(), which defeats the above code for CPUs that are
	 * running in-kernel with scheduling-clock interrupts disabled.
	 * So hit them over the head with the resched_cpu() hammer!
	 */
	if (tick_nohz_full_cpu(rdp->cpu) &&
		   time_after(jiffies,
			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
		resched_cpu(rdp->cpu);
		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
	}

	/*
	 * If more than halfway to RCU CPU stall-warning time, invoke
	 * resched_cpu() more frequently to try to loosen things up a bit.
	 * Also check to see if the CPU is getting hammered with interrupts,
	 * but only once per grace period, just to keep the IPIs down to
	 * a dull roar.
	 */
	if (time_after(jiffies, rcu_state.jiffies_resched)) {
		if (time_after(jiffies,
			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
			resched_cpu(rdp->cpu);
			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
		}
		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
		    (rnp->ffmask & rdp->grpmask)) {
			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
			rdp->rcu_iw_pending = true;
			rdp->rcu_iw_gp_seq = rnp->gp_seq;
			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
		}
	}

	return 0;
}

/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
			      unsigned long gp_seq_req, const char *s)
{
	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
				      rnp->level, rnp->grplo, rnp->grphi, s);
}

/*
 * rcu_start_this_gp - Request the start of a particular grace period
 * @rnp_start: The leaf node of the CPU from which to start.
 * @rdp: The rcu_data corresponding to the CPU from which to start.
 * @gp_seq_req: The gp_seq of the grace period to start.
 *
 * Start the specified grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 * is reason to awaken the grace-period kthread.
 *
 * The caller must hold the specified rcu_node structure's ->lock, which
 * is why the caller is responsible for waking the grace-period kthread.
 *
 * Returns true if the GP thread needs to be awakened else false.
 */
static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
			      unsigned long gp_seq_req)
{
	bool ret = false;
	struct rcu_node *rnp;

	/*
	 * Use funnel locking to either acquire the root rcu_node
	 * structure's lock or bail out if the need for this grace period
	 * has already been recorded -- or if that grace period has in
	 * fact already started.  If there is already a grace period in
	 * progress in a non-leaf node, no recording is needed because the
	 * end of the grace period will scan the leaf rcu_node structures.
	 * Note that rnp_start->lock must not be released.
	 */
	raw_lockdep_assert_held_rcu_node(rnp_start);
	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
	for (rnp = rnp_start; 1; rnp = rnp->parent) {
		if (rnp != rnp_start)
			raw_spin_lock_rcu_node(rnp);
		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
		    (rnp != rnp_start &&
		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
					  TPS("Prestarted"));
			goto unlock_out;
		}
		rnp->gp_seq_needed = gp_seq_req;
		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
			/*
			 * We just marked the leaf or internal node, and a
			 * grace period is in progress, which means that
			 * rcu_gp_cleanup() will see the marking.  Bail to
			 * reduce contention.
			 */
			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
					  TPS("Startedleaf"));
			goto unlock_out;
		}
		if (rnp != rnp_start && rnp->parent != NULL)
			raw_spin_unlock_rcu_node(rnp);
		if (!rnp->parent)
			break;  /* At root, and perhaps also leaf. */
	}

	/* If GP already in progress, just leave, otherwise start one. */
	if (rcu_gp_in_progress()) {
		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
		goto unlock_out;
	}
	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
	rcu_state.gp_req_activity = jiffies;
	if (!rcu_state.gp_kthread) {
		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
		goto unlock_out;
	}
	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
	ret = true;  /* Caller must wake GP kthread. */
unlock_out:
	/* Push furthest requested GP to leaf node and rcu_data structure. */
	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
		rdp->gp_seq_needed = rnp->gp_seq_needed;
	}
	if (rnp != rnp_start)
		raw_spin_unlock_rcu_node(rnp);
	return ret;
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.
 */
static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
{
	bool needmore;
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
	if (!needmore)
		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
	return needmore;
}

/*
 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
 * an interrupt or softirq handler), and don't bother awakening when there
 * is nothing for the grace-period kthread to do (as in several CPUs raced
 * to awaken, and we lost), and finally don't try to awaken a kthread that
 * has not yet been created.  If all those checks are passed, track some
 * debug information and awaken.
 *
 * So why do the self-wakeup when in an interrupt or softirq handler
 * in the grace-period kthread's context?  Because the kthread might have
 * been interrupted just as it was going to sleep, and just after the final
 * pre-sleep check of the awaken condition.  In this case, a wakeup really
 * is required, and is therefore supplied.
 */
static void rcu_gp_kthread_wake(void)
{
	if ((current == rcu_state.gp_kthread &&
	     !in_irq() && !in_serving_softirq()) ||
	    !READ_ONCE(rcu_state.gp_flags) ||
	    !rcu_state.gp_kthread)
		return;
	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
	swake_up_one(&rcu_state.gp_wq);
}

/*
 * If there is room, assign a ->gp_seq number to any callbacks on this
 * CPU that have not already been assigned.  Also accelerate any callbacks
 * that were previously assigned a ->gp_seq number that has since proven
 * to be too conservative, which can happen if callbacks get assigned a
 * ->gp_seq number while RCU is idle, but with reference to a non-root
 * rcu_node structure.  This function is idempotent, so it does not hurt
 * to call it repeatedly.  Returns an flag saying that we should awaken
 * the RCU grace-period kthread.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
{
	unsigned long gp_seq_req;
	bool ret = false;

	raw_lockdep_assert_held_rcu_node(rnp);

	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
		return false;

