Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | // SPDX-License-Identifier: GPL-2.0-or-later #include <linux/slab.h> #include <linux/sched/task.h> #include "futex.h" #include "../locking/rtmutex_common.h" /* * PI code: */ int refill_pi_state_cache(void) { struct futex_pi_state *pi_state; if (likely(current->pi_state_cache)) return 0; pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); if (!pi_state) return -ENOMEM; INIT_LIST_HEAD(&pi_state->list); /* pi_mutex gets initialized later */ pi_state->owner = NULL; refcount_set(&pi_state->refcount, 1); pi_state->key = FUTEX_KEY_INIT; current->pi_state_cache = pi_state; return 0; } static struct futex_pi_state *alloc_pi_state(void) { struct futex_pi_state *pi_state = current->pi_state_cache; WARN_ON(!pi_state); current->pi_state_cache = NULL; return pi_state; } static void pi_state_update_owner(struct futex_pi_state *pi_state, struct task_struct *new_owner) { struct task_struct *old_owner = pi_state->owner; lockdep_assert_held(&pi_state->pi_mutex.wait_lock); if (old_owner) { raw_spin_lock(&old_owner->pi_lock); WARN_ON(list_empty(&pi_state->list)); list_del_init(&pi_state->list); raw_spin_unlock(&old_owner->pi_lock); } if (new_owner) { raw_spin_lock(&new_owner->pi_lock); WARN_ON(!list_empty(&pi_state->list)); list_add(&pi_state->list, &new_owner->pi_state_list); pi_state->owner = new_owner; raw_spin_unlock(&new_owner->pi_lock); } } void get_pi_state(struct futex_pi_state *pi_state) { WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount)); } /* * Drops a reference to the pi_state object and frees or caches it * when the last reference is gone. */ void put_pi_state(struct futex_pi_state *pi_state) { if (!pi_state) return; if (!refcount_dec_and_test(&pi_state->refcount)) return; /* * If pi_state->owner is NULL, the owner is most probably dying * and has cleaned up the pi_state already */ if (pi_state->owner) { unsigned long flags; raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags); pi_state_update_owner(pi_state, NULL); rt_mutex_proxy_unlock(&pi_state->pi_mutex); raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags); } if (current->pi_state_cache) { kfree(pi_state); } else { /* * pi_state->list is already empty. * clear pi_state->owner. * refcount is at 0 - put it back to 1. */ pi_state->owner = NULL; refcount_set(&pi_state->refcount, 1); current->pi_state_cache = pi_state; } } /* * We need to check the following states: * * Waiter | pi_state | pi->owner | uTID | uODIED | ? * * [1] NULL | --- | --- | 0 | 0/1 | Valid * [2] NULL | --- | --- | >0 | 0/1 | Valid * * [3] Found | NULL | -- | Any | 0/1 | Invalid * * [4] Found | Found | NULL | 0 | 1 | Valid * [5] Found | Found | NULL | >0 | 1 | Invalid * * [6] Found | Found | task | 0 | 1 | Valid * * [7] Found | Found | NULL | Any | 0 | Invalid * * [8] Found | Found | task | ==taskTID | 0/1 | Valid * [9] Found | Found | task | 0 | 0 | Invalid * [10] Found | Found | task | !=taskTID | 0/1 | Invalid * * [1] Indicates that the kernel can acquire the futex atomically. We * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. * * [2] Valid, if TID does not belong to a kernel thread. If no matching * thread is found then it indicates that the owner TID has died. * * [3] Invalid. The waiter is queued on a non PI futex * * [4] Valid state after exit_robust_list(), which sets the user space * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. * * [5] The user space value got manipulated between exit_robust_list() * and exit_pi_state_list() * * [6] Valid state after exit_pi_state_list() which sets the new owner in * the pi_state but cannot access the user space value. * * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. * * [8] Owner and user space value match * * [9] There is no transient state which sets the user space TID to 0 * except exit_robust_list(), but this is indicated by the * FUTEX_OWNER_DIED bit. See [4] * * [10] There is no transient state which leaves owner and user space * TID out of sync. Except one error case where the kernel is denied * write access to the user address, see fixup_pi_state_owner(). * * * Serialization and lifetime rules: * * hb->lock: * * hb -> futex_q, relation * futex_q -> pi_state, relation * * (cannot be raw because hb can contain arbitrary amount * of futex_q's) * * pi_mutex->wait_lock: * * {uval, pi_state} * * (and pi_mutex 