Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 | // SPDX-License-Identifier: GPL-2.0-only /* * Partial Parity Log for closing the RAID5 write hole * Copyright (c) 2017, Intel Corporation. */ #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/crc32c.h> #include <linux/async_tx.h> #include <linux/raid/md_p.h> #include "md.h" #include "raid5.h" #include "raid5-log.h" /* * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for * partial parity data. The header contains an array of entries * (struct ppl_header_entry) which describe the logged write requests. * Partial parity for the entries comes after the header, written in the same * sequence as the entries: * * Header * entry0 * ... * entryN * PP data * PP for entry0 * ... * PP for entryN * * An entry describes one or more consecutive stripe_heads, up to a full * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the * number of stripe_heads in the entry and n is the number of modified data * disks. Every stripe_head in the entry must write to the same data disks. * An example of a valid case described by a single entry (writes to the first * stripe of a 4 disk array, 16k chunk size): * * sh->sector dd0 dd1 dd2 ppl * +-----+-----+-----+ * 0 | --- | --- | --- | +----+ * 8 | -W- | -W- | --- | | pp | data_sector = 8 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k * +-----+-----+-----+ +----+ * * data_sector is the first raid sector of the modified data, data_size is the * total size of modified data and pp_size is the size of partial parity for * this entry. Entries for full stripe writes contain no partial parity * (pp_size = 0), they only mark the stripes for which parity should be * recalculated after an unclean shutdown. Every entry holds a checksum of its * partial parity, the header also has a checksum of the header itself. * * A write request is always logged to the PPL instance stored on the parity * disk of the corresponding stripe. For each member disk there is one ppl_log * used to handle logging for this disk, independently from others. They are * grouped in child_logs array in struct ppl_conf, which is assigned to * r5conf->log_private. * * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head * can be appended to the last entry if it meets the conditions for a valid * entry described above, otherwise a new entry is added. Checksums of entries * are calculated incrementally as stripes containing partial parity are being * added. ppl_submit_iounit() calculates the checksum of the header and submits * a bio containing the header page and partial parity pages (sh->ppl_page) for * all stripes of the io_unit. When the PPL write completes, the stripes * associated with the io_unit are released and raid5d starts writing their data * and parity. When all stripes are written, the io_unit is freed and the next * can be submitted. * * An io_unit is used to gather stripes until it is submitted or becomes full * (if the maximum number of entries or size of PPL is reached). Another io_unit * can't be submitted until the previous has completed (PPL and stripe * data+parity is written). The log->io_list tracks all io_units of a log * (for a single member disk). New io_units are added to the end of the list * and the first io_unit is submitted, if it is not submitted already. * The current io_unit accepting new stripes is always at the end of the list. * * If write-back cache is enabled for any of the disks in the array, its data * must be flushed before next io_unit is submitted. */ #define PPL_SPACE_SIZE (128 * 1024) struct ppl_conf { struct mddev *mddev; /* array of child logs, one for each raid disk */ struct ppl_log *child_logs; int count; int block_size; /* the logical block size used for data_sector * in ppl_header_entry */ u32 signature; /* raid array identifier */ atomic64_t seq; /* current log write sequence number */ struct kmem_cache *io_kc; mempool_t io_pool; struct bio_set bs; struct bio_set flush_bs; /* used only for recovery */ int recovered_entries; int mismatch_count; /* stripes to retry if failed to allocate io_unit */ struct list_head no_mem_stripes; spinlock_t no_mem_stripes_lock; unsigned short write_hint; }; struct ppl_log { struct ppl_conf *ppl_conf; /* shared between all log instances */ struct md_rdev *rdev; /* array member disk associated with * this log instance */ struct mutex io_mutex; struct ppl_io_unit *current_io; /* current io_unit accepting new data * always at the end of io_list */ spinlock_t io_list_lock; struct list_head io_list; /* all io_units of this log */ sector_t next_io_sector; unsigned int entry_space; bool use_multippl; bool wb_cache_on; unsigned long disk_flush_bitmap; }; #define PPL_IO_INLINE_BVECS 32 struct ppl_io_unit { struct ppl_log *log; struct page *header_page; /* for