Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
// SPDX-License-Identifier: GPL-2.0+
/*
 * ADXL372 3-Axis Digital Accelerometer core driver
 *
 * Copyright 2018 Analog Devices Inc.
 */

#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

#include "adxl372.h"

/* ADXL372 registers definition */
#define ADXL372_DEVID			0x00
#define ADXL372_DEVID_MST		0x01
#define ADXL372_PARTID			0x02
#define ADXL372_STATUS_1		0x04
#define ADXL372_STATUS_2		0x05
#define ADXL372_FIFO_ENTRIES_2		0x06
#define ADXL372_FIFO_ENTRIES_1		0x07
#define ADXL372_X_DATA_H		0x08
#define ADXL372_X_DATA_L		0x09
#define ADXL372_Y_DATA_H		0x0A
#define ADXL372_Y_DATA_L		0x0B
#define ADXL372_Z_DATA_H		0x0C
#define ADXL372_Z_DATA_L		0x0D
#define ADXL372_X_MAXPEAK_H		0x15
#define ADXL372_X_MAXPEAK_L		0x16
#define ADXL372_Y_MAXPEAK_H		0x17
#define ADXL372_Y_MAXPEAK_L		0x18
#define ADXL372_Z_MAXPEAK_H		0x19
#define ADXL372_Z_MAXPEAK_L		0x1A
#define ADXL372_OFFSET_X		0x20
#define ADXL372_OFFSET_Y		0x21
#define ADXL372_OFFSET_Z		0x22
#define ADXL372_X_THRESH_ACT_H		0x23
#define ADXL372_X_THRESH_ACT_L		0x24
#define ADXL372_Y_THRESH_ACT_H		0x25
#define ADXL372_Y_THRESH_ACT_L		0x26
#define ADXL372_Z_THRESH_ACT_H		0x27
#define ADXL372_Z_THRESH_ACT_L		0x28
#define ADXL372_TIME_ACT		0x29
#define ADXL372_X_THRESH_INACT_H	0x2A
#define ADXL372_X_THRESH_INACT_L	0x2B
#define ADXL372_Y_THRESH_INACT_H	0x2C
#define ADXL372_Y_THRESH_INACT_L	0x2D
#define ADXL372_Z_THRESH_INACT_H	0x2E
#define ADXL372_Z_THRESH_INACT_L	0x2F
#define ADXL372_TIME_INACT_H		0x30
#define ADXL372_TIME_INACT_L		0x31
#define ADXL372_X_THRESH_ACT2_H		0x32
#define ADXL372_X_THRESH_ACT2_L		0x33
#define ADXL372_Y_THRESH_ACT2_H		0x34
#define ADXL372_Y_THRESH_ACT2_L		0x35
#define ADXL372_Z_THRESH_ACT2_H		0x36
#define ADXL372_Z_THRESH_ACT2_L		0x37
#define ADXL372_HPF			0x38
#define ADXL372_FIFO_SAMPLES		0x39
#define ADXL372_FIFO_CTL		0x3A
#define ADXL372_INT1_MAP		0x3B
#define ADXL372_INT2_MAP		0x3C
#define ADXL372_TIMING			0x3D
#define ADXL372_MEASURE			0x3E
#define ADXL372_POWER_CTL		0x3F
#define ADXL372_SELF_TEST		0x40
#define ADXL372_RESET			0x41
#define ADXL372_FIFO_DATA		0x42

#define ADXL372_DEVID_VAL		0xAD
#define ADXL372_PARTID_VAL		0xFA
#define ADXL372_RESET_CODE		0x52

/* ADXL372_POWER_CTL */
#define ADXL372_POWER_CTL_MODE_MSK		GENMASK_ULL(1, 0)
#define ADXL372_POWER_CTL_MODE(x)		(((x) & 0x3) << 0)

/* ADXL372_MEASURE */
#define ADXL372_MEASURE_LINKLOOP_MSK		GENMASK_ULL(5, 4)
#define ADXL372_MEASURE_LINKLOOP_MODE(x)	(((x) & 0x3) << 4)
#define ADXL372_MEASURE_BANDWIDTH_MSK		GENMASK_ULL(2, 0)
#define ADXL372_MEASURE_BANDWIDTH_MODE(x)	(((x) & 0x7) << 0)

/* ADXL372_TIMING */
#define ADXL372_TIMING_ODR_MSK			GENMASK_ULL(7, 5)
#define ADXL372_TIMING_ODR_MODE(x)		(((x) & 0x7) << 5)

/* ADXL372_FIFO_CTL */
#define ADXL372_FIFO_CTL_FORMAT_MSK		GENMASK(5, 3)
#define ADXL372_FIFO_CTL_FORMAT_MODE(x)		(((x) & 0x7) << 3)
#define ADXL372_FIFO_CTL_MODE_MSK		GENMASK(2, 1)
#define ADXL372_FIFO_CTL_MODE_MODE(x)		(((x) & 0x3) << 1)
#define ADXL372_FIFO_CTL_SAMPLES_MSK		BIT(1)
#define ADXL372_FIFO_CTL_SAMPLES_MODE(x)	(((x) > 0xFF) ? 1 : 0)