'obviously') * * p->pi_lock: * * p->pi_state_list -> pi_state->list, relation * pi_mutex->owner -> pi_state->owner, relation * * pi_state->refcount: * * pi_state lifetime * * * Lock order: * * hb->lock * pi_mutex->wait_lock * p->pi_lock * */ /* * Validate that the existing waiter has a pi_state and sanity check * the pi_state against the user space value. If correct, attach to * it. */ static int attach_to_pi_state(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state, struct futex_pi_state **ps) { pid_t pid = uval & FUTEX_TID_MASK; u32 uval2; int ret; /* * Userspace might have messed up non-PI and PI futexes [3] */ if (unlikely(!pi_state)) return -EINVAL; /* * We get here with hb->lock held, and having found a * futex_top_waiter(). This means that futex_lock_pi() of said futex_q * has dropped the hb->lock in between futex_queue() and futex_unqueue_pi(), * which in turn means that futex_lock_pi() still has a reference on * our pi_state. * * The waiter holding a reference on @pi_state also protects against * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi() * and futex_wait_requeue_pi() as it cannot go to 0 and consequently * free pi_state before we can take a reference ourselves. */ WARN_ON(!refcount_read(&pi_state->refcount)); /* * Now that we have a pi_state, we can acquire wait_lock * and do the state validation. */ raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); /* * Since {uval, pi_state} is serialized by wait_lock, and our current * uval was read without holding it, it can have changed. Verify it * still is what we expect it to be, otherwise retry the entire * operation. */ if (futex_get_value_locked(&uval2, uaddr)) goto out_efault; if (uval != uval2) goto out_eagain; /* * Handle the owner died case: */ if (uval & FUTEX_OWNER_DIED) { /* * exit_pi_state_list sets owner to NULL and wakes the * topmost waiter. The task which acquires the * pi_state->rt_mutex will fixup owner. */ if (!pi_state->owner) { /* * No pi state owner, but the user space TID * is not 0. Inconsistent state. [5] */ if (pid) goto out_einval; /* * Take a ref on the state and return success. [4] */ goto out_attach; } /* * If TID is 0, then either the dying owner has not * yet executed exit_pi_state_list() or some waiter * acquired the rtmutex in the pi state, but did not * yet fixup the TID in user space. * * Take a ref on the state and return success. [6] */ if (!pid) goto out_attach; } else { /* * If the owner died bit is not set, then the pi_state * must have an owner. [7] */ if (!pi_state->owner) goto out_einval; } /* * Bail out if user space manipulated the futex value. If pi * state exists then the owner TID must be the same as the * user space TID. [9/10] */ if (pid != task_pid_vnr(pi_state->owner)) goto out_einval; out_attach: get_pi_state(pi_state); raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); *ps = pi_state; return 0; out_einval: ret = -EINVAL; goto out_error; out_eagain: ret = -EAGAIN; goto out_error; out_efault: ret = -EFAULT; goto out_error; out_error: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); return ret; } static int handle_exit_race(u32 __user *uaddr, u32 uval, struct task_struct *tsk) { u32 uval2; /* * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the * caller that the alleged owner is busy. */ if (tsk && tsk->futex_state != FUTEX_STATE_DEAD) return -EBUSY; /* * Reread the user space value to handle the following situation: * * CPU0 CPU1 * * sys_exit() sys_futex() * do_exit() futex_lock_pi() * futex_lock_pi_atomic() * exit_signals(tsk) No waiters: * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID * mm_release(tsk) Set waiter bit * exit_robust_list(tsk) { *uaddr = 0x80000PID; * Set owner died attach_to_pi_owner() { * *uaddr = 0xC0000000; tsk = get_task(PID); * } if (!tsk->flags & PF_EXITING) { * ... attach(); * tsk->futex_state = } else { * FUTEX_STATE_DEAD; if (tsk->futex_state != * FUTEX_STATE_DEAD) * return -EAGAIN; * return -ESRCH; <--- FAIL * } * * Returning ESRCH unconditionally is wrong here because the * user space value has been changed by the exiting task. * * The same logic applies to the case where the exiting task is * already gone. */ if (futex_get_value_locked(&uval2, uaddr)) return -EFAULT; /* If the user space value has changed, try again. */ if (uval2 != uval) return -EAGAIN; /* * The exiting task did not have a