ppl_header */ unsigned int entries_count; /* number of entries in ppl_header */ unsigned int pp_size; /* total size current of partial parity */ u64 seq; /* sequence number of this log write */ struct list_head log_sibling; /* log->io_list */ struct list_head stripe_list; /* stripes added to the io_unit */ atomic_t pending_stripes; /* how many stripes not written to raid */ atomic_t pending_flushes; /* how many disk flushes are in progress */ bool submitted; /* true if write to log started */ /* inline bio and its biovec for submitting the iounit */ struct bio bio; struct bio_vec biovec[PPL_IO_INLINE_BVECS]; }; struct dma_async_tx_descriptor * ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, struct dma_async_tx_descriptor *tx) { int disks = sh->disks; struct page **srcs = percpu->scribble; int count = 0, pd_idx = sh->pd_idx, i; struct async_submit_ctl submit; pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); /* * Partial parity is the XOR of stripe data chunks that are not changed * during the write request. Depending on available data * (read-modify-write vs. reconstruct-write case) we calculate it * differently. */ if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { /* * rmw: xor old data and parity from updated disks * This is calculated earlier by ops_run_prexor5() so just copy * the parity dev page. */ srcs[count++] = sh->dev[pd_idx].page; } else if (sh->reconstruct_state == reconstruct_state_drain_run) { /* rcw: xor data from all not updated disks */ for (i = disks; i--;) { struct r5dev *dev = &sh->dev[i]; if (test_bit(R5_UPTODATE, &dev->flags)) srcs[count++] = dev->page; } } else { return tx; } init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, NULL, sh, (void *) (srcs + sh->disks + 2)); if (count == 1) tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, &submit); else tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, &submit); return tx; } static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) { struct kmem_cache *kc = pool_data; struct ppl_io_unit *io; io = kmem_cache_alloc(kc, gfp_mask); if (!io) return NULL; io->header_page = alloc_page(gfp_mask); if (!io->header_page) { kmem_cache_free(kc, io); return NULL; } return io; } static void ppl_io_pool_free(void *element, void *pool_data) { struct kmem_cache *kc = pool_data; struct ppl_io_unit *io = element; __free_page(io->header_page); kmem_cache_free(kc, io); } static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, struct stripe_head *sh) { struct ppl_conf *ppl_conf = log->ppl_conf; struct ppl_io_unit *io; struct ppl_header *pplhdr; struct page *header_page; io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT); if (!io) return NULL; header_page = io->header_page; memset(io, 0, sizeof(*io)); io->header_page = header_page; io->log = log; INIT_LIST_HEAD(&io->log_sibling); INIT_LIST_HEAD(&io->stripe_list); atomic_set(&io->pending_stripes, 0); atomic_set(&io->pending_flushes, 0); bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS, REQ_OP_WRITE | REQ_FUA); pplhdr = page_address(io->header_page); clear_page(pplhdr); memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); pplhdr->signature = cpu_to_le32(ppl_conf->signature); io->seq = atomic64_add_return(1, &ppl_conf->seq); pplhdr->generation = cpu_to_le64(io->seq); return io; } static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) { struct ppl_io_unit *io = log->current_io; struct ppl_header_entry *e = NULL; struct ppl_header *pplhdr; int i; sector_t data_sector = 0; int data_disks = 0; struct r5conf *conf = sh->raid_conf; pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); /* check if current io_unit is full */ if (io && (io->pp_size == log->entry_space || io->entries_count == PPL_HDR_MAX_ENTRIES)) { pr_debug("%s: add io_unit blocked by seq: %llu\n", __func__, io->seq); io = NULL; } /* add a new unit if there is none or the current is full */ if (!io) { io = ppl_new_iounit(log, sh); if (!io) return -ENOMEM; spin_lock_irq(&log->io_list_lock); list_add_tail(&io->log_sibling, &log->io_list); spin_unlock_irq(&log->io_list_lock); log->current_io = io; } for (i = 0; i < sh->disks; i++) { struct r5dev *dev = &sh->dev[i]; if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { if (!data_disks || dev->sector < data_sector) data_sector = dev->sector; data_disks++; } } BUG_ON(!data_disks); pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, io->seq, (unsigned long long)data_sector, data_disks); pplhdr = page_address(io->header_page); if (io->entries_count > 0) { struct ppl_header_entry *last = &pplhdr->entries[io->entries_count - 1]; struct stripe_head *sh_last = list_last_entry( &io->stripe_list, struct stripe_head, log_list); u64 data_sector_last = le64_to_cpu(last->data_sector); u32 data_size_last = le32_to_cpu(last->data_size); /* * Check if we can append the stripe to the last entry. It must * be just after the last logged stripe and write to the same * disks. Use bit shift and logarithm to avoid 64-bit division. */ if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) && (data_sector >> ilog2(conf->chunk_sectors) == data_sector_last >> ilog2(conf->chunk_sectors)) && ((data_sector - data_sector_last) * data_disks == data_size_last >> 9)) e = last; } if (!e) { e = &pplhdr->entries[io->entries_count++]; e->data_sector = cpu_to_le64(data_sector); e->parity_disk = cpu_to_le32(sh->pd_idx); e->checksum = cpu_to_le32(~0); } le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); /* don't write any PP if full stripe write */ if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { le32_add_cpu(&e->pp_size, PAGE_SIZE); io->pp_size += PAGE_SIZE; e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), page_address(sh->ppl_page), PAGE_SIZE)); } list_add_tail(&sh->log_list, &io->stripe_list); atomic_inc(&io->pending_stripes); sh->ppl_io = io; return 0; } int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) { struct ppl_conf *ppl_conf = conf->log_private; struct ppl_io_unit *io = sh->ppl_io; struct ppl_log *log; if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { clear_bit(STRIPE_LOG_TRAPPED, &sh->state); return -EAGAIN; } log = &ppl_conf->child_logs[sh->pd_idx]; mutex_lock(&log->io_mutex); if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { mutex_unlock(&log->io_mutex); return -EAGAIN; } set_bit(STRIPE_LOG_TRAPPED, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); atomic_inc(&sh->count); if (ppl_log_stripe(log, sh)) { spin_lock_irq(&ppl_conf->no_mem_stripes_lock); list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); } mutex_unlock(&log->io_mutex); return 0; } static void ppl_log_endio(struct bio *bio) { struct ppl_io_unit *io = bio->bi_private; struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct stripe_head *sh, *next; pr_debug("%s: seq: %llu\n", __func__, io->seq); if (bio->bi_status) md_error(ppl_conf->mddev, log->rdev); list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { list_del_init(&sh->log_list); set_bit(STRIPE_HANDLE, &sh->state); raid5_release_stripe(sh); } } static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) { pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n", __func__, io->seq, bio->bi_iter.bi_size, (unsigned long long)bio->bi_iter.bi_sector, bio->bi_bdev); submit_bio(bio); } static void ppl_submit_iounit(struct ppl_io_unit *io) { struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct ppl_header *pplhdr = page_address(io->header_page); struct bio *bio = &io->bio; struct stripe_head *sh; int i; bio->bi_private = io; if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { ppl_log_endio(bio); return; } for (i = 0; i < io->entries_count; i++) { struct ppl_header_entry *e = &pplhdr->entries[i]; pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", __func__, io->seq, i, le64_to_cpu(e->data_sector), le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> ilog2(ppl_conf->block_size >> 9)); e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); } pplhdr->entries_count = cpu_to_le32(io->entries_count); pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); /* Rewind the buffer if current PPL is larger then remaining space */ if (log->use_multippl && log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector < (PPL_HEADER_SIZE + io->pp_size) >> 9) log->next_io_sector = log->rdev->ppl.sector; bio->bi_end_io = ppl_log_endio; bio->bi_iter.bi_sector = log->next_io_sector; bio_add_page(bio, io->header_page, PAGE_SIZE, 0); pr_debug("%s: log->current_io_sector: %llu\n", __func__, (unsigned long long)log->next_io_sector); if (log->use_multippl) log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9; WARN_ON(log->disk_flush_bitmap != 0); list_for_each_entry(sh, &io->stripe_list, log_list) { for (i = 0; i < sh->disks; i++) { struct r5dev *dev = &sh->dev[i]; if ((ppl_conf->child_logs[i].wb_cache_on) && (test_bit(R5_Wantwrite, &dev->flags))) { set_bit(i, &log->disk_flush_bitmap); } } /* entries for full stripe writes have no partial parity */ if (test_bit(STRIPE_FULL_WRITE, &sh->state)) continue; if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { struct bio *prev = bio; bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOIO, &ppl_conf->bs); bio->bi_iter.bi_sector = bio_end_sector(prev); bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); bio_chain(bio, prev); ppl_submit_iounit_bio(io, prev); } } ppl_submit_iounit_bio(io, bio); } static void ppl_submit_current_io(struct ppl_log *log) { struct ppl_io_unit *io; spin_lock_irq(&log->io_list_lock); io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, log_sibling); if (io && io->submitted) io = NULL; spin_unlock_irq(&log->io_list_lock); if (io) { io->submitted = true; if (io == log->current_io) log->current_io = NULL; ppl_submit_iounit(io); } } void ppl_write_stripe_run(struct r5conf *conf) { struct ppl_conf *ppl_conf = conf->log_private; struct ppl_log *log; int i; for (i = 0; i < ppl_conf->count; i++) { log = &ppl_conf->child_logs[i]; mutex_lock(&log->io_mutex); ppl_submit_current_io(log); mutex_unlock(&log->io_mutex); } } static void ppl_io_unit_finished(struct ppl_io_unit *io) { struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct r5conf *conf = ppl_conf->mddev->private; unsigned long flags; pr_debug("%s: seq: %llu\n", __func__, io->seq); local_irq_save(flags); spin_lock(&log->io_list_lock); list_del(&io->log_sibling); spin_unlock(&log->io_list_lock); mempool_free(io, &ppl_conf->io_pool); spin_lock(&ppl_conf->no_mem_stripes_lock); if (!list_empty(&ppl_conf->no_mem_stripes)) { struct stripe_head *sh; sh = list_first_entry(&ppl_conf->no_mem_stripes, struct stripe_head, log_list); list_del_init(&sh->log_list); set_bit(STRIPE_HANDLE, &sh->state); raid5_release_stripe(sh); } spin_unlock(&ppl_conf->no_mem_stripes_lock); local_irq_restore(flags); wake_up(&conf->wait_for_quiescent); } static void ppl_flush_endio(struct bio *bio) { struct ppl_io_unit *io = bio->bi_private; struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct r5conf *conf = ppl_conf->mddev->private; pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev); if (bio->bi_status) { struct md_rdev *rdev; rcu_read_lock(); rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio)); if (rdev) md_error(rdev->mddev, rdev); rcu_read_unlock(); } bio_put(bio); if (atomic_dec_and_test(&io->pending_flushes)) { ppl_io_unit_finished(io); md_wakeup_thread(conf->mddev->thread); } } static void ppl_do_flush(struct ppl_io_unit *io) { struct ppl_log *log = io->log; struct ppl_conf *ppl_conf = log->ppl_conf; struct r5conf *conf = ppl_conf->mddev->private; int raid_disks = conf->raid_disks; int flushed_disks = 0; int i; atomic_set(&io->pending_flushes, raid_disks); for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) { struct md_rdev *rdev; struct block_device *bdev = NULL; rcu_read_lock(); rdev = rcu_dereference(conf->disks[i].rdev); if (rdev && !test_bit(Faulty, &rdev->flags)) bdev = rdev->bdev; rcu_read_unlock(); if (bdev) { struct bio *bio; bio = bio_alloc_bioset(bdev, 0, REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO, &ppl_conf->flush_bs); bio->bi_private = io; bio->bi_end_io = ppl_flush_endio; pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev); submit_bio(bio); flushed_disks++; } } log->disk_flush_bitmap = 0; for (i = flushed_disks ; i < raid_disks; i++) { if (atomic_dec_and_test(&io->pending_flushes)) ppl_io_unit_finished(io); } } static inline bool ppl_no_io_unit_submitted(struct r5conf *conf, struct ppl_log *log) { struct ppl_io_unit *io; io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, log_sibling); return !io || !io->submitted; } void ppl_quiesce(struct r5conf *conf, int quiesce) { struct ppl_conf *ppl_conf = conf->log_private; int i; if (quiesce) { for (i = 0; i < ppl_conf->count; i++) { struct ppl_log *log = &ppl_conf->child_logs[i]; spin_lock_irq(&log->io_list_lock); wait_event_lock_irq(conf->wait_for_quiescent, ppl_no_io_unit_submitted(conf, log), log->io_list_lock); spin_unlock_irq(&log->io_list_lock); } } } int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio) { if (bio->bi_iter.bi_size == 0) { bio_endio(bio); return 0; } bio->bi_opf &= ~REQ_PREFLUSH; return -EAGAIN; } void ppl_stripe_write_finished(struct stripe_head *sh) { struct ppl_io_unit *io; io = sh->ppl_io; sh->ppl_io = NULL; if (io && atomic_dec_and_test(&io->pending_stripes)) { if (io->log->disk_flush_bitmap) ppl_do_flush(io); else ppl_io_unit_finished(io); } } static void ppl_xor(int size, struct page *page1, struct page *page2) { struct async_submit_ctl submit; struct dma_async_tx_descriptor *tx; struct page *xor_srcs[] = { page1, page2 }; init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, NULL, NULL, NULL, NULL); tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); async_tx_quiesce(&tx); } /* * PPL recovery strategy: xor partial parity and data from all modified data * disks within a stripe and write the result as the new stripe parity. If all * stripe data disks are modified (full stripe write), no partial parity is * available, so just xor the data disks. * * Recovery of a PPL entry shall occur only if all modified data disks are * available and read from all of them succeeds. * * A PPL entry applies to a stripe, partial parity size for an entry is at most * the size of the chunk. Examples of possible cases for a single entry: * * case 0: single data disk write: * data0 