/* ADXL372_STATUS_1 */
#define ADXL372_STATUS_1_DATA_RDY(x)		(((x) >> 0) & 0x1)
#define ADXL372_STATUS_1_FIFO_RDY(x)		(((x) >> 1) & 0x1)
#define ADXL372_STATUS_1_FIFO_FULL(x)		(((x) >> 2) & 0x1)
#define ADXL372_STATUS_1_FIFO_OVR(x)		(((x) >> 3) & 0x1)
#define ADXL372_STATUS_1_USR_NVM_BUSY(x)	(((x) >> 5) & 0x1)
#define ADXL372_STATUS_1_AWAKE(x)		(((x) >> 6) & 0x1)
#define ADXL372_STATUS_1_ERR_USR_REGS(x)	(((x) >> 7) & 0x1)

/* ADXL372_STATUS_2 */
#define ADXL372_STATUS_2_INACT(x)		(((x) >> 4) & 0x1)
#define ADXL372_STATUS_2_ACT(x)			(((x) >> 5) & 0x1)
#define ADXL372_STATUS_2_AC2(x)			(((x) >> 6) & 0x1)

/* ADXL372_INT1_MAP */
#define ADXL372_INT1_MAP_DATA_RDY_MSK		BIT(0)
#define ADXL372_INT1_MAP_DATA_RDY_MODE(x)	(((x) & 0x1) << 0)
#define ADXL372_INT1_MAP_FIFO_RDY_MSK		BIT(1)
#define ADXL372_INT1_MAP_FIFO_RDY_MODE(x)	(((x) & 0x1) << 1)
#define ADXL372_INT1_MAP_FIFO_FULL_MSK		BIT(2)
#define ADXL372_INT1_MAP_FIFO_FULL_MODE(x)	(((x) & 0x1) << 2)
#define ADXL372_INT1_MAP_FIFO_OVR_MSK		BIT(3)
#define ADXL372_INT1_MAP_FIFO_OVR_MODE(x)	(((x) & 0x1) << 3)
#define ADXL372_INT1_MAP_INACT_MSK		BIT(4)
#define ADXL372_INT1_MAP_INACT_MODE(x)		(((x) & 0x1) << 4)
#define ADXL372_INT1_MAP_ACT_MSK		BIT(5)
#define ADXL372_INT1_MAP_ACT_MODE(x)		(((x) & 0x1) << 5)
#define ADXL372_INT1_MAP_AWAKE_MSK		BIT(6)
#define ADXL372_INT1_MAP_AWAKE_MODE(x)		(((x) & 0x1) << 6)
#define ADXL372_INT1_MAP_LOW_MSK		BIT(7)
#define ADXL372_INT1_MAP_LOW_MODE(x)		(((x) & 0x1) << 7)

/* ADX372_THRESH */
#define ADXL372_THRESH_VAL_H_MSK	GENMASK(10, 3)
#define ADXL372_THRESH_VAL_H_SEL(x)	FIELD_GET(ADXL372_THRESH_VAL_H_MSK, x)
#define ADXL372_THRESH_VAL_L_MSK	GENMASK(2, 0)
#define ADXL372_THRESH_VAL_L_SEL(x)	FIELD_GET(ADXL372_THRESH_VAL_L_MSK, x)

/* The ADXL372 includes a deep, 512 sample FIFO buffer */
#define ADXL372_FIFO_SIZE			512
#define ADXL372_X_AXIS_EN(x)			((x) & BIT(0))
#define ADXL372_Y_AXIS_EN(x)			((x) & BIT(1))
#define ADXL372_Z_AXIS_EN(x)			((x) & BIT(2))

/*
 * At +/- 200g with 12-bit resolution, scale is computed as:
 * (200 + 200) * 9.81 / (2^12 - 1) = 0.958241
 */
#define ADXL372_USCALE	958241

enum adxl372_op_mode {
	ADXL372_STANDBY,
	ADXL372_WAKE_UP,
	ADXL372_INSTANT_ON,
	ADXL372_FULL_BW_MEASUREMENT,
};

enum adxl372_act_proc_mode {
	ADXL372_DEFAULT,
	ADXL372_LINKED,
	ADXL372_LOOPED,
};

enum adxl372_th_activity {
	ADXL372_ACTIVITY,
	ADXL372_ACTIVITY2,
	ADXL372_INACTIVITY,
};

enum adxl372_odr {
	ADXL372_ODR_400HZ,
	ADXL372_ODR_800HZ,
	ADXL372_ODR_1600HZ,
	ADXL372_ODR_3200HZ,
	ADXL372_ODR_6400HZ,
};