robust list, the robust list was * corrupted or the user space value in *uaddr is simply bogus. * Give up and tell user space. */ return -ESRCH; } static void __attach_to_pi_owner(struct task_struct *p, union futex_key *key, struct futex_pi_state **ps) { /* * No existing pi state. First waiter. [2] * * This creates pi_state, we have hb->lock held, this means nothing can * observe this state, wait_lock is irrelevant. */ struct futex_pi_state *pi_state = alloc_pi_state(); /* * Initialize the pi_mutex in locked state and make @p * the owner of it: */ rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); /* Store the key for possible exit cleanups: */ pi_state->key = *key; WARN_ON(!list_empty(&pi_state->list)); list_add(&pi_state->list, &p->pi_state_list); /* * Assignment without holding pi_state->pi_mutex.wait_lock is safe * because there is no concurrency as the object is not published yet. */ pi_state->owner = p; *ps = pi_state; } /* * Lookup the task for the TID provided from user space and attach to * it after doing proper sanity checks. */ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key, struct futex_pi_state **ps, struct task_struct **exiting) { pid_t pid = uval & FUTEX_TID_MASK; struct task_struct *p; /* * We are the first waiter - try to look up the real owner and attach * the new pi_state to it, but bail out when TID = 0 [1] * * The !pid check is paranoid. None of the call sites should end up * with pid == 0, but better safe than sorry. Let the caller retry */ if (!pid) return -EAGAIN; p = find_get_task_by_vpid(pid); if (!p) return handle_exit_race(uaddr, uval, NULL); if (unlikely(p->flags & PF_KTHREAD)) { put_task_struct(p); return -EPERM; } /* * We need to look at the task state to figure out, whether the * task is exiting. To protect against the change of the task state * in futex_exit_release(), we do this protected by p->pi_lock: */ raw_spin_lock_irq(&p->pi_lock); if (unlikely(p->futex_state != FUTEX_STATE_OK)) { /* * The task is on the way out. When the futex state is * FUTEX_STATE_DEAD, we know that the task has finished * the cleanup: */ int ret = handle_exit_race(uaddr, uval, p); raw_spin_unlock_irq(&p->pi_lock); /* * If the owner task is between FUTEX_STATE_EXITING and * FUTEX_STATE_DEAD then store the task pointer and keep * the reference on the task struct. The calling code will * drop all locks, wait for the task to reach * FUTEX_STATE_DEAD and then drop the refcount. This is * required to prevent a live lock when the current task * preempted the exiting task between the two states. */ if (ret == -EBUSY) *exiting = p; else put_task_struct(p); return ret; } __attach_to_pi_owner(p, key, ps); raw_spin_unlock_irq(&p->pi_lock); put_task_struct(p); return 0; } static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) { int err; u32 curval; if (unlikely(should_fail_futex(true))) return -EFAULT; err = futex_cmpxchg_value_locked(&curval, uaddr, uval, newval); if (unlikely(err)) return err; /* If user space value changed, let the caller retry */ return curval != uval ? -EAGAIN : 0; } /** * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex * @uaddr: the pi futex user address * @hb: the pi futex hash bucket * @key: the futex key associated with uaddr and hb * @ps: the pi_state pointer where we store the result of the * lookup * @task: the task to perform the atomic lock work for. This will * be "current" except in the case of requeue pi. * @exiting: Pointer to store the task pointer of the owner task * which is in the middle of exiting * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) * * Return: * - 0 - ready to wait; * - 1 - acquired the lock; * - <0 - error * * The hb->lock must be held by the caller. * * @exiting is only set when the return value is -EBUSY. If so, this holds * a refcount on the exiting task on return and the caller needs to drop it * after waiting for the exit to complete. */ int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, union futex_key *key, struct futex_pi_state **ps, struct task_struct *task, struct task_struct **exiting, int set_waiters) { u32 uval, newval, vpid = task_pid_vnr(task); struct futex_q *top_waiter; int ret; /* * Read the user space value first so we can validate a few * things before proceeding further. */ if (futex_get_value_locked(&uval, uaddr)) return -EFAULT; if (unlikely(should_fail_futex(true))) return -EFAULT; /* * Detect deadlocks. */ if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) return -EDEADLK; if ((unlikely(should_fail_futex(true)))) return -EDEADLK; /* * Lookup existing state first. If it exists, try to attach to * its pi_state. */ top_waiter = futex_top_waiter(hb, key); if (top_waiter) return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps); /* * No waiter and user TID is 0. We are here because the * waiters or the owner died bit is set or called from * requeue_cmp_pi or for whatever reason something took the * syscall. */ if (!