data1 data2 ppl parity * +--------+--------+--------+ +--------------------+ * | ------ | ------ | ------ | +----+ | (no change) | * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | * | ------ | ------ | ------ | +----+ | (no change) | * +--------+--------+--------+ +--------------------+ * pp_size = data_size * * case 1: more than one data disk write: * data0 data1 data2 ppl parity * +--------+--------+--------+ +--------------------+ * | ------ | ------ | ------ | +----+ | (no change) | * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | * | ------ | ------ | ------ | +----+ | (no change) | * +--------+--------+--------+ +--------------------+ * pp_size = data_size / modified_data_disks * * case 2: write to all data disks (also full stripe write): * data0 data1 data2 parity * +--------+--------+--------+ +--------------------+ * | ------ | ------ | ------ | | (no change) | * | -data- | -data- | -data- | --------> | xor all data | * | ------ | ------ | ------ | --------> | (no change) | * | ------ | ------ | ------ | | (no change) | * +--------+--------+--------+ +--------------------+ * pp_size = 0 * * The following cases are possible only in other implementations. The recovery * code can handle them, but they are not generated at runtime because they can * be reduced to cases 0, 1 and 2: * * case 3: * data0 data1 data2 ppl parity * +--------+--------+--------+ +----+ +--------------------+ * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | * | -data- | -data- | -data- | | -- | -> | xor all data | * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | * +--------+--------+--------+ +----+ +--------------------+ * pp_size = chunk_size * * case 4: * data0 data1 data2 ppl parity * +--------+--------+--------+ +----+ +--------------------+ * | ------ | -data- | ------ | | pp | | data1 ^ pp | * | ------ | ------ | ------ | | -- | -> | (no change) | * | ------ | ------ | ------ | | -- | -> | (no change) | * | -data- | ------ | ------ | | pp | | data0 ^ pp | * +--------+--------+--------+ +----+ +--------------------+ * pp_size = chunk_size */ static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, sector_t ppl_sector) { struct ppl_conf *ppl_conf = log->ppl_conf; struct mddev *mddev = ppl_conf->mddev; struct r5conf *conf = mddev->private; int block_size = ppl_conf->block_size; struct page *page1; struct page *page2; sector_t r_sector_first; sector_t r_sector_last; int strip_sectors; int data_disks; int i; int ret = 0; char b[BDEVNAME_SIZE]; unsigned int pp_size = le32_to_cpu(e->pp_size); unsigned int data_size = le32_to_cpu(e->data_size); page1 = alloc_page(GFP_KERNEL); page2 = alloc_page(GFP_KERNEL); if (!page1 || !page2) { ret = -ENOMEM; goto out; } r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); if ((pp_size >> 9) < conf->chunk_sectors) { if (pp_size > 0) { data_disks = data_size / pp_size; strip_sectors = pp_size >> 9; } else { data_disks = conf->raid_disks - conf->max_degraded; strip_sectors = (data_size >> 9) / data_disks; } r_sector_last = r_sector_first + (data_disks - 1) * conf->chunk_sectors + strip_sectors; } else { data_disks = conf->raid_disks - conf->max_degraded; strip_sectors = conf->chunk_sectors; r_sector_last = r_sector_first + (data_size >> 9); } pr_debug("%s: array sector first: %llu last: %llu\n", __func__, (unsigned long long)r_sector_first, (unsigned long long)r_sector_last); /* if start and end is 4k aligned, use a 4k block */ if (block_size == 512 && (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 && (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0) block_size = RAID5_STRIPE_SIZE(conf); /* iterate through blocks in strip */ for (i = 0; i < strip_sectors; i += (block_size >> 9)) { bool update_parity = false; sector_t parity_sector; struct md_rdev *parity_rdev; struct stripe_head sh; int disk; int indent = 0; pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); indent += 2; memset(page_address(page1), 0, PAGE_SIZE); /* iterate through data member disks */ for (disk = 0; disk < data_disks; disk++) { int dd_idx; struct md_rdev *rdev; sector_t sector; sector_t r_sector = r_sector_first + i + (disk * conf->chunk_sectors); pr_debug("%s:%*s data member disk %d start\n", __func__, indent, "", disk); indent += 2; if (r_sector >= r_sector_last) { pr_debug("%s:%*s array sector %llu doesn't need parity update\n", __func__, indent, "", (unsigned long long)r_sector); indent -= 2; continue; } update_parity = true; /* map raid sector to member disk */ sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, NULL); pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", __func__, indent, "", (unsigned long long)r_sector, dd_idx, (unsigned long long)sector); rdev = conf->disks[dd_idx].rdev; if (!rdev || (!test_bit(In_sync, &rdev->flags) && sector >= rdev->recovery_offset)) { pr_debug("%s:%*s data member disk %d missing\n", __func__, indent, "", dd_idx); update_parity = false; break; } pr_debug("%s:%*s reading data member disk %s sector %llu\n", __func__, indent, "", bdevname(rdev->bdev, b), (unsigned long long)sector); if (!sync_page_io(rdev, sector, block_size, page2, REQ_OP_READ, 0, false)) { md_error(mddev, rdev); pr_debug("%s:%*s read failed!