enum adxl372_bandwidth {
	ADXL372_BW_200HZ,
	ADXL372_BW_400HZ,
	ADXL372_BW_800HZ,
	ADXL372_BW_1600HZ,
	ADXL372_BW_3200HZ,
};

static const unsigned int adxl372_th_reg_high_addr[3] = {
	[ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H,
	[ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H,
	[ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H,
};

enum adxl372_fifo_format {
	ADXL372_XYZ_FIFO,
	ADXL372_X_FIFO,
	ADXL372_Y_FIFO,
	ADXL372_XY_FIFO,
	ADXL372_Z_FIFO,
	ADXL372_XZ_FIFO,
	ADXL372_YZ_FIFO,
	ADXL372_XYZ_PEAK_FIFO,
};

enum adxl372_fifo_mode {
	ADXL372_FIFO_BYPASSED,
	ADXL372_FIFO_STREAMED,
	ADXL372_FIFO_TRIGGERED,
	ADXL372_FIFO_OLD_SAVED
};

static const int adxl372_samp_freq_tbl[5] = {
	400, 800, 1600, 3200, 6400,
};

static const int adxl372_bw_freq_tbl[5] = {
	200, 400, 800, 1600, 3200,
};

struct adxl372_axis_lookup {
	unsigned int bits;
	enum adxl372_fifo_format fifo_format;
};

static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = {
	{ BIT(0), ADXL372_X_FIFO },
	{ BIT(1), ADXL372_Y_FIFO },
	{ BIT(2), ADXL372_Z_FIFO },
	{ BIT(0) | BIT(1), ADXL372_XY_FIFO },
	{ BIT(0) | BIT(2), ADXL372_XZ_FIFO },
	{ BIT(1) | BIT(2), ADXL372_YZ_FIFO },
	{ BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO },
};

static const struct iio_event_spec adxl372_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE),
		.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
	}, {
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE),
		.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
	},
};

#define ADXL372_ACCEL_CHANNEL(index, reg, axis) {			\
	.type = IIO_ACCEL,						\
	.address = reg,							\
	.modified = 1,							\
	.channel2 = IIO_MOD_##axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),	\
	.scan_index = index,						\
	.scan_type = {							\
		.sign = 's',						\
		.realbits = 12,						\
		.storagebits = 16,					\
		.shift = 4,						\
		.endianness = IIO_BE,					\
	},								\
	.event_spec = adxl372_events,					\
	.num_event_specs = ARRAY_SIZE(adxl372_events)			\
}

static const struct iio_chan_spec adxl372_channels[] = {
	ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X),
	ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y),
	ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z),
};

struct adxl372_state {
	int				irq;
	struct device			*dev;
	struct regmap			*regmap;
	struct iio_trigger		*dready_trig;
	struct iio_trigger		*peak_datardy_trig;
	enum adxl372_fifo_mode		fifo_mode;
	enum adxl372_fifo_format	fifo_format;
	unsigned int			fifo_axis_mask;
	enum adxl372_op_mode		op_mode;
	enum adxl372_act_proc_mode	act_proc_mode;
	enum adxl372_odr		odr;
	enum adxl372_bandwidth		bw;
	u32				act_time_ms;
	u32				inact_time_ms;
	u8				fifo_set_size;
	unsigned long			int1_bitmask;
	unsigned long			int2_bitmask;
	u16				watermark;
	__be16				fifo_buf[ADXL372_FIFO_SIZE];
	bool				peak_fifo_mode_en;
	struct mutex			threshold_m; /* lock for threshold */
};

static const unsigned long adxl372_channel_masks[] = {
	BIT(0), BIT(1), BIT(2),
	BIT(0) | BIT(1),
	BIT(0) | BIT(2),
	BIT(1) | BIT(2),
	BIT(0) | BIT(1) | BIT(2),
	0
};

static ssize_t adxl372_read_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
					    u16 *threshold)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	__be16 raw_regval;
	u16 regval;
	int ret;

	ret = regmap_bulk_read(st->regmap, addr, &raw_regval, sizeof(raw_regval));
	if (ret < 0)
		return ret;

	regval = be16_to_cpu(raw_regval);
	regval >>= 5;

	*threshold = regval;

	return 0;
}

static ssize_t adxl372_write_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
					     u16 threshold)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	int ret;

	mutex_lock(&st->threshold_m);
	ret = regmap_write(st->regmap, addr, ADXL372_THRESH_VAL_H_SEL(threshold));
	if (ret < 0)
		goto unlock;

	ret = regmap_update_bits(st->regmap, addr + 1, GENMASK(7, 5),
				 ADXL372_THRESH_VAL_L_SEL(threshold) << 5);

unlock:
	mutex_unlock(&st->threshold_m);

	return ret;
}

static int adxl372_read_axis(struct adxl372_state *st, u8 addr)
{
	__be16 regval;
	int ret;

	ret = regmap_bulk_read(st->regmap, addr, &regval, sizeof(regval));
	if (ret < 0)
		return ret;

	return be16_to_cpu(regval);
}

static int adxl372_set_op_mode(struct adxl372_state *st,
			       enum adxl372_op_mode op_mode)
{
	int ret;

	ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL,
				 ADXL372_POWER_CTL_MODE_MSK,
				 ADXL372_POWER_CTL_MODE(op_mode));
	if (ret < 0)
		return ret;

	st->op_mode = op_mode;

	return ret;
}

static int adxl372_set_odr(struct adxl372_state *st,
			   enum adxl372_odr odr)
{
	int ret;

	ret = regmap_update_bits(st->regmap, ADXL372_TIMING,
				 ADXL372_TIMING_ODR_MSK,
				 ADXL372_TIMING_ODR_MODE(odr));
	if (ret < 0)
		return ret;

	st->odr = odr;

	return ret;
}

static int adxl372_find_closest_match(const int *array,
				      unsigned int size, int val)
{
	int i;

	for (i = 0; i < size; i++) {
		if (val <= array[i])
			return i;
	}

	return size - 1;
}

static int adxl372_set_bandwidth(struct adxl372_state *st,
				 enum adxl372_bandwidth bw)
{
	int ret;

	ret = regmap_update_bits(st->regmap, ADXL372_MEASURE,
				 ADXL372_MEASURE_BANDWIDTH_MSK,
				 ADXL372_MEASURE_BANDWIDTH_MODE(bw));
	if (ret < 0)
		return ret;

	st->bw = bw;

	return ret;
}

static int adxl372_set_act_proc_mode(struct adxl372_state *st,
				     enum adxl372_act_proc_mode mode)
{
	int ret;

	ret = regmap_update_bits(st->regmap,
				 ADXL372_MEASURE,
				 ADXL372_MEASURE_LINKLOOP_MSK,
				 ADXL372_MEASURE_LINKLOOP_MODE(mode));
	if (ret < 0)
		return ret;

	st->act_proc_mode = mode;

	return ret;
}

static int adxl372_set_activity_threshold(struct adxl372_state *st,
					  enum adxl372_th_activity act,
					  bool ref_en, bool enable,
					  unsigned int threshold)
{
	unsigned char buf[6];
	unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr;

	/* scale factor is 100 mg/code */
	th_reg_high_val = (threshold / 100) >> 3;
	th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable;
	th_reg_high_addr = adxl372_th_reg_high_addr[act];

	buf[0] = th_reg_high_val;
	buf[1] = th_reg_low_val;
	buf[2] = th_reg_high_val;
	buf[3] = th_reg_low_val;
	buf[4] = th_reg_high_val;
	buf[5] = th_reg_low_val;

	return regmap_bulk_write(st->regmap, th_reg_high_addr,
				 buf, ARRAY_SIZE(buf));
}

static int adxl372_set_activity_time_ms(struct adxl372_state *st,
					unsigned int act_time_ms)
{
	unsigned int reg_val, scale_factor;
	int ret;

	/*
	 * 3.3 ms per code is the scale factor of the TIME_ACT register for
	 * ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below.
	 */
	if (st->odr == ADXL372_ODR_6400HZ)
		scale_factor = 3300;
	else
		scale_factor = 6600;

	reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor);

	/* TIME_ACT register is 8 bits wide */
	if (reg_val > 0xFF)
		reg_val = 0xFF;

	ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val);
	if (ret < 0)
		return ret;

	st->act_time_ms = act_time_ms;

	return ret;
}

static int adxl372_set_inactivity_time_ms(struct adxl372_state *st,
					  unsigned int inact_time_ms)
{
	unsigned int reg_val_h, reg_val_l, res, scale_factor;
	int ret;

	/*
	 * 13 ms per code is the scale factor of the TIME_INACT register for
	 * ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below.
	 */
	if (st->odr == ADXL372_ODR_6400HZ)
		scale_factor = 13;
	else
		scale_factor = 26;

	res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor);
	reg_val_h = (res >> 8) & 0xFF;
	reg_val_l = res & 0xFF;

	ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h);
	if (ret < 0)
		return ret;

	ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l);
	if (ret < 0)
		return ret;

	st->inact_time_ms = inact_time_ms;

	return ret;
}

static int adxl372_set_interrupts(struct adxl372_state *st,
				  unsigned long int1_bitmask,
				  unsigned long int2_bitmask)
{
	int ret;

	ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask);
	if (ret < 0)
		return ret;

	return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask);
}

static int adxl372_configure_fifo(struct adxl372_state *st)
{
	unsigned int fifo_samples, fifo_ctl;
	int ret;

	/* FIFO must be configured while in standby mode */
	ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
	if (ret < 0)
		return ret;