	/*
	 * Callbacks are often registered with incomplete grace-period
	 * information.  Something about the fact that getting exact
	 * information requires acquiring a global lock...  RCU therefore
	 * makes a conservative estimate of the grace period number at which
	 * a given callback will become ready to invoke.	The following
	 * code checks this estimate and improves it when possible, thus
	 * accelerating callback invocation to an earlier grace-period
	 * number.
	 */
	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);

	/* Trace depending on how much we were able to accelerate. */
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
	else
		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
	return ret;
}

/*
 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
 * rcu_node structure's ->lock be held.  It consults the cached value
 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
 * while holding the leaf rcu_node structure's ->lock.
 */
static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
					struct rcu_data *rdp)
{
	unsigned long c;
	bool needwake;

	lockdep_assert_irqs_disabled();
	c = rcu_seq_snap(&rcu_state.gp_seq);
	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
		/* Old request still live, so mark recent callbacks. */
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
		return;
	}
	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
	needwake = rcu_accelerate_cbs(rnp, rdp);
	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
	if (needwake)
		rcu_gp_kthread_wake();
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 * Returns true if the RCU grace-period kthread needs to be awakened.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
{
	raw_lockdep_assert_held_rcu_node(rnp);

	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
		return false;

	/*
	 * Find all callbacks whose ->gp_seq numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);

	/* Classify any remaining callbacks. */
	return rcu_accelerate_cbs(rnp, rdp);
}

/*
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
 * Returns true if the grace-period kthread needs to be awakened.
 */
static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
{
	bool ret;
	bool need_gp;

	raw_lockdep_assert_held_rcu_node(rnp);

	if (rdp->gp_seq == rnp->gp_seq)
		return false; /* Nothing to do. */

	/* Handle the ends of any preceding grace periods first. */
	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
	    unlikely(READ_ONCE(rdp->gpwrap))) {
		ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
	} else {
		ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
	}

	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
	    unlikely(READ_ONCE(rdp->gpwrap))) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
		rdp->core_needs_qs = need_gp;
		zero_cpu_stall_ticks(rdp);
	}
	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
		rdp->gp_seq_needed = rnp->gp_seq_needed;
	WRITE_ONCE(rdp->gpwrap, false);
	rcu_gpnum_ovf(rnp, rdp);
	return ret;
}

static void note_gp_changes(struct rcu_data *rdp)
{
	unsigned long flags;
	bool needwake;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
	needwake = __note_gp_changes(rnp, rdp);
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	if (needwake)
		rcu_gp_kthread_wake();
}

static void rcu_gp_slow(int delay)
{
	if (delay > 0 &&
	    !(rcu_seq_ctr(rcu_state.gp_seq) %
	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

/*
 * Initialize a new grace period.  Return false if no grace period required.
 */
static bool rcu_gp_init(void)
{
	unsigned long flags;
	unsigned long oldmask;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root();

	WRITE_ONCE(rcu_state.gp_activity, jiffies);
	raw_spin_lock_irq_rcu_node(rnp);
	if (!READ_ONCE(rcu_state.gp_flags)) {
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq_rcu_node(rnp);
		return false;
	}
	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */

	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
		raw_spin_unlock_irq_rcu_node(rnp);
		return false;
	}

	/* Advance to a new grace period and initialize state. */
	record_gp_stall_check_time();
	/* Record GP times before starting GP, hence rcu_seq_start(). */
	rcu_seq_start(&rcu_state.gp_seq);
	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
	raw_spin_unlock_irq_rcu_node(rnp);

	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_state.gp_state = RCU_GP_ONOFF;
	rcu_for_each_leaf_node(rnp) {
		raw_spin_lock(&rcu_state.ofl_lock);
		raw_spin_lock_irq_rcu_node(rnp);
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq_rcu_node(rnp);
			raw_spin_unlock(&rcu_state.ofl_lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) { /* First online CPU for rcu_node. */
				if (!rnp->wait_blkd_tasks) /* Ever offline? */
					rcu_init_new_rnp(rnp);
			} else if (rcu_preempt_has_tasks(rnp)) {
				rnp->wait_blkd_tasks = true; /* blocked tasks */
			} else { /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
			}
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks.
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			if (!rnp->qsmaskinit)
				rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq_rcu_node(rnp);
		raw_spin_unlock(&rcu_state.ofl_lock);
	}
	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure, relying on the
	 * layout of the tree within the rcu_state.node[] array.  Note that
	 * other CPUs will access only the leaves of the hierarchy, thus
	 * seeing that no grace period is in progress, at least until the
	 * corresponding leaf node has been initialized.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_state.gp_state = RCU_GP_INIT;
	rcu_for_each_node_breadth_first(rnp) {
		rcu_gp_slow(gp_init_delay);
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rdp = this_cpu_ptr(&rcu_data);
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
		if (rnp == rdp->mynode)
			(void)__note_gp_changes(rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		/* Quiescent states for tasks on any now-offline CPUs. */
		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
		rnp->rcu_gp_init_mask = mask;
		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
		else
			raw_spin_unlock_irq_rcu_node(rnp);
		cond_resched_tasks_rcu_qs();
		WRITE_ONCE(rcu_state.gp_activity, jiffies);
	}

	return true;
}

/*
 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
 * time.
 */
static bool rcu_gp_fqs_check_wake(int *gfp)
{
	struct rcu_node *rnp = rcu_get_root();

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rcu_state.gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

/*
 * Do one round of quiescent-state forcing.
 */
static void rcu_gp_fqs(bool first_time)
{
	struct rcu_node *rnp = rcu_get_root();