(uval & FUTEX_TID_MASK)) { /* * We take over the futex. No other waiters and the user space * TID is 0. We preserve the owner died bit. */ newval = uval & FUTEX_OWNER_DIED; newval |= vpid; /* The futex requeue_pi code can enforce the waiters bit */ if (set_waiters) newval |= FUTEX_WAITERS; ret = lock_pi_update_atomic(uaddr, uval, newval); if (ret) return ret; /* * If the waiter bit was requested the caller also needs PI * state attached to the new owner of the user space futex. * * @task is guaranteed to be alive and it cannot be exiting * because it is either sleeping or waiting in * futex_requeue_pi_wakeup_sync(). * * No need to do the full attach_to_pi_owner() exercise * because @task is known and valid. */ if (set_waiters) { raw_spin_lock_irq(&task->pi_lock); __attach_to_pi_owner(task, key, ps); raw_spin_unlock_irq(&task->pi_lock); } return 1; } /* * First waiter. Set the waiters bit before attaching ourself to * the owner. If owner tries to unlock, it will be forced into * the kernel and blocked on hb->lock. */ newval = uval | FUTEX_WAITERS; ret = lock_pi_update_atomic(uaddr, uval, newval); if (ret) return ret; /* * If the update of the user space value succeeded, we try to * attach to the owner. If that fails, no harm done, we only * set the FUTEX_WAITERS bit in the user space variable. */ return attach_to_pi_owner(uaddr, newval, key, ps, exiting); } /* * Caller must hold a reference on @pi_state. */ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state) { struct rt_mutex_waiter *top_waiter; struct task_struct *new_owner; bool postunlock = false; DEFINE_RT_WAKE_Q(wqh); u32 curval, newval; int ret = 0; top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex); if (WARN_ON_ONCE(!top_waiter)) { /* * As per the comment in futex_unlock_pi() this should not happen. * * When this happens, give up our locks and try again, giving * the futex_lock_pi() instance time to complete, either by * waiting on the rtmutex or removing itself from the futex * queue. */ ret = -EAGAIN; goto out_unlock; } new_owner = top_waiter->task; /* * We pass it to the next owner. The WAITERS bit is always kept * enabled while there is PI state around. We cleanup the owner * died bit, because we are the owner. */ newval = FUTEX_WAITERS | task_pid_vnr(new_owner); if (unlikely(should_fail_futex(true))) { ret = -EFAULT; goto out_unlock; } ret = futex_cmpxchg_value_locked(&curval, uaddr, uval, newval); if (!ret && (curval != uval)) { /* * If a unconditional UNLOCK_PI operation (user space did not * try the TID->0 transition) raced with a waiter setting the * FUTEX_WAITERS flag between get_user() and locking the hash * bucket lock, retry the operation. */ if ((FUTEX_TID_MASK & curval) == uval) ret = -EAGAIN; else ret = -EINVAL; } if (!ret) { /* * This is a point of no return; once we modified the uval * there is no going back and subsequent operations must * not fail. */ pi_state_update_owner(pi_state, new_owner); postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh); } out_unlock: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); if (postunlock) rt_mutex_postunlock(&wqh); return ret; } static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, struct task_struct *argowner) { struct futex_pi_state *pi_state = q->pi_state; struct task_struct *oldowner, *newowner; u32 uval, curval, newval, newtid; int err = 0; oldowner = pi_state->owner; /* * We are here because either: * * - we stole the lock and pi_state->owner needs updating to reflect * that (@argowner == current), * * or: * * - someone stole our lock and we need to fix things to point to the * new owner (@argowner == NULL). * * Either way, we have to replace the TID in the user space variable. * This must be atomic as we have to preserve the owner died bit here. * * Note: We write