	/*
	 * watermark stores the number of sets; we need to write the FIFO
	 * registers with the number of samples
	 */
	fifo_samples = (st->watermark * st->fifo_set_size);
	fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) |
		   ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) |
		   ADXL372_FIFO_CTL_SAMPLES_MODE(fifo_samples);

	ret = regmap_write(st->regmap,
			   ADXL372_FIFO_SAMPLES, fifo_samples & 0xFF);
	if (ret < 0)
		return ret;

	ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl);
	if (ret < 0)
		return ret;

	return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
}

static int adxl372_get_status(struct adxl372_state *st,
			      u8 *status1, u8 *status2,
			      u16 *fifo_entries)
{
	__be32 buf;
	u32 val;
	int ret;

	/* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */
	ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1,
			       &buf, sizeof(buf));
	if (ret < 0)
		return ret;

	val = be32_to_cpu(buf);

	*status1 = (val >> 24) & 0x0F;
	*status2 = (val >> 16) & 0x0F;
	/*
	 * FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2
	 * contains the two most significant bits
	 */
	*fifo_entries = val & 0x3FF;

	return ret;
}

static void adxl372_arrange_axis_data(struct adxl372_state *st, __be16 *sample)
{
	__be16	axis_sample[3];
	int i = 0;

	memset(axis_sample, 0, 3 * sizeof(__be16));
	if (ADXL372_X_AXIS_EN(st->fifo_axis_mask))
		axis_sample[i++] = sample[0];
	if (ADXL372_Y_AXIS_EN(st->fifo_axis_mask))
		axis_sample[i++] = sample[1];
	if (ADXL372_Z_AXIS_EN(st->fifo_axis_mask))
		axis_sample[i++] = sample[2];

	memcpy(sample, axis_sample, 3 * sizeof(__be16));
}

static void adxl372_push_event(struct iio_dev *indio_dev, s64 timestamp, u8 status2)
{
	unsigned int ev_dir = IIO_EV_DIR_NONE;

	if (ADXL372_STATUS_2_ACT(status2))
		ev_dir = IIO_EV_DIR_RISING;

	if (ADXL372_STATUS_2_INACT(status2))
		ev_dir = IIO_EV_DIR_FALLING;

	if (ev_dir != IIO_EV_DIR_NONE)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z,
						  IIO_EV_TYPE_THRESH, ev_dir),
			       timestamp);
}

static irqreturn_t adxl372_trigger_handler(int irq, void  *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct adxl372_state *st = iio_priv(indio_dev);
	u8 status1, status2;
	u16 fifo_entries;
	int i, ret;

	ret = adxl372_get_status(st, &status1, &status2, &fifo_entries);
	if (ret < 0)
		goto err;

	adxl372_push_event(indio_dev, iio_get_time_ns(indio_dev), status2);

	if (st->fifo_mode != ADXL372_FIFO_BYPASSED &&
	    ADXL372_STATUS_1_FIFO_FULL(status1)) {
		/*
		 * When reading data from multiple axes from the FIFO,
		 * to ensure that data is not overwritten and stored out
		 * of order at least one sample set must be left in the
		 * FIFO after every read.
		 */
		fifo_entries -= st->fifo_set_size;

		/* Read data from the FIFO */
		ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA,
					st->fifo_buf,
					fifo_entries * sizeof(u16));
		if (ret < 0)
			goto err;

		/* Each sample is 2 bytes */
		for (i = 0; i < fifo_entries; i += st->fifo_set_size) {
			/* filter peak detection data */
			if (st->peak_fifo_mode_en)
				adxl372_arrange_axis_data(st, &st->fifo_buf[i]);
			iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
		}
	}
err:
	iio_trigger_notify_done(indio_dev->trig);
	return IRQ_HANDLED;
}

static int adxl372_setup(struct adxl372_state *st)
{
	unsigned int regval;
	int ret;

	ret = regmap_read(st->regmap, ADXL372_DEVID, &regval);
	if (ret < 0)
		return ret;

	if (regval != ADXL372_DEVID_VAL) {
		dev_err(st->dev, "Invalid chip id %x\n", regval);
		return -ENODEV;
	}

	/*
	 * Perform a software reset to make sure the device is in a consistent
	 * state after start up.
	 */
	ret = regmap_write(st->regmap, ADXL372_RESET, ADXL372_RESET_CODE);
	if (ret < 0)
		return ret;

	ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
	if (ret < 0)
		return ret;

	/* Set threshold for activity detection to 1g */
	ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY,
					     true, true, 1000);
	if (ret < 0)
		return ret;

	/* Set threshold for inactivity detection to 100mg */
	ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY,
					     true, true, 100);
	if (ret < 0)
		return ret;

	/* Set activity processing in Looped mode */
	ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED);
	if (ret < 0)
		return ret;

	ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ);
	if (ret < 0)
		return ret;

	ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ);
	if (ret < 0)
		return ret;

	/* Set activity timer to 1ms */
	ret = adxl372_set_activity_time_ms(st, 1);
	if (ret < 0)
		return ret;

	/* Set inactivity timer to 10s */
	ret = adxl372_set_inactivity_time_ms(st, 10000);
	if (ret < 0)
		return ret;

	/* Set the mode of operation to full bandwidth measurement mode */
	return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
}

static int adxl372_reg_access(struct iio_dev *indio_dev,
			      unsigned int reg,
			      unsigned int writeval,
			      unsigned int *readval)
{
	struct adxl372_state *st = iio_priv(indio_dev);

	if (readval)
		return regmap_read(st->regmap, reg, readval);
	else
		return regmap_write(st->regmap, reg, writeval);
}

static int adxl372_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int *val, int *val2, long info)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	int ret;

	switch (info) {
	case IIO_CHAN_INFO_RAW:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;

		ret = adxl372_read_axis(st, chan->address);
		iio_device_release_direct_mode(indio_dev);
		if (ret < 0)
			return ret;

		*val = sign_extend32(ret >> chan->scan_type.shift,
				     chan->scan_type.realbits - 1);
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		*val2 = ADXL372_USCALE;
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_SAMP_FREQ:
		*val = adxl372_samp_freq_tbl[st->odr];
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		*val = adxl372_bw_freq_tbl[st->bw];
		return IIO_VAL_INT;
	}

	return -EINVAL;
}

static int adxl372_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long info)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	int odr_index, bw_index, ret;

	switch (info) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl,
					ARRAY_SIZE(adxl372_samp_freq_tbl),
					val);
		ret = adxl372_set_odr(st, odr_index);
		if (ret < 0)
			return ret;
		/*
		 * The timer period depends on the ODR selected.
		 * At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms
		 */
		ret = adxl372_set_activity_time_ms(st, st->act_time_ms);
		if (ret < 0)
			return ret;
		/*
		 * The timer period depends on the ODR selected.
		 * At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms
		 */
		ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms);
		if (ret < 0)
			return ret;
		/*
		 * The maximum bandwidth is constrained to at most half of
		 * the ODR to ensure that the Nyquist criteria is not violated
		 */
		if (st->bw > odr_index)
			ret = adxl372_set_bandwidth(st, odr_index);

		return ret;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl,
					ARRAY_SIZE(adxl372_bw_freq_tbl),
					val);
		return adxl372_set_bandwidth(st, bw_index);
	default:
		return -EINVAL;
	}
}

static int adxl372_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
				    enum iio_event_type type, enum iio_event_direction dir,
				    enum iio_event_info info, int *val, int *val2)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	unsigned int addr;
	u16 raw_value;
	int ret;

	switch (info) {
	case IIO_EV_INFO_VALUE:
		switch (dir) {
		case IIO_EV_DIR_RISING:
			addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
			ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
			if (ret < 0)
				return ret;
			*val = raw_value * ADXL372_USCALE;
			*val2 = 1000000;
			return IIO_VAL_FRACTIONAL;
		case IIO_EV_DIR_FALLING:
			addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
			ret =  adxl372_read_threshold_value(indio_dev, addr, &raw_value);
			if (ret < 0)
				return ret;
			*val = raw_value * ADXL372_USCALE;
			*val2 = 1000000;
			return IIO_VAL_FRACTIONAL;
		default:
			return -EINVAL;
		}
	case IIO_EV_INFO_PERIOD:
		switch (dir) {
		case IIO_EV_DIR_RISING:
			*val = st->act_time_ms;
			*val2 = 1000;
			return IIO_VAL_FRACTIONAL;
		case IIO_EV_DIR_FALLING:
			*val = st->inact_time_ms;
			*val2 = 1000;
			return IIO_VAL_FRACTIONAL;
		default:
			return -EINVAL;
		}
	default:
		return -EINVAL;
	}
}

static int adxl372_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
				     enum iio_event_type type, enum iio_event_direction dir,
				     enum iio_event_info info, int val, int val2)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	unsigned int val_ms;
	unsigned int addr;
	u16 raw_val;

	switch (info) {
	case IIO_EV_INFO_VALUE:
		raw_val = DIV_ROUND_UP(val * 1000000, ADXL372_USCALE);
		switch (dir) {
		case IIO_EV_DIR_RISING:
			addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
			return adxl372_write_threshold_value(indio_dev, addr, raw_val);
		case IIO_EV_DIR_FALLING:
			addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
			return adxl372_write_threshold_value(indio_dev, addr, raw_val);
		default:
			return -EINVAL;
		}
	case IIO_EV_INFO_PERIOD:
		val_ms = val * 1000 + DIV_ROUND_UP(val2, 1000);
		switch (dir) {
		case IIO_EV_DIR_RISING:
			return adxl372_set_activity_time_ms(st, val_ms);
		case IIO_EV_DIR_FALLING:
			return adxl372_set_inactivity_time_ms(st, val_ms);
		default:
			return -EINVAL;
		}
	default:
		return -EINVAL;
	}
}