	WRITE_ONCE(rcu_state.gp_activity, jiffies);
	rcu_state.n_force_qs++;
	if (first_time) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(dyntick_save_progress_counter);
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq_rcu_node(rnp);
		WRITE_ONCE(rcu_state.gp_flags,
			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
		raw_spin_unlock_irq_rcu_node(rnp);
	}
}

/*
 * Loop doing repeated quiescent-state forcing until the grace period ends.
 */
static void rcu_gp_fqs_loop(void)
{
	bool first_gp_fqs;
	int gf;
	unsigned long j;
	int ret;
	struct rcu_node *rnp = rcu_get_root();

	first_gp_fqs = true;
	j = READ_ONCE(jiffies_till_first_fqs);
	ret = 0;
	for (;;) {
		if (!ret) {
			rcu_state.jiffies_force_qs = jiffies + j;
			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
				   jiffies + (j ? 3 * j : 2));
		}
		trace_rcu_grace_period(rcu_state.name,
				       READ_ONCE(rcu_state.gp_seq),
				       TPS("fqswait"));
		rcu_state.gp_state = RCU_GP_WAIT_FQS;
		ret = swait_event_idle_timeout_exclusive(
				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
		rcu_state.gp_state = RCU_GP_DOING_FQS;
		/* Locking provides needed memory barriers. */
		/* If grace period done, leave loop. */
		if (!READ_ONCE(rnp->qsmask) &&
		    !rcu_preempt_blocked_readers_cgp(rnp))
			break;
		/* If time for quiescent-state forcing, do it. */
		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
		    (gf & RCU_GP_FLAG_FQS)) {
			trace_rcu_grace_period(rcu_state.name,
					       READ_ONCE(rcu_state.gp_seq),
					       TPS("fqsstart"));
			rcu_gp_fqs(first_gp_fqs);
			first_gp_fqs = false;
			trace_rcu_grace_period(rcu_state.name,
					       READ_ONCE(rcu_state.gp_seq),
					       TPS("fqsend"));
			cond_resched_tasks_rcu_qs();
			WRITE_ONCE(rcu_state.gp_activity, jiffies);
			ret = 0; /* Force full wait till next FQS. */
			j = READ_ONCE(jiffies_till_next_fqs);
		} else {
			/* Deal with stray signal. */
			cond_resched_tasks_rcu_qs();
			WRITE_ONCE(rcu_state.gp_activity, jiffies);
			WARN_ON(signal_pending(current));
			trace_rcu_grace_period(rcu_state.name,
					       READ_ONCE(rcu_state.gp_seq),
					       TPS("fqswaitsig"));
			ret = 1; /* Keep old FQS timing. */
			j = jiffies;
			if (time_after(jiffies, rcu_state.jiffies_force_qs))
				j = 1;
			else
				j = rcu_state.jiffies_force_qs - j;
		}
	}
}

/*
 * Clean up after the old grace period.
 */
static void rcu_gp_cleanup(void)
{
	unsigned long gp_duration;
	bool needgp = false;
	unsigned long new_gp_seq;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root();
	struct swait_queue_head *sq;

	WRITE_ONCE(rcu_state.gp_activity, jiffies);
	raw_spin_lock_irq_rcu_node(rnp);
	rcu_state.gp_end = jiffies;
	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
	if (gp_duration > rcu_state.gp_max)
		rcu_state.gp_max = gp_duration;

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
	raw_spin_unlock_irq_rcu_node(rnp);

	/*
	 * Propagate new ->gp_seq value to rcu_node structures so that
	 * other CPUs don't have to wait until the start of the next grace
	 * period to process their callbacks.  This also avoids some nasty
	 * RCU grace-period initialization races by forcing the end of
	 * the current grace period to be completely recorded in all of
	 * the rcu_node structures before the beginning of the next grace
	 * period is recorded in any of the rcu_node structures.
	 */
	new_gp_seq = rcu_state.gp_seq;
	rcu_seq_end(&new_gp_seq);
	rcu_for_each_node_breadth_first(rnp) {
		raw_spin_lock_irq_rcu_node(rnp);
		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
			dump_blkd_tasks(rnp, 10);
		WARN_ON_ONCE(rnp->qsmask);
		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
		rdp = this_cpu_ptr(&rcu_data);
		if (rnp == rdp->mynode)
			needgp = __note_gp_changes(rnp, rdp) || needgp;
		/* smp_mb() provided by prior unlock-lock pair. */
		needgp = rcu_future_gp_cleanup(rnp) || needgp;
		sq = rcu_nocb_gp_get(rnp);
		raw_spin_unlock_irq_rcu_node(rnp);
		rcu_nocb_gp_cleanup(sq);
		cond_resched_tasks_rcu_qs();
		WRITE_ONCE(rcu_state.gp_activity, jiffies);
		rcu_gp_slow(gp_cleanup_delay);
	}
	rnp = rcu_get_root();
	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */

	/* Declare grace period done, trace first to use old GP number. */
	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
	rcu_seq_end(&rcu_state.gp_seq);
	rcu_state.gp_state = RCU_GP_IDLE;
	/* Check for GP requests since above loop. */
	rdp = this_cpu_ptr(&rcu_data);
	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
				  TPS("CleanupMore"));
		needgp = true;
	}
	/* Advance CBs to reduce false positives below. */
	if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
		rcu_state.gp_req_activity = jiffies;
		trace_rcu_grace_period(rcu_state.name,
				       READ_ONCE(rcu_state.gp_seq),
				       TPS("newreq"));
	} else {
		WRITE_ONCE(rcu_state.gp_flags,
			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
	}
	raw_spin_unlock_irq_rcu_node(rnp);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *unused)
{
	rcu_bind_gp_kthread();
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
			trace_rcu_grace_period(rcu_state.name,
					       READ_ONCE(rcu_state.gp_seq),
					       TPS("reqwait"));
			rcu_state.gp_state = RCU_GP_WAIT_GPS;
			swait_event_idle_exclusive(rcu_state.gp_wq,
					 READ_ONCE(rcu_state.gp_flags) &
					 RCU_GP_FLAG_INIT);
			rcu_state.gp_state = RCU_GP_DONE_GPS;
			/* Locking provides needed memory barrier. */
			if (rcu_gp_init())
				break;
			cond_resched_tasks_rcu_qs();
			WRITE_ONCE(rcu_state.gp_activity, jiffies);
			WARN_ON(signal_pending(current));
			trace_rcu_grace_period(rcu_state.name,
					       READ_ONCE(rcu_state.gp_seq),
					       TPS("reqwaitsig"));
		}

		/* Handle quiescent-state forcing. */
		rcu_gp_fqs_loop();

		/* Handle grace-period end. */
		rcu_state.gp_state = RCU_GP_CLEANUP;
		rcu_gp_cleanup();
		rcu_state.gp_state = RCU_GP_CLEANED;
	}
}

/*
 * Report a full set of quiescent states to the rcu_state data structure.
 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
 * another grace period is required.  Whether we wake the grace-period
 * kthread or it awakens itself for the next round of quiescent-state
 * forcing, that kthread will clean up after the just-completed grace
 * period.  Note that the caller must hold rnp->lock, which is released
 * before return.
 */
static void rcu_report_qs_rsp(unsigned long flags)
	__releases(rcu_get_root()->lock)
{
	raw_lockdep_assert_held_rcu_node(rcu_get_root());
	WARN_ON_ONCE(!rcu_gp_in_progress());
	WRITE_ONCE(rcu_state.gp_flags,
		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
	rcu_gp_kthread_wake();
}

/*
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
 *
 * As a special case, if mask is zero, the bit-already-cleared check is
 * disabled.  This allows propagating quiescent state due to resumed tasks
 * during grace-period initialization.
 */
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
			      unsigned long gps, unsigned long flags)
	__releases(rnp->lock)
{
	unsigned long oldmask = 0;
	struct rcu_node *rnp_c;

	raw_lockdep_assert_held_rcu_node(rnp);

	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {

			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
			return;
		}
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
			     rcu_preempt_blocked_readers_cgp(rnp));
		rnp->qsmask &= ~mask;
		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {

			/* Other bits still set at this level, so done. */
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
			return;
		}
		rnp->completedqs = rnp->gp_seq;
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		rnp_c = rnp;
		rnp = rnp->parent;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		oldmask = rnp_c->qsmask;
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
	 * to clean up and start the next grace period if one is needed.
	 */
	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
}

/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the corresponding rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	unsigned long gps;
	unsigned long mask;
	struct rcu_node *rnp_p;

	raw_lockdep_assert_held_rcu_node(rnp);
	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
	    rnp->qsmask != 0) {
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp->completedqs = rnp->gp_seq;
	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
		 */
		rcu_report_qs_rsp(flags);
		return;
	}

	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
	gps = rnp->gp_seq;
	mask = rnp->grpmask;
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
}

/*
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be called from the specified CPU.
 */
static void
rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
{
	unsigned long flags;
	unsigned long mask;
	bool needwake;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
	    rdp->gpwrap) {

		/*
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
		 */
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		return;
	}
	mask = rdp->grpmask;
	rdp->core_needs_qs = false;
	if ((rnp->qsmask & mask) == 0) {
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	} else {
		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		needwake = rcu_accelerate_cbs(rnp, rdp);

		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
		/* ^^^ Released rnp->lock */
		if (needwake)
			rcu_gp_kthread_wake();
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_data *rdp)
{
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rdp);

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->core_needs_qs)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (rdp->cpu_no_qs.b.norm)
		return;

	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rdp);
}

/*
 * Near the end of the offline process.  Trace the fact that this CPU
 * is going offline.
 */
int rcutree_dying_cpu(unsigned int cpu)
{
	bool blkd;
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	struct rcu_node *rnp = rdp->mynode;

	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return 0;

	blkd = !!(rnp->qsmask & rdp->grpmask);
	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
	return 0;
}

/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated.
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	raw_lockdep_assert_held_rcu_node(rnp_leaf);
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		/* Between grace periods, so better already be zero! */
		WARN_ON_ONCE(rnp->qsmask);
		if (rnp->qsmaskinit) {
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
			return;
		}
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
	}
}

/*
 * The CPU has been completely removed, and some other CPU is reporting
 * this fact from process context.  Do the remainder of the cleanup.
 * There can only be one CPU hotplug operation at a time, so no need for
 * explicit locking.
 */
int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return 0;

	/* Adjust any no-longer-needed kthreads. */
	rcu_boost_kthread_setaffinity(rnp, -1);
	/* Do any needed no-CB deferred wakeups from this CPU. */
	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
	return 0;
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
static void rcu_do_batch(struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	long bl, count;

	/* If no callbacks are ready, just return. */
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
		trace_rcu_batch_start(rcu_state.name,
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
		trace_rcu_batch_end(rcu_state.name, 0,
				    !rcu_segcblist_empty(&rdp->cblist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
		return;
	}

