Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | /* Simple expression parser */ %{ #define YYDEBUG 1 #include <assert.h> #include <math.h> #include <stdlib.h> #include "util/debug.h" #define IN_EXPR_Y 1 #include "expr.h" %} %define api.pure full %parse-param { double *final_val } %parse-param { struct expr_parse_ctx *ctx } %parse-param { bool compute_ids } %parse-param {void *scanner} %lex-param {void* scanner} %union { double num; char *str; struct ids { /* * When creating ids, holds the working set of event ids. NULL * implies the set is empty. */ struct hashmap *ids; /* * The metric value. When not creating ids this is the value * read from a counter, a constant or some computed value. When * creating ids the value is either a constant or BOTTOM. NAN is * used as the special BOTTOM value, representing a "set of all * values" case. */ double val; } ids; } %token ID NUMBER MIN MAX IF ELSE LITERAL D_RATIO SOURCE_COUNT EXPR_ERROR %left MIN MAX IF %left '|' %left '^' %left '&' %left '<' '>' %left '-' '+' %left '*' '/' '%' %left NEG NOT %type <num> NUMBER LITERAL %type <str> ID %destructor { free ($$); } <str> %type <ids> expr if_expr %destructor { ids__free($$.ids); } <ids> %{ static void expr_error(double *final_val __maybe_unused, struct expr_parse_ctx *ctx __maybe_unused, bool compute_ids __maybe_unused, void *scanner, const char *s) { pr_debug("%s\n", s); } /* * During compute ids, the special "bottom" value uses NAN to represent the set * of all values. NAN is selected as it isn't a useful constant value. */ #define BOTTOM NAN /* During computing ids, does val represent a constant (non-BOTTOM) value? */ static bool is_const(double val) { return isfinite(val); } static struct ids union_expr(struct ids ids1, struct ids ids2) { struct ids result = { .val = BOTTOM, .ids = ids__union(ids1.ids, ids2.ids), }; return result; } static struct ids handle_id(struct expr_parse_ctx *ctx, char *id, bool compute_ids, bool source_count) { struct ids result; if (!compute_ids) { /* * Compute the event's value from ID. If the ID isn't known then * it isn't used to compute the formula so set to NAN. */ struct expr_id_data *data; result.val = NAN; if (expr__resolve_id(ctx, id, &data) == 0) { result.val = source_count ? expr_id_data__source_count(data) : expr_id_data__value(data); } result.ids = NULL; free(id); } else { /* * Set the value to BOTTOM to show that any value is possible * when the event is computed. Create a set of just the ID. */ result.val = BOTTOM; result.ids = ids__new(); if (!result.ids || ids__insert(result.ids, id)) { pr_err("Error creating IDs for '%s'", id); free(id); } } return result; } /* * If we're not computing ids or $1 and $3 are constants, compute the new * constant value using OP. Its invariant that there are no ids. If computing * ids for non-constants union the set of IDs that must be computed. */ #define BINARY_LONG_OP(RESULT, OP, LHS, RHS) \ if (!compute_ids || (is_const(LHS.val) && is_const(RHS.val))) { \ assert(LHS.ids == NULL); \ assert(RHS.ids == NULL); \ RESULT.val = (long)LHS.val OP (long)RHS.val; \ RESULT.ids = NULL; \ } else { \ RESULT = union_expr(LHS, RHS); \ } #define BINARY_OP(RESULT, OP, LHS, RHS) \ if (!compute_ids || (is_const(LHS.val) && is_const(RHS.val))) { \ assert(LHS.ids == NULL); \ assert(RHS.ids == NULL); \ RESULT.val = LHS.val OP RHS.val; \ RESULT.ids = NULL; \ } else { \ RESULT = union_expr(LHS, RHS); \ } %} %% start: if_expr { if (compute_ids) ctx->ids = ids__union($1.ids, ctx->ids); if (final_val) *final_val = $1.val; } ; if_expr: expr IF expr ELSE expr { if (fpclassify($3.val) == FP_ZERO) { /* * The IF expression evaluated to 0 so treat as false, take the * ELSE and discard everything else. */ $$.val = $5.val; $$.ids = $5.ids; ids__free($1.ids); ids__free($3.ids); } else if (!compute_ids || is_const($3.val)) { /* * If ids aren't computed then treat the expression as true. If * ids are being computed and the IF expr is a non-zero * constant, then also evaluate the true case. */ $$.val = $1.val; $$.ids = $1.ids; ids__free($3.ids); ids__free($5.ids); } else if ($1.val == $5.val) { /* * LHS == RHS, so both are an identical constant. No need to * evaluate any events. */ $$.val = $1.val; $$.ids = NULL; ids__free($1.ids); ids__free($3.ids); ids__free($5.ids); } else { /* * Value is either the LHS or RHS and we need the IF expression * to compute it. */ $$ = union_expr($1, union_expr($3, $5)); } } | expr ; expr: NUMBER { $$.val = $1; $$.ids = NULL; } | ID { $$ = handle_id(ctx, $1, compute_ids, /*source_count=*/false); } | SOURCE_COUNT '(' ID ')' { $$ = handle_id(ctx, $3, compute_ids, /*source_count=*/true); } | expr '|' expr { BINARY_LONG_OP($$, |, $1, $3); } | expr '&' expr { BINARY_LONG_OP($$, &, $1, $3); } | expr '^' expr { BINARY_LONG_OP($$, ^, $1, $3); } | expr '<' expr { BINARY_OP($$, <, $1, $3); } | expr '>' expr { BINARY_OP($$, >, $1, $3); } | expr '+' expr { BINARY_OP($$, +, $1, $3); } | expr '-' expr { BINARY_OP($$, -, $1, $3); } | expr '*' expr { BINARY_OP($$, *, $1, $3); } | expr '/' expr { if (fpclassify($3.val) == FP_ZERO) { pr_debug("division by zero\n"); YYABORT; } else if (!compute_ids || (is_const($1.val) && is_const($3.val))) { assert($1.ids == NULL); assert($3.ids == NULL); $$.val = $1.val / $3.val; $$.ids = NULL; } else { /* LHS and/or RHS need computing from event IDs so union. */ $$ = union_expr($1, $3); } } | expr '%' expr { if (fpclassify($3.val) == FP_ZERO) { pr_debug("division by zero\n"); YYABORT; } else if (!compute_ids || (is_const($1.val) && is_const($3.val))) { assert($1.ids == NULL); assert($3.ids == NULL); $$.val = (long)$1.val % (long)$3.val; $$.ids = NULL; } else { /* LHS and/or RHS need computing from event IDs so union. */ $$ = union_expr($1, $3); } } | D_RATIO '(' expr ',' expr ')' { if (fpclassify($5.val) == FP_ZERO) { /* * Division by constant zero always yields zero and no events * are necessary. */ assert($5.ids == NULL); $$.val = 0.0; $$.ids = NULL; ids__free($3.ids); } else if (!compute_ids || (is_const($3.val) && is_const($5.val))) { assert($3.ids == NULL); assert($5.ids == NULL); $$.val = $3.val / $5.val; $$.ids = NULL; } else { /* LHS and/or RHS need computing from event IDs so union. */ $$ = union_expr($3, $5); } } | '-' expr %prec NEG { $$.val = -$2.val; $$.ids = $2.ids; } | '(' if_expr ')' { $$ = $2; } | MIN '(' expr ',' expr ')' { if (!compute_ids) { $$.val = $3.val < $5.val ? $3.val : $5.val; $$.ids = NULL; } else { $$ = union_expr($3, $5); } } | MAX '(' expr ',' expr ')' { if (!compute_ids) { $$.val = $3.val > $5.val ? $3.val : $5.val; $$.ids = NULL; } else { $$ = union_expr($3, $5); } } | LITERAL { $$.val = $1; $$.ids = NULL; } ; %% |