static int adxl372_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
				     enum iio_event_type type, enum iio_event_direction dir)
{
	struct adxl372_state *st = iio_priv(indio_dev);

	switch (dir) {
	case IIO_EV_DIR_RISING:
		return FIELD_GET(ADXL372_INT1_MAP_ACT_MSK, st->int1_bitmask);
	case IIO_EV_DIR_FALLING:
		return FIELD_GET(ADXL372_INT1_MAP_INACT_MSK, st->int1_bitmask);
	default:
		return -EINVAL;
	}
}

static int adxl372_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
				      enum iio_event_type type, enum iio_event_direction dir,
				      int state)
{
	struct adxl372_state *st = iio_priv(indio_dev);

	switch (dir) {
	case IIO_EV_DIR_RISING:
		set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_ACT_MSK,
			      ADXL372_INT1_MAP_ACT_MODE(state));
		break;
	case IIO_EV_DIR_FALLING:
		set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_INACT_MSK,
			      ADXL372_INT1_MAP_INACT_MODE(state));
		break;
	default:
		return -EINVAL;
	}

	return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}

static ssize_t adxl372_show_filter_freq_avail(struct device *dev,
					      struct device_attribute *attr,
					      char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct adxl372_state *st = iio_priv(indio_dev);
	int i;
	size_t len = 0;

	for (i = 0; i <= st->odr; i++)
		len += scnprintf(buf + len, PAGE_SIZE - len,
				 "%d ", adxl372_bw_freq_tbl[i]);

	buf[len - 1] = '\n';

	return len;
}

static ssize_t adxl372_get_fifo_enabled(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct adxl372_state *st = iio_priv(indio_dev);

	return sprintf(buf, "%d\n", st->fifo_mode);
}

static ssize_t adxl372_get_fifo_watermark(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct adxl372_state *st = iio_priv(indio_dev);

	return sprintf(buf, "%d\n", st->watermark);
}

static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(ADXL372_FIFO_SIZE));
static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
		       adxl372_get_fifo_watermark, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
		       adxl372_get_fifo_enabled, NULL, 0);

static const struct attribute *adxl372_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
	struct adxl372_state *st  = iio_priv(indio_dev);

	if (val > ADXL372_FIFO_SIZE)
		val = ADXL372_FIFO_SIZE;

	st->watermark = val;

	return 0;
}

static int adxl372_buffer_postenable(struct iio_dev *indio_dev)
{
	struct adxl372_state *st = iio_priv(indio_dev);
	unsigned int mask;
	int i, ret;

	st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
	ret = adxl372_set_interrupts(st, st->int1_bitmask, 0);
	if (ret < 0)
		return ret;

	mask = *indio_dev->active_scan_mask;

	for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) {
		if (mask == adxl372_axis_lookup_table[i].bits)
			break;
	}

	if (i == ARRAY_SIZE(adxl372_axis_lookup_table))
		return -EINVAL;

	st->fifo_format = adxl372_axis_lookup_table[i].fifo_format;
	st->fifo_axis_mask = adxl372_axis_lookup_table[i].bits;
	st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask,
					  indio_dev->masklength);

	/* Configure the FIFO to store sets of impact event peak. */
	if (st->peak_fifo_mode_en) {
		st->fifo_set_size = 3;
		st->fifo_format = ADXL372_XYZ_PEAK_FIFO;
	}

	/*
	 * The 512 FIFO samples can be allotted in several ways, such as:
	 * 170 sample sets of concurrent 3-axis data
	 * 256 sample sets of concurrent 2-axis data (user selectable)
	 * 512 sample sets of single-axis data
	 * 170 sets of impact event peak (x, y, z)
	 */
	if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE)
		st->watermark = (ADXL372_FIFO_SIZE  / st->fifo_set_size);

	st->fifo_mode = ADXL372_FIFO_STREAMED;

	ret = adxl372_configure_fifo(st);
	if (ret < 0) {
		st->fifo_mode = ADXL372_FIFO_BYPASSED;
		st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
		adxl372_set_interrupts(st, st->int1_bitmask, 0);
		return ret;
	}

	return 0;
}

static int adxl372_buffer_predisable(struct iio_dev *indio_dev)
{
	struct adxl372_state *st = iio_priv(indio_dev);

	st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
	adxl372_set_interrupts(st, st->int1_bitmask, 0);
	st->fifo_mode = ADXL372_FIFO_BYPASSED;
	adxl372_configure_fifo(st);

	return 0;
}

static const struct iio_buffer_setup_ops adxl372_buffer_ops = {
	.postenable = adxl372_buffer_postenable,
	.predisable = adxl372_buffer_predisable,
};