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.  Leave the
	 * callback counts, as rcu_barrier() needs to be conservative.
	 */
	local_irq_save(flags);
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
	bl = rdp->blimit;
	trace_rcu_batch_start(rcu_state.name,
			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
	local_irq_restore(flags);

	/* Invoke callbacks. */
	rhp = rcu_cblist_dequeue(&rcl);
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_unqueue(rhp);
		if (__rcu_reclaim(rcu_state.name, rhp))
			rcu_cblist_dequeued_lazy(&rcl);
		/*
		 * Stop only if limit reached and CPU has something to do.
		 * Note: The rcl structure counts down from zero.
		 */
		if (-rcl.len >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
			break;
	}

	local_irq_save(flags);
	count = -rcl.len;
	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
			    is_idle_task(current), rcu_is_callbacks_kthread());

	/* Update counts and requeue any remaining callbacks. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);

	/* Reinstate batch limit if we have worked down the excess. */
	count = rcu_segcblist_n_cbs(&rdp->cblist);
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
		rdp->blimit = blimit;

	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rcu_state.n_force_qs;
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = count;

	/*
	 * The following usually indicates a double call_rcu().  To track
	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
	 */
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));

	local_irq_restore(flags);

	/* Re-invoke RCU core processing if there are callbacks remaining. */
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
		invoke_rcu_core();
}

/*
 * This function is invoked from each scheduling-clock interrupt,
 * and checks to see if this CPU is in a non-context-switch quiescent
 * state, for example, user mode or idle loop.  It also schedules RCU
 * core processing.  If the current grace period has gone on too long,
 * it will ask the scheduler to manufacture a context switch for the sole
 * purpose of providing a providing the needed quiescent state.
 */
void rcu_sched_clock_irq(int user)
{
	trace_rcu_utilization(TPS("Start scheduler-tick"));
	raw_cpu_inc(rcu_data.ticks_this_gp);
	/* The load-acquire pairs with the store-release setting to true. */
	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
		/* Idle and userspace execution already are quiescent states. */
		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
			set_tsk_need_resched(current);
			set_preempt_need_resched();
		}
		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
	}
	rcu_flavor_sched_clock_irq(user);
	if (rcu_pending())
		invoke_rcu_core();

	trace_rcu_utilization(TPS("End scheduler-tick"));
}

/*
 * Scan the leaf rcu_node structures.  For each structure on which all
 * CPUs have reported a quiescent state and on which there are tasks
 * blocking the current grace period, initiate RCU priority boosting.
 * Otherwise, invoke the specified function to check dyntick state for
 * each CPU that has not yet reported a quiescent state.
 */
static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rnp) {
		cond_resched_tasks_rcu_qs();
		mask = 0;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		if (rnp->qsmask == 0) {
			if (!IS_ENABLED(CONFIG_PREEMPT) ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
			continue;
		}
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(&rcu_data, cpu)))
					mask |= bit;
			}
		}
		if (mask != 0) {
			/* Idle/offline CPUs, report (releases rnp->lock). */
			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
void rcu_force_quiescent_state(void)
{
	unsigned long flags;
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = __this_cpu_read(rcu_data.mynode);
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret)
			return;
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(), rnp == NULL. */

	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
		return;  /* Someone beat us to it. */
	}
	WRITE_ONCE(rcu_state.gp_flags,
		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
	rcu_gp_kthread_wake();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

/* Perform RCU core processing work for the current CPU.  */
static __latent_entropy void rcu_core(struct softirq_action *unused)
{
	unsigned long flags;
	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
	struct rcu_node *rnp = rdp->mynode;

	if (cpu_is_offline(smp_processor_id()))
		return;
	trace_rcu_utilization(TPS("Start RCU core"));
	WARN_ON_ONCE(!rdp->beenonline);

	/* Report any deferred quiescent states if preemption enabled. */
	if (!(preempt_count() & PREEMPT_MASK)) {
		rcu_preempt_deferred_qs(current);
	} else if (rcu_preempt_need_deferred_qs(current)) {
		set_tsk_need_resched(current);
		set_preempt_need_resched();
	}

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rdp);

	/* No grace period and unregistered callbacks? */
	if (!rcu_gp_in_progress() &&
	    rcu_segcblist_is_enabled(&rdp->cblist)) {
		local_irq_save(flags);
		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
			rcu_accelerate_cbs_unlocked(rnp, rdp);
		local_irq_restore(flags);
	}

	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());

	/* If there are callbacks ready, invoke them. */
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
		invoke_rcu_callbacks(rdp);

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
	trace_rcu_utilization(TPS("End RCU core"));
}

/*
 * Schedule RCU callback invocation.  If the running implementation of RCU
 * does not support RCU priority boosting, just do a direct call, otherwise
 * wake up the per-CPU kernel kthread.  Note that because we are running
 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
 * cannot disappear out from under us.
 */
static void invoke_rcu_callbacks(struct rcu_data *rdp)
{
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
		return;
	if (likely(!rcu_state.boost)) {
		rcu_do_batch(rdp);
		return;
	}
	invoke_rcu_callbacks_kthread();
}

static void invoke_rcu_core(void)
{
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
}

/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
			    unsigned long flags)
{
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
	if (!rcu_is_watching())
		invoke_rcu_core();

	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
		return;

	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
		     rdp->qlen_last_fqs_check + qhimark)) {

		/* Are we ignoring a completed grace period? */
		note_gp_changes(rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress()) {
			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
				rcu_force_quiescent_state();
			rdp->n_force_qs_snap = rcu_state.n_force_qs;
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
		}
	}
}

/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
 * is expected to specify a CPU.
 */
static void
__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
{
	unsigned long flags;
	struct rcu_data *rdp;