\n", __func__, indent, ""); ret = -EIO; goto out; } ppl_xor(block_size, page1, page2); indent -= 2; } if (!update_parity) continue; if (pp_size > 0) { pr_debug("%s:%*s reading pp disk sector %llu\n", __func__, indent, "", (unsigned long long)(ppl_sector + i)); if (!sync_page_io(log->rdev, ppl_sector - log->rdev->data_offset + i, block_size, page2, REQ_OP_READ, 0, false)) { pr_debug("%s:%*s read failed!\n", __func__, indent, ""); md_error(mddev, log->rdev); ret = -EIO; goto out; } ppl_xor(block_size, page1, page2); } /* map raid sector to parity disk */ parity_sector = raid5_compute_sector(conf, r_sector_first + i, 0, &disk, &sh); BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); parity_rdev = conf->disks[sh.pd_idx].rdev; BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); pr_debug("%s:%*s write parity at sector %llu, disk %s\n", __func__, indent, "", (unsigned long long)parity_sector, bdevname(parity_rdev->bdev, b)); if (!sync_page_io(parity_rdev, parity_sector, block_size, page1, REQ_OP_WRITE, 0, false)) { pr_debug("%s:%*s parity write error!\n", __func__, indent, ""); md_error(mddev, parity_rdev); ret = -EIO; goto out; } } out: if (page1) __free_page(page1); if (page2) __free_page(page2); return ret; } static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr, sector_t offset) { struct ppl_conf *ppl_conf = log->ppl_conf; struct md_rdev *rdev = log->rdev; struct mddev *mddev = rdev->mddev; sector_t ppl_sector = rdev->ppl.sector + offset + (PPL_HEADER_SIZE >> 9); struct page *page; int i; int ret = 0; page = alloc_page(GFP_KERNEL); if (!page) return -ENOMEM; /* iterate through all PPL entries saved */ for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { struct ppl_header_entry *e = &pplhdr->entries[i]; u32 pp_size = le32_to_cpu(e->pp_size); sector_t sector = ppl_sector; int ppl_entry_sectors = pp_size >> 9; u32 crc, crc_stored; pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", __func__, rdev->raid_disk, i, (unsigned long long)ppl_sector, pp_size); crc = ~0; crc_stored = le32_to_cpu(e->checksum); /* read parial parity for this entry and calculate its checksum */ while (pp_size) { int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; if (!sync_page_io(rdev, sector - rdev->data_offset, s, page, REQ_OP_READ, 0, false)) { md_error(mddev, rdev); ret = -EIO; goto out; } crc = crc32c_le(crc, page_address(page), s); pp_size -= s; sector += s >> 9; } crc = ~crc; if (crc != crc_stored) { /* * Don't recover this entry if the checksum does not * match, but keep going and try to recover other * entries. */ pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", __func__, crc_stored, crc); ppl_conf->mismatch_count++; } else { ret = ppl_recover_entry(log, e, ppl_sector); if (ret) goto out; ppl_conf->recovered_entries++; } ppl_sector += ppl_entry_sectors; } /* flush the disk cache after recovery if necessary */ ret = blkdev_issue_flush(rdev->bdev); out: __free_page(page); return ret; } static int ppl_write_empty_header(struct ppl_log *log) { struct page *page; struct ppl_header *pplhdr; struct md_rdev *rdev = log->rdev; int ret = 0; pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, rdev->raid_disk, (unsigned long long)rdev->ppl.sector); page = alloc_page(GFP_NOIO | __GFP_ZERO); if (!page) return -ENOMEM; pplhdr = page_address(page); /* zero out PPL space to avoid collision with old PPLs */ blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector, log->rdev->ppl.size, GFP_NOIO, 0); memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC | REQ_FUA, 0, false)) { md_error(rdev->mddev, rdev); ret = -EIO; } __free_page(page); return ret; } static int ppl_load_distributed(struct ppl_log *log) { struct ppl_conf *ppl_conf = log->ppl_conf; struct md_rdev *rdev = log->rdev; struct mddev *mddev = rdev->mddev; struct page *page, *page2; struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL; u32 crc, crc_stored; u32 signature; int ret = 0, i; sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0; pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); /* read PPL headers, find the recent one */ page = alloc_page(GFP_KERNEL); if (!page) return -ENOMEM; page2 = alloc_page(GFP_KERNEL); if (!page2) { __free_page(page); return -ENOMEM; } /* searching ppl area for latest ppl */ while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) { if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset + pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ, 0, false)) { md_error(mddev, rdev); ret = -EIO; /* if not able to read - don't recover any PPL */ pplhdr = NULL; break; } pplhdr = page_address(page); /* check header validity */ crc_stored = le32_to_cpu(pplhdr->checksum); pplhdr->checksum = 0; crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); if (crc_stored != crc) { pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n", __func__, crc_stored, crc, (unsigned long long)pplhdr_offset); pplhdr = prev_pplhdr; pplhdr_offset = prev_pplhdr_offset; break; } signature = le32_to_cpu(pplhdr->signature); if (mddev->external) { /* * For external metadata the header signature is set and * validated in userspace. */ ppl_conf->signature = signature; } else if (ppl_conf->signature != signature) { pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n", __func__, signature, ppl_conf->signature, (unsigned long long)pplhdr_offset); pplhdr = prev_pplhdr; pplhdr_offset = prev_pplhdr_offset; break; } if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) > le64_to_cpu(pplhdr->generation)) { /* previous was newest */ pplhdr = prev_pplhdr; pplhdr_offset = prev_pplhdr_offset; break; } prev_pplhdr_offset = pplhdr_offset; prev_pplhdr = pplhdr; swap(page, page2); /* calculate next potential ppl offset */ for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) pplhdr_offset += le32_to_cpu(pplhdr->entries[i].pp_size) >> 9; pplhdr_offset += PPL_HEADER_SIZE >> 9; } /* no valid ppl found */ if (!pplhdr) ppl_conf->mismatch_count++; else pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n", __func__, (unsigned long long)pplhdr_offset, le64_to_cpu(pplhdr->generation)); /* attempt to recover from log if we are starting a dirty array */ if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector) ret = ppl_recover(log, pplhdr, pplhdr_offset); /* write empty header if we are starting the array */ if (!ret && !mddev->pers) ret = ppl_write_empty_header(log); __free_page(page); __free_page(page2); pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", __func__, ret, ppl_conf->mismatch_count, ppl_conf->recovered_entries); return ret; } static int ppl_load(struct ppl_conf *ppl_conf) { int ret = 0; u32 signature = 0; bool signature_set = false; int i; for (i = 0; i < ppl_conf->count; i++) { struct ppl_log *log = &ppl_conf->child_logs[i]; /* skip missing drive */ if (!log->rdev) continue; ret = ppl_load_distributed(log); if (ret) break; /* * For external metadata we can't check if the signature is * correct on a single drive, but we can check if it is the same * on all drives. */ if (ppl_conf->mddev->external) { if (!signature_set) { signature = ppl_conf->signature; signature_set = true; } else if (signature != ppl_conf->signature) { pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", mdname(ppl_conf->mddev)); ret = -EINVAL; break; } } } pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", __func__, ret, ppl_conf->mismatch_count, ppl_conf->recovered_entries); return ret; } static void __ppl_exit_log(struct ppl_conf *ppl_conf) { clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags); kfree(ppl_conf->child_logs); bioset_exit(&ppl_conf->bs); bioset_exit(&ppl_conf->flush_bs); mempool_exit(&ppl_conf->io_pool); kmem_cache_destroy(ppl_conf->io_kc); kfree(ppl_conf); } void ppl_exit_log(struct r5conf *conf) { struct ppl_conf *ppl_conf = conf->log_private; if (ppl_conf) { __ppl_exit_log(ppl_conf); conf->log_private = NULL; } } static int ppl_validate_rdev(struct md_rdev *rdev) { char b[BDEVNAME_SIZE]; int ppl_data_sectors; int ppl_size_new; /* * The configured PPL size must be enough to store * the header and (at the very least) partial parity * for one stripe. Round it down to ensure the data * space is cleanly divisible by stripe size. */ ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); if (ppl_data_sectors > 0) ppl_data_sectors = rounddown(ppl_data_sectors, RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private)); if (ppl_data_sectors <= 0) { pr_warn("md/raid:%s: PPL space too small on %s\n", mdname(rdev->mddev), bdevname(rdev->bdev, b)); return -ENOSPC; } ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); if ((rdev->ppl.sector < rdev->data_offset && rdev->ppl.sector + ppl_size_new > rdev->data_offset) || (rdev->ppl.sector >= rdev->data_offset && rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", mdname(rdev->mddev), bdevname(rdev->bdev, b)); return -EINVAL; } if (!rdev->mddev->external && ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", mdname(rdev->mddev), bdevname(rdev->bdev, b)); return -EINVAL; } rdev->ppl.size = ppl_size_new; return 0; } static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev) { struct request_queue *q; if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE + PPL_HEADER_SIZE) * 2) { log->use_multippl = true; set_bit(MD_HAS_MULTIPLE_PPLS, &log->ppl_conf->mddev->flags); log->entry_space = PPL_SPACE_SIZE; } else { log->use_multippl = false; log->entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE; } log->next_io_sector = rdev->ppl.sector; q = bdev_get_queue(rdev->bdev); if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) log->wb_cache_on = true; } int ppl_init_log(struct r5conf *conf) { struct ppl_conf *ppl_conf; struct mddev *mddev = conf->mddev; int ret = 0; int max_disks; int i; pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", mdname(conf->mddev)); if (PAGE_SIZE != 4096) return -EINVAL; if (mddev->level != 5) { pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", mdname(mddev), mddev->level); return -EINVAL; } if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { pr_warn("md/raid:%s PPL is not compatible with bitmap\n", mdname(mddev)); return -EINVAL; } if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { pr_warn("md/raid:%s PPL is not compatible with journal\n", mdname(mddev)); return -EINVAL; } max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) * BITS_PER_BYTE; if (conf->raid_disks > max_disks) { pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n", mdname(mddev), max_disks); return -EINVAL; } ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); if (!ppl_conf) return -ENOMEM; ppl_conf->mddev = mddev; ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); if (!ppl_conf->io_kc) { ret = -ENOMEM; goto err; } ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc, ppl_io_pool_free, ppl_conf->io_kc); if (ret) goto err; ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS); if (ret) goto err; ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0); if (ret) goto err; ppl_conf->count = conf->raid_disks; ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), GFP_KERNEL); if (!ppl_conf->child_logs) { ret = -ENOMEM; goto err; } atomic64_set(&ppl_conf->seq, 0); INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); spin_lock_init(&ppl_conf->no_mem_stripes_lock); if (!mddev->external) { ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); ppl_conf->block_size = 512; } else { ppl_conf->block_size = queue_logical_block_size(mddev->queue); } for (i = 0; i < ppl_conf->count; i++) { struct ppl_log *log = &ppl_conf->child_logs[i]; struct md_rdev *rdev = conf->disks[i].rdev; mutex_init(&log->io_mutex); spin_lock_init(&log->io_list_lock); INIT_LIST_HEAD(&log->io_list); log->ppl_conf = ppl_conf; log->rdev = rdev; if (rdev) { ret = ppl_validate_rdev(rdev); if (ret) goto err; ppl_init_child_log(log, rdev); } } /* load and possibly recover the logs from the member disks */ ret = ppl_load(ppl_conf); if (ret) { goto err; } else if (!mddev->pers && mddev->recovery_cp == 0 && ppl_conf->recovered_entries > 0 && ppl_conf->mismatch_count == 0) { /* * If we are starting a dirty array and the recovery succeeds * without any issues, set the array as clean. */ mddev->recovery_cp = MaxSector; set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); } else if (mddev->pers && ppl_conf->mismatch_count > 0) { /* no mismatch allowed when enabling PPL for a running array */ ret = -EINVAL; goto err; } conf->log_private = ppl_conf; set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); return 0; err: __ppl_exit_log(ppl_conf); return ret; } int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) { struct ppl_conf *ppl_conf = conf->log_private; struct ppl_log *log; int ret = 0; char b[BDEVNAME_SIZE]; if (!rdev) return -EINVAL; pr_debug("%s: disk: %d operation: %s dev: %s\n", __func__, rdev->raid_disk, add ? "add" : "remove", bdevname(rdev->bdev, b)); if (rdev->raid_disk < 0) return 0; if (rdev->raid_disk >= ppl_conf->count) return -ENODEV; log = &ppl_conf->child_logs[rdev->raid_disk]; mutex_lock(&log->io_mutex); if (add) { ret = ppl_validate_rdev(rdev); if (!ret) { log->rdev = rdev; ret = ppl_write_empty_header(log); ppl_init_child_log(log, rdev); } } else { log->rdev = NULL; } mutex_unlock(&log->io_mutex); return ret; } static ssize_t ppl_write_hint_show(struct mddev *mddev, char *buf) { return sprintf(buf, "%d\n", 0); } static ssize_t ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len) { struct r5conf *conf; int err = 0; unsigned short new; if (len >= PAGE_SIZE) return -EINVAL; if (kstrtou16(page, 10, &new)) return -EINVAL; err = mddev_lock(mddev); if (err) return err; conf = mddev->private; if (!conf) err = -ENODEV; else if (!raid5_has_ppl(conf) || !conf->log_private) err = -EINVAL; mddev_unlock(mddev); return err ?: len; } struct md_sysfs_entry ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR, ppl_write_hint_show, ppl_write_hint_store); |