static int adxl372_dready_trig_set_state(struct iio_trigger *trig,
					 bool state)
{
	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
	struct adxl372_state *st = iio_priv(indio_dev);

	if (state)
		st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;

	return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}

static int adxl372_validate_trigger(struct iio_dev *indio_dev,
				    struct iio_trigger *trig)
{
	struct adxl372_state *st = iio_priv(indio_dev);

	if (st->dready_trig != trig && st->peak_datardy_trig != trig)
		return -EINVAL;

	return 0;
}

static const struct iio_trigger_ops adxl372_trigger_ops = {
	.validate_device = &iio_trigger_validate_own_device,
	.set_trigger_state = adxl372_dready_trig_set_state,
};

static int adxl372_peak_dready_trig_set_state(struct iio_trigger *trig,
					      bool state)
{
	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
	struct adxl372_state *st = iio_priv(indio_dev);

	if (state)
		st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;

	st->peak_fifo_mode_en = state;

	return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}

static const struct iio_trigger_ops adxl372_peak_data_trigger_ops = {
	.validate_device = &iio_trigger_validate_own_device,
	.set_trigger_state = adxl372_peak_dready_trig_set_state,
};

static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400");
static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
		       0444, adxl372_show_filter_freq_avail, NULL, 0);

static struct attribute *adxl372_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group adxl372_attrs_group = {
	.attrs = adxl372_attributes,
};

static const struct iio_info adxl372_info = {
	.validate_trigger = &adxl372_validate_trigger,
	.attrs = &adxl372_attrs_group,
	.read_raw = adxl372_read_raw,
	.write_raw = adxl372_write_raw,
	.read_event_config = adxl372_read_event_config,
	.write_event_config = adxl372_write_event_config,
	.read_event_value = adxl372_read_event_value,
	.write_event_value = adxl372_write_event_value,
	.debugfs_reg_access = &adxl372_reg_access,
	.hwfifo_set_watermark = adxl372_set_watermark,
};

bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg)
{
	return (reg == ADXL372_FIFO_DATA);
}
EXPORT_SYMBOL_NS_GPL(adxl372_readable_noinc_reg, IIO_ADXL372);

int adxl372_probe(struct device *dev, struct regmap *regmap,
		  int irq, const char *name)
{
	struct iio_dev *indio_dev;
	struct adxl372_state *st;
	int ret;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	dev_set_drvdata(dev, indio_dev);

	st->dev = dev;
	st->regmap = regmap;
	st->irq = irq;

	mutex_init(&st->threshold_m);

	indio_dev->channels = adxl372_channels;
	indio_dev->num_channels = ARRAY_SIZE(adxl372_channels);
	indio_dev->available_scan_masks = adxl372_channel_masks;
	indio_dev->name = name;
	indio_dev->info = &adxl372_info;
	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;

	ret = adxl372_setup(st);
	if (ret < 0) {
		dev_err(dev, "ADXL372 setup failed\n");
		return ret;
	}

	ret = devm_iio_triggered_buffer_setup_ext(dev,
						  indio_dev, NULL,
						  adxl372_trigger_handler,
						  IIO_BUFFER_DIRECTION_IN,
						  &adxl372_buffer_ops,
						  adxl372_fifo_attributes);
	if (ret < 0)
		return ret;

	if (st->irq) {
		st->dready_trig = devm_iio_trigger_alloc(dev,
							 "%s-dev%d",
							 indio_dev->name,
							 iio_device_id(indio_dev));
		if (st->dready_trig == NULL)
			return -ENOMEM;

		st->peak_datardy_trig = devm_iio_trigger_alloc(dev,
							       "%s-dev%d-peak",
							       indio_dev->name,
							       iio_device_id(indio_dev));
		if (!st->peak_datardy_trig)
			return -ENOMEM;

		st->dready_trig->ops = &adxl372_trigger_ops;
		st->peak_datardy_trig->ops = &adxl372_peak_data_trigger_ops;
		iio_trigger_set_drvdata(st->dready_trig, indio_dev);
		iio_trigger_set_drvdata(st->peak_datardy_trig, indio_dev);
		ret = devm_iio_trigger_register(dev, st->dready_trig);
		if (ret < 0)
			return ret;

		ret = devm_iio_trigger_register(dev, st->peak_datardy_trig);
		if (ret < 0)
			return ret;

		indio_dev->trig = iio_trigger_get(st->dready_trig);

		ret = devm_request_threaded_irq(dev, st->irq,
					iio_trigger_generic_data_rdy_poll,
					NULL,
					IRQF_TRIGGER_RISING | IRQF_ONESHOT,
					indio_dev->name, st->dready_trig);
		if (ret < 0)
			return ret;
	}

	return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_NS_GPL(adxl372_probe, IIO_ADXL372);

MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver");
MODULE_LICENSE("GPL");