	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

	if (debug_rcu_head_queue(head)) {
		/*
		 * Probable double call_rcu(), so leak the callback.
		 * Use rcu:rcu_callback trace event to find the previous
		 * time callback was passed to __call_rcu().
		 */
		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
			  head, head->func);
		WRITE_ONCE(head->func, rcu_leak_callback);
		return;
	}
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
	rdp = this_cpu_ptr(&rcu_data);

	/* Add the callback to our list. */
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(&rcu_data, cpu);
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		WARN_ON_ONCE(cpu != -1);
		WARN_ON_ONCE(!rcu_is_watching());
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
	}
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rcu_state.name, head,
					 (unsigned long)func,
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
					 rcu_segcblist_n_cbs(&rdp->cblist));
	else
		trace_rcu_callback(rcu_state.name, head,
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				   rcu_segcblist_n_cbs(&rdp->cblist));

	/* Go handle any RCU core processing required. */
	__call_rcu_core(rdp, head, flags);
	local_irq_restore(flags);
}

/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
 * may be nested.  In addition, regions of code across which interrupts,
 * preemption, or softirqs have been disabled also serve as RCU read-side
 * critical sections.  This includes hardware interrupt handlers, softirq
 * handlers, and NMI handlers.
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing RCU read-side critical section.  On systems with more
 * than one CPU, this means that when "func()" is invoked, each CPU is
 * guaranteed to have executed a full memory barrier since the end of its
 * last RCU read-side critical section whose beginning preceded the call
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 * critical section that continues beyond the start of "func()" must have
 * executed a memory barrier after the call_rcu() but before the beginning
 * of that RCU read-side critical section.  Note that these guarantees
 * include CPUs that are offline, idle, or executing in user mode, as
 * well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 * guaranteed to execute a full memory barrier during the time interval
 * between the call to call_rcu() and the invocation of "func()" -- even
 * if CPU A and CPU B are the same CPU (but again only if the system has
 * more than one CPU).
 */
void call_rcu(struct rcu_head *head, rcu_callback_t func)
{
	__call_rcu(head, func, -1, 0);
}
EXPORT_SYMBOL_GPL(call_rcu);

/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
{
	__call_rcu(head, func, -1, 1);
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

/*
 * During early boot, any blocking grace-period wait automatically
 * implies a grace period.  Later on, this is never the case for PREEMPT.
 *
 * Howevr, because a context switch is a grace period for !PREEMPT, any
 * blocking grace-period wait automatically implies a grace period if
 * there is only one CPU online at any point time during execution of
 * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds some
 * overhead: RCU still operates correctly.
 */
static int rcu_blocking_is_gp(void)
{
	int ret;

	if (IS_ENABLED(CONFIG_PREEMPT))
		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
	might_sleep();  /* Check for RCU read-side critical section. */
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
}

/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 * In addition, regions of code across which interrupts, preemption, or
 * softirqs have been disabled also serve as RCU read-side critical
 * sections.  This includes hardware interrupt handlers, softirq handlers,
 * and NMI handlers.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_rcu() returns,
 * each CPU is guaranteed to have executed a full memory barrier since
 * the end of its last RCU read-side critical section whose beginning
 * preceded the call to synchronize_rcu().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_rcu() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_rcu() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
 */
void synchronize_rcu(void)
{
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu() in RCU read-side critical section");
	if (rcu_blocking_is_gp())
		return;
	if (rcu_gp_is_expedited())
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gp_seq.
	 */
	smp_mb();  /* ^^^ */
	return rcu_seq_snap(&rcu_state.gp_seq);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
		synchronize_rcu();
	else
		smp_mb(); /* Ensure GP ends before subsequent accesses. */
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

/*
 * Check to see if there is any immediate RCU-related work to be done by
 * the current CPU, returning 1 if so and zero otherwise.  The checks are
 * in order of increasing expense: checks that can be carried out against
 * CPU-local state are performed first.  However, we must check for CPU
 * stalls first, else we might not get a chance.
 */
static int rcu_pending(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	struct rcu_node *rnp = rdp->mynode;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rdp);

	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu())
		return 0;

	/* Is the RCU core waiting for a quiescent state from this CPU? */
	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
		return 1;

	/* Does this CPU have callbacks ready to invoke? */
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
		return 1;

	/* Has RCU gone idle with this CPU needing another grace period? */
	if (!rcu_gp_in_progress() &&
	    rcu_segcblist_is_enabled(&rdp->cblist) &&
	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
		return 1;

	/* Have RCU grace period completed or started?  */
	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
		return 1;

	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp))
		return 1;

	/* nothing to do */
	return 0;
}

/*
 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
{
	trace_rcu_barrier(rcu_state.name, s, cpu,
			  atomic_read(&rcu_state.barrier_cpu_count), done);
}

/*
 * RCU callback function for rcu_barrier().  If we are last, wake
 * up the task executing rcu_barrier().
 */
static void rcu_barrier_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
		rcu_barrier_trace(TPS("LastCB"), -1,
				   rcu_state.barrier_sequence);
		complete(&rcu_state.barrier_completion);
	} else {
		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
	}
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *unused)
{
	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);

	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
	rdp->barrier_head.func = rcu_barrier_callback;
	debug_rcu_head_queue(&rdp->barrier_head);
	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
		atomic_inc(&rcu_state.barrier_cpu_count);
	} else {
		debug_rcu_head_unqueue(&rdp->barrier_head);
		rcu_barrier_trace(TPS("IRQNQ"), -1,
				   rcu_state.barrier_sequence);
	}
}