the user space value _before_ changing the pi_state * because we can fault here. Imagine swapped out pages or a fork * that marked all the anonymous memory readonly for cow. * * Modifying pi_state _before_ the user space value would leave the * pi_state in an inconsistent state when we fault here, because we * need to drop the locks to handle the fault. This might be observed * in the PID checks when attaching to PI state . */ retry: if (!argowner) { if (oldowner != current) { /* * We raced against a concurrent self; things are * already fixed up. Nothing to do. */ return 0; } if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) { /* We got the lock. pi_state is correct. Tell caller. */ return 1; } /* * The trylock just failed, so either there is an owner or * there is a higher priority waiter than this one. */ newowner = rt_mutex_owner(&pi_state->pi_mutex); /* * If the higher priority waiter has not yet taken over the * rtmutex then newowner is NULL. We can't return here with * that state because it's inconsistent vs. the user space * state. So drop the locks and try again. It's a valid * situation and not any different from the other retry * conditions. */ if (unlikely(!newowner)) { err = -EAGAIN; goto handle_err; } } else { WARN_ON_ONCE(argowner != current); if (oldowner == current) { /* * We raced against a concurrent self; things are * already fixed up. Nothing to do. */ return 1; } newowner = argowner; } newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; /* Owner died? */ if (!pi_state->owner) newtid |= FUTEX_OWNER_DIED; err = futex_get_value_locked(&uval, uaddr); if (err) goto handle_err; for (;;) { newval = (uval & FUTEX_OWNER_DIED) | newtid; err = futex_cmpxchg_value_locked(&curval, uaddr, uval, newval); if (err) goto handle_err; if (curval == uval) break; uval = curval; } /* * We fixed up user space. Now we need to fix the pi_state * itself. */ pi_state_update_owner(pi_state, newowner); return argowner == current; /* * In order to reschedule or handle a page fault, we need to drop the * locks here. In the case of a fault, this gives the other task * (either the highest priority waiter itself or the task which stole * the rtmutex) the chance to try the fixup of the pi_state. So once we * are back from handling the fault we need to check the pi_state after * reacquiring the locks and before trying to do another fixup. When * the fixup has been done already we simply return. * * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely * drop hb->lock since the caller owns the hb -> futex_q relation. * Dropping the pi_mutex->wait_lock requires the state revalidate. */ handle_err: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); spin_unlock(q->lock_ptr); switch (err) { case -EFAULT: err = fault_in_user_writeable(uaddr); break; case -EAGAIN: cond_resched(); err = 0; break; default: WARN_ON_ONCE(1); break; } spin_lock(q->lock_ptr); raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); /* * Check if someone else fixed it for us: */ if (pi_state->owner != oldowner) return argowner == current; /* Retry if err was -EAGAIN or the fault in succeeded */ if (!err) goto retry; /* * fault_in_user_writeable() failed so user state is immutable. At * best we can make the kernel state consistent but user state will * be most likely hosed and any subsequent unlock operation will be * rejected due to PI futex rule [10]. * * Ensure that the rtmutex owner is also the pi_state owner despite * the user space value claiming something different. There is no * point in unlocking the rtmutex if current is the owner as it * would need to wait until the next waiter has taken the rtmutex * to guarantee consistent state. Keep it simple. Userspace asked * for this wreckaged state. * * The rtmutex has an owner - either current or some other * task. See the EAGAIN loop above. */ pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex)); return err; } static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, struct task_struct *argowner) { struct futex_pi_state *pi_state = q->pi_state; int ret; lockdep_assert_held(q->lock_ptr); raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); ret = __fixup_pi_state_owner(uaddr, q, argowner); raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); return ret; } /** * fixup_pi_owner() - Post lock pi_state and corner case management * @uaddr: user address of the futex * @q: futex_q (contains pi_state and access to the rt_mutex) * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) * * After attempting to lock an rt_mutex, this function is called to cleanup * the pi_state owner as well as handle race conditions that may allow us to * acquire the lock. Must be called with the hb lock held. * * Return: * - 1 - success, lock taken; * - 0 - success, lock not taken; * - <0 - on error (-EFAULT) */ int fixup_pi_owner(u32 __user *uaddr, struct futex_q *q, int locked) { if (locked) { /* * Got the lock. We might not be the anticipated owner if we * did a lock-steal - fix up the PI-state in that case: * * Speculative pi_state->owner read (we don't hold wait_lock); * since we own the lock pi_state->owner == current is the * stable state, anything else needs more attention. */ if (q->pi_state->owner != current) return fixup_pi_state_owner(uaddr, q, current); return 1; } /* * If we didn't get the lock; check if anybody stole it from us. In * that case, we need to fix up the uval to point to them instead of * us, otherwise bad things happen. [10] * * Another speculative read; pi_state->owner == current is unstable * but needs our attention. */ if (q->pi_state->owner == current) return fixup_pi_state_owner(uaddr, q, NULL); /* * Paranoia check. If we did not take the lock, then we should not be * the owner of the rt_mutex. Warn and establish consistent state. */ if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current)) return fixup_pi_state_owner(uaddr, q, current); return 0; } /* * Userspace tried a 0 -> TID atomic transition of the futex value * and failed. The kernel side here does the whole locking operation: * if there are waiters then it will block as a consequence of relying * on rt-mutexes, it does PI, etc. (Due to races the kernel might see * a 0 value of the futex too.). * * Also serves as futex trylock_pi()'ing, and due semantics. */ int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int trylock) { struct hrtimer_sleeper timeout, *to; struct task_struct *exiting = NULL; struct rt_mutex_waiter rt_waiter; struct futex_hash_bucket *hb; struct futex_q q = futex_q_init; int res, ret; if (!IS_ENABLED(CONFIG_FUTEX_PI)) return -ENOSYS; if (refill_pi_state_cache()) return -ENOMEM; to = futex_setup_timer(time, &timeout, flags, 0); retry: ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE); if (unlikely(ret != 0)) goto out; retry_private: hb = futex_q_lock(&q); ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, &exiting, 0); if (unlikely(ret)) { /* * Atomic work succeeded and we got the lock, * or failed. Either way, we do _not_ block. */ switch (ret) { case 1: /* We got the lock. */ ret = 0; goto out_unlock_put_key; case -EFAULT: goto uaddr_faulted; case -EBUSY: case -EAGAIN: /* * Two reasons for this: * - EBUSY: Task is exiting and we just wait for the * exit to complete. * - EAGAIN: The user space value changed. */ futex_q_unlock(hb); /* * Handle the case where the owner is in the middle of * exiting. Wait for the exit to complete otherwise * this task might loop forever, aka. live lock. */ wait_for_owner_exiting(ret, exiting); cond_resched(); goto retry; default: goto out_unlock_put_key; } } WARN_ON(!q.pi_state); /* * Only actually queue now that the atomic ops are done: */ __futex_queue(&q, hb); if (trylock) { ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex); /* Fixup the trylock return value: */ ret = ret ? 0 : -EWOULDBLOCK; goto no_block; } rt_mutex_init_waiter(&rt_waiter); /* * On PREEMPT_RT, when hb->lock becomes an rt_mutex, we must not * hold it while doing rt_mutex_start_proxy(), because then it will * include hb->lock in the blocking chain, even through we'll not in * fact hold it while blocking. This will lead it to report -EDEADLK * and BUG when futex_unlock_pi() interleaves with this. * * Therefore acquire wait_lock while holding hb->lock, but drop the * latter before calling __rt_mutex_start_proxy_lock(). This * interleaves with futex_unlock_pi() -- which does a similar lock * handoff -- such that the latter can observe the futex_q::pi_state * before __rt_mutex_start_proxy_lock() is done. */ raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock); spin_unlock(q.lock_ptr); /* * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter * such that futex_unlock_pi() is guaranteed to