Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | // SPDX-License-Identifier: GPL-2.0+ /* * Elliptic Curve (Russian) Digital Signature Algorithm for Cryptographic API * * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> * * References: * GOST 34.10-2018, GOST R 34.10-2012, RFC 7091, ISO/IEC 14888-3:2018. * * Historical references: * GOST R 34.10-2001, RFC 4357, ISO/IEC 14888-3:2006/Amd 1:2010. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include <linux/module.h> #include <linux/crypto.h> #include <crypto/streebog.h> #include <crypto/internal/akcipher.h> #include <crypto/internal/ecc.h> #include <crypto/akcipher.h> #include <linux/oid_registry.h> #include <linux/scatterlist.h> #include "ecrdsa_params.asn1.h" #include "ecrdsa_pub_key.asn1.h" #include "ecrdsa_defs.h" #define ECRDSA_MAX_SIG_SIZE (2 * 512 / 8) #define ECRDSA_MAX_DIGITS (512 / 64) struct ecrdsa_ctx { enum OID algo_oid; /* overall public key oid */ enum OID curve_oid; /* parameter */ enum OID digest_oid; /* parameter */ const struct ecc_curve *curve; /* curve from oid */ unsigned int digest_len; /* parameter (bytes) */ const char *digest; /* digest name from oid */ unsigned int key_len; /* @key length (bytes) */ const char *key; /* raw public key */ struct ecc_point pub_key; u64 _pubp[2][ECRDSA_MAX_DIGITS]; /* point storage for @pub_key */ }; static const struct ecc_curve *get_curve_by_oid(enum OID oid) { switch (oid) { case OID_gostCPSignA: case OID_gostTC26Sign256B: return &gost_cp256a; case OID_gostCPSignB: case OID_gostTC26Sign256C: return &gost_cp256b; case OID_gostCPSignC: case OID_gostTC26Sign256D: return &gost_cp256c; case OID_gostTC26Sign512A: return &gost_tc512a; case OID_gostTC26Sign512B: return &gost_tc512b; /* The following two aren't implemented: */ case OID_gostTC26Sign256A: case OID_gostTC26Sign512C: default: return NULL; } } static int ecrdsa_verify(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm); unsigned char sig[ECRDSA_MAX_SIG_SIZE]; unsigned char digest[STREEBOG512_DIGEST_SIZE]; unsigned int ndigits = req->dst_len / sizeof(u64); u64 r[ECRDSA_MAX_DIGITS]; /* witness (r) */ u64 _r[ECRDSA_MAX_DIGITS]; /* -r */ u64 s[ECRDSA_MAX_DIGITS]; /* second part of sig (s) */ u64 e[ECRDSA_MAX_DIGITS]; /* h \mod q */ u64 *v = e; /* e^{-1} \mod q */ u64 z1[ECRDSA_MAX_DIGITS]; u64 *z2 = _r; struct ecc_point cc = ECC_POINT_INIT(s, e, ndigits); /* reuse s, e */ /* * Digest value, digest algorithm, and curve (modulus) should have the * same length (256 or 512 bits), public key and signature should be * twice bigger. */ if (!ctx->curve || !ctx->digest || !req->src || !ctx->pub_key.x || req->dst_len != ctx->digest_len || req->dst_len != ctx->curve->g.ndigits * sizeof(u64) || ctx->pub_key.ndigits != ctx->curve->g.ndigits || req->dst_len * 2 != req->src_len || WARN_ON(req->src_len > sizeof(sig)) || WARN_ON(req->dst_len > sizeof(digest))) return -EBADMSG; sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len), sig, req->src_len); sg_pcopy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len + req->dst_len), digest, req->dst_len, req->src_len); vli_from_be64(s, sig, ndigits); vli_from_be64(r, sig + ndigits * sizeof(u64), ndigits); /* Step 1: verify that 0 < r < q, 0 < s < q */ if (vli_is_zero(r, ndigits) || vli_cmp(r, ctx->curve->n, ndigits) == 1 || vli_is_zero(s, ndigits) || vli_cmp(s, ctx->curve->n, ndigits) == 1) return -EKEYREJECTED; /* Step 2: calculate hash (h) of the message (passed as input) */ /* Step 3: calculate e = h \mod q */ vli_from_le64(e, digest, ndigits); if (vli_cmp(e, ctx->curve->n, ndigits) == 1) vli_sub(e, e, ctx->curve->n, ndigits); if (vli_is_zero(e, ndigits)) e[0] = 1; /* Step 4: calculate v = e^{-1} \mod q */ vli_mod_inv(v, e, ctx->curve->n, ndigits); /* Step 5: calculate z_1 = sv \mod q, z_2 = -rv \mod q */ vli_mod_mult_slow(z1, s, v, ctx->curve->n, ndigits); vli_sub(_r, ctx->curve->n, r, ndigits); vli_mod_mult_slow(z2, _r, v, ctx->curve->n, ndigits); /* Step 6: calculate point C = z_1P + z_2Q, and R = x_c \mod q */ ecc_point_mult_shamir(&cc, z1, &ctx->curve->g, z2, &ctx->pub_key, ctx->curve); if (vli_cmp(cc.x, ctx->curve->n, ndigits) == 1) vli_sub(cc.x, cc.x, ctx->curve->n, ndigits); /* Step 7: if R == r signature is valid */ if (!vli_cmp(cc.x, r, ndigits)) return 0; else return -EKEYREJECTED; } int ecrdsa_param_curve(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct ecrdsa_ctx *ctx = context; ctx->curve_oid = look_up_OID(value, vlen); if (!ctx->curve_oid) return -EINVAL; ctx->curve = get_curve_by_oid(ctx->curve_oid); return 0; } /* Optional. If present should match expected digest algo OID. */ int ecrdsa_param_digest(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct ecrdsa_ctx *ctx = context; int digest_oid = look_up_OID(value, vlen); if (digest_oid != ctx->digest_oid) return -EINVAL; return 0; } int ecrdsa_parse_pub_key(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen) { struct ecrdsa_ctx *ctx = context; ctx->key = value; ctx->key_len = vlen; return 0; } static u8 *ecrdsa_unpack_u32(u32 *dst, void *src) { memcpy(dst, src, sizeof(u32)); return src + sizeof(u32); } /* Parse BER encoded subjectPublicKey. */ static int ecrdsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm); unsigned int ndigits; u32 algo, paramlen; u8 *params; int err; err = asn1_ber_decoder(&ecrdsa_pub_key_decoder, ctx, key, keylen); if (err < 0) return err; /* Key parameters is in the key after keylen. */ params = ecrdsa_unpack_u32(¶mlen, ecrdsa_unpack_u32(&algo, (u8 *)key + keylen)); if (algo == OID_gost2012PKey256) { ctx->digest = "streebog256"; ctx