/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
 */
void rcu_barrier(void)
{
	int cpu;
	struct rcu_data *rdp;
	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);

	rcu_barrier_trace(TPS("Begin"), -1, s);

	/* Take mutex to serialize concurrent rcu_barrier() requests. */
	mutex_lock(&rcu_state.barrier_mutex);

	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
		rcu_barrier_trace(TPS("EarlyExit"), -1,
				   rcu_state.barrier_sequence);
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rcu_state.barrier_mutex);
		return;
	}

	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rcu_state.barrier_sequence);
	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);

	/*
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
	 */
	init_completion(&rcu_state.barrier_completion);
	atomic_set(&rcu_state.barrier_cpu_count, 1);
	get_online_cpus();

	/*
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
	 */
	for_each_possible_cpu(cpu) {
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
			continue;
		rdp = per_cpu_ptr(&rcu_data, cpu);
		if (rcu_is_nocb_cpu(cpu)) {
			if (!rcu_nocb_cpu_needs_barrier(cpu)) {
				rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
						   rcu_state.barrier_sequence);
			} else {
				rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
						   rcu_state.barrier_sequence);
				smp_mb__before_atomic();
				atomic_inc(&rcu_state.barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, cpu, 0);
			}
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
			rcu_barrier_trace(TPS("OnlineQ"), cpu,
					   rcu_state.barrier_sequence);
			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
		} else {
			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
					   rcu_state.barrier_sequence);
		}
	}
	put_online_cpus();

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
		complete(&rcu_state.barrier_completion);

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
	wait_for_completion(&rcu_state.barrier_completion);

	/* Mark the end of the barrier operation. */
	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
	rcu_seq_end(&rcu_state.barrier_sequence);

	/* Other rcu_barrier() invocations can now safely proceed. */
	mutex_unlock(&rcu_state.barrier_mutex);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	long oldmask;
	struct rcu_node *rnp = rnp_leaf;

	raw_lockdep_assert_held_rcu_node(rnp_leaf);
	WARN_ON_ONCE(rnp->wait_blkd_tasks);
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit |= mask;
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
		if (oldmask)
			return;
	}
}

/*
 * Do boot-time initialization of a CPU's per-CPU RCU data.
 */
static void __init
rcu_boot_init_percpu_data(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);

	/* Set up local state, ensuring consistent view of global state. */
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
	rdp->cpu = cpu;
	rcu_boot_init_nocb_percpu_data(rdp);
}

/*
 * Invoked early in the CPU-online process, when pretty much all services
 * are available.  The incoming CPU is not present.
 *
 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we can
 * accept some slop in the rsp->gp_seq access due to the fact that this
 * CPU cannot possibly have any RCU callbacks in flight yet.
 */
int rcutree_prepare_cpu(unsigned int cpu)
{
	unsigned long flags;
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	struct rcu_node *rnp = rcu_get_root();

	/* Set up local state, ensuring consistent view of global state. */
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rcu_state.n_force_qs;
	rdp->blimit = blimit;
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
	    !init_nocb_callback_list(rdp))
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
	rcu_dynticks_eqs_online();
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */

	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
	rnp = rdp->mynode;
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
	rdp->beenonline = true;	 /* We have now been online. */
	rdp->gp_seq = rnp->gp_seq;
	rdp->gp_seq_needed = rnp->gp_seq;
	rdp->cpu_no_qs.b.norm = true;
	rdp->core_needs_qs = false;
	rdp->rcu_iw_pending = false;
	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	rcu_prepare_kthreads(cpu);
	rcu_spawn_cpu_nocb_kthread(cpu);

	return 0;
}

/*
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 */
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

/*
 * Near the end of the CPU-online process.  Pretty much all services
 * enabled, and the CPU is now very much alive.
 */
int rcutree_online_cpu(unsigned int cpu)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	rdp = per_cpu_ptr(&rcu_data, cpu);
	rnp = rdp->mynode;
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	rnp->ffmask |= rdp->grpmask;
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
		return 0; /* Too early in boot for scheduler work. */
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
	return 0;
}

/*
 * Near the beginning of the process.  The CPU is still very much alive
 * with pretty much all services enabled.
 */
int rcutree_offline_cpu(unsigned int cpu)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	rdp = per_cpu_ptr(&rcu_data, cpu);
	rnp = rdp->mynode;
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	rnp->ffmask &= ~rdp->grpmask;
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);

	rcutree_affinity_setting(cpu, cpu);
	return 0;
}

static DEFINE_PER_CPU(int, rcu_cpu_started);

/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 *
 * Note that this function is special in that it is invoked directly
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	int nbits;
	unsigned long oldmask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (per_cpu(rcu_cpu_started, cpu))
		return;

	per_cpu(rcu_cpu_started, cpu) = 1;

	rdp = per_cpu_ptr(&rcu_data, cpu);
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	rnp->qsmaskinitnext |= mask;
	oldmask = rnp->expmaskinitnext;
	rnp->expmaskinitnext |= mask;
	oldmask ^= rnp->expmaskinitnext;
	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
	/* Allow lockless access for expedited grace periods. */
	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
		/* Report QS -after- changing ->qsmaskinitnext! */
		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
	} else {
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
}

#ifdef CONFIG_HOTPLUG_CPU
/*
 * The outgoing function has no further need of RCU, so remove it from
 * the rcu_node tree's ->qsmaskinitnext bit masks.
 *
 * Note that this function is special in that it is invoked directly
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 */
void rcu_report_dead(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* QS for any half-done expedited grace period. */
	preempt_disable();
	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
	preempt_enable();
	rcu_preempt_deferred_qs(current);