observe the waiter when * it sees the futex_q::pi_state. */ ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current); raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock); if (ret) { if (ret == 1) ret = 0; goto cleanup; } if (unlikely(to)) hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter); cleanup: spin_lock(q.lock_ptr); /* * If we failed to acquire the lock (deadlock/signal/timeout), we must * first acquire the hb->lock before removing the lock from the * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait * lists consistent. * * In particular; it is important that futex_unlock_pi() can not * observe this inconsistency. */ if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter)) ret = 0; no_block: /* * Fixup the pi_state owner and possibly acquire the lock if we * haven't already. */ res = fixup_pi_owner(uaddr, &q, !ret); /* * If fixup_pi_owner() returned an error, propagate that. If it acquired * the lock, clear our -ETIMEDOUT or -EINTR. */ if (res) ret = (res < 0) ? res : 0; futex_unqueue_pi(&q); spin_unlock(q.lock_ptr); goto out; out_unlock_put_key: futex_q_unlock(hb); out: if (to) { hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); } return ret != -EINTR ? ret : -ERESTARTNOINTR; uaddr_faulted: futex_q_unlock(hb); ret = fault_in_user_writeable(uaddr); if (ret) goto out; if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } /* * Userspace attempted a TID -> 0 atomic transition, and failed. * This is the in-kernel slowpath: we look up the PI state (if any), * and do the rt-mutex unlock. */ int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) { u32 curval, uval, vpid = task_pid_vnr(current); union futex_key key = FUTEX_KEY_INIT; struct futex_hash_bucket *hb; struct futex_q *top_waiter; int ret; if (!IS_ENABLED(CONFIG_FUTEX_PI)) return -ENOSYS; retry: if (get_user(uval, uaddr)) return -EFAULT; /* * We release only a lock we actually own: */ if ((uval & FUTEX_TID_MASK) != vpid) return -EPERM; ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE); if (ret) return ret; hb = futex_hash(&key); spin_lock(&hb->lock); /* * Check waiters first. We do not trust user space values at * all and we at least want to know if user space fiddled * with the futex value instead of blindly unlocking. */ top_waiter = futex_top_waiter(hb, &key); if (top_waiter) { struct futex_pi_state *pi_state = top_waiter->pi_state; ret = -EINVAL; if (!pi_state) goto out_unlock; /* * If current does not own the pi_state then the futex is * inconsistent and user space fiddled with the futex value. */ if (pi_state->owner != current) goto out_unlock; get_pi_state(pi_state); /* * By taking wait_lock while still holding hb->lock, we ensure * there is no point where we hold neither; and therefore * wake_futex_p() must observe a state consistent with what we * observed. * * In particular; this forces __rt_mutex_start_proxy() to * complete such that we're guaranteed to observe the * rt_waiter. Also see the WARN in wake_futex_pi(). */ raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); spin_unlock(&hb->lock); /* drops pi_state->pi_mutex.wait_lock */ ret = wake_futex_pi(uaddr, uval, pi_state); put_pi_state(pi_state); /* * Success, we're done! No tricky corner cases. */ if (!ret) return ret; /* * The atomic access to the futex value generated a * pagefault, so retry the user-access and the wakeup: */ if (ret == -EFAULT) goto pi_faulted; /* * A unconditional UNLOCK_PI op raced against a waiter * setting the FUTEX_WAITERS bit. Try again. */ if (ret == -EAGAIN) goto pi_retry; /* * wake_futex_pi has detected invalid state. Tell user * space. */ return ret; } /* * We have no kernel internal state, i.e. no waiters in the * kernel. Waiters which are about to queue themselves are stuck * on hb->lock. So we can safely ignore them. We do neither * preserve the WAITERS bit not the OWNER_DIED one. We are the * owner. */ if ((ret = futex_cmpxchg_value_locked(&curval, uaddr, uval, 0))) { spin_unlock(&hb->lock); switch (ret) { case -EFAULT: goto pi_faulted; case -EAGAIN: goto pi_retry; default: WARN_ON_ONCE(1); return ret; } } /* * If uval has changed, let user space handle it. */ ret = (curval == uval) ? 0 : -EAGAIN; out_unlock: spin_unlock(&hb->lock); return ret; pi_retry: cond_resched(); goto retry; pi_faulted: ret = fault_in_user_writeable(uaddr); if (!ret) goto retry; return ret; } |