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock(&rcu_state.ofl_lock);
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
		/* Report quiescent state -before- changing ->qsmaskinitnext! */
		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
	}
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	raw_spin_unlock(&rcu_state.ofl_lock);

	per_cpu(rcu_cpu_started, cpu) = 0;
}

/*
 * The outgoing CPU has just passed through the dying-idle state, and we
 * are being invoked from the CPU that was IPIed to continue the offline
 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
 */
void rcutree_migrate_callbacks(int cpu)
{
	unsigned long flags;
	struct rcu_data *my_rdp;
	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
	struct rcu_node *rnp_root = rcu_get_root();
	bool needwake;

	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
		return;  /* No callbacks to migrate. */

	local_irq_save(flags);
	my_rdp = this_cpu_ptr(&rcu_data);
	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
		local_irq_restore(flags);
		return;
	}
	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
	/* Leverage recent GPs and set GP for new callbacks. */
	needwake = rcu_advance_cbs(rnp_root, rdp) ||
		   rcu_advance_cbs(rnp_root, my_rdp);
	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
	if (needwake)
		rcu_gp_kthread_wake();
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
		  !rcu_segcblist_empty(&rdp->cblist),
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
		  rcu_segcblist_first_cb(&rdp->cblist));
}
#endif

/*
 * On non-huge systems, use expedited RCU grace periods to make suspend
 * and hibernation run faster.
 */
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		rcu_expedite_gp();
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_unexpedite_gp();
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

/*
 * Spawn the kthreads that handle RCU's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	int kthread_prio_in = kthread_prio;
	struct rcu_node *rnp;
	struct sched_param sp;
	struct task_struct *t;

	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
		kthread_prio = 2;
	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;

	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

	rcu_scheduler_fully_active = 1;
	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
		return 0;
	rnp = rcu_get_root();
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	rcu_state.gp_kthread = t;
	if (kthread_prio) {
		sp.sched_priority = kthread_prio;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	}
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	wake_up_process(t);
	rcu_spawn_nocb_kthreads();
	rcu_spawn_boost_kthreads();
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

/*
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
 * runtime RCU functionality.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
}

/*
 * Helper function for rcu_init() that initializes the rcu_state structure.
 */
static void __init rcu_init_one(void)
{
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];

	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");

	/* Initialize the level-tracking arrays. */

	for (i = 1; i < rcu_num_lvls; i++)
		rcu_state.level[i] =
			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = rcu_num_lvls - 1; i >= 0; i--) {
		cpustride *= levelspread[i];
		rnp = rcu_state.level[i];
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
						   &rcu_node_class[i], buf[i]);
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
			rnp->gp_seq = rcu_state.gp_seq;
			rnp->gp_seq_needed = rcu_state.gp_seq;
			rnp->completedqs = rcu_state.gp_seq;
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % levelspread[i - 1];
				rnp->grpmask = BIT(rnp->grpnum);
				rnp->parent = rcu_state.level[i - 1] +
					      j / levelspread[i - 1];
			}
			rnp->level = i;
			INIT_LIST_HEAD(&rnp->blkd_tasks);
			rcu_init_one_nocb(rnp);
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
			spin_lock_init(&rnp->exp_lock);
		}
	}

	init_swait_queue_head(&rcu_state.gp_wq);
	init_swait_queue_head(&rcu_state.expedited_wq);
	rnp = rcu_first_leaf_node();
	for_each_possible_cpu(i) {
		while (i > rnp->grphi)
			rnp++;
		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
		rcu_boot_init_percpu_data(i);
	}
}

/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in tree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	ulong d;
	int i;
	int rcu_capacity[RCU_NUM_LVLS];

	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;
	adjust_jiffies_till_sched_qs();

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
		return;
	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
		rcu_fanout_leaf, nr_cpu_ids);

	/*
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
	 */
	if (rcu_fanout_leaf < 2 ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.
	 */
	rcu_capacity[0] = rcu_fanout_leaf;
	for (i = 1; i < RCU_NUM_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;

	/*
	 * The tree must be able to accommodate the configured number of CPUs.
	 * If this limit is exceeded, fall back to the compile-time values.
	 */
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}

	/* Calculate the number of levels in the tree. */
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
	}
	rcu_num_lvls = i + 1;

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 0; i < rcu_num_lvls; i++) {
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i < rcu_num_lvls; i++)
		rcu_num_nodes += num_rcu_lvl[i];
}

/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure.
 */
static void __init rcu_dump_rcu_node_tree(void)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

struct workqueue_struct *rcu_gp_wq;
struct workqueue_struct *rcu_par_gp_wq;

void __init rcu_init(void)
{
	int cpu;

	rcu_early_boot_tests();

	rcu_bootup_announce();
	rcu_init_geometry();
	rcu_init_one();
	if (dump_tree)
		rcu_dump_rcu_node_tree();
	open_softirq(RCU_SOFTIRQ, rcu_core);

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	pm_notifier(rcu_pm_notify, 0);
	for_each_online_cpu(cpu) {
		rcutree_prepare_cpu(cpu);
		rcu_cpu_starting(cpu);
		rcutree_online_cpu(cpu);
	}

	/* Create workqueue for expedited GPs and for Tree SRCU. */
	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
	WARN_ON(!rcu_gp_wq);
	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
	WARN_ON(!rcu_par_gp_wq);
	srcu_init();
}

#include "tree_stall.h"
#include "tree_exp.h"
#include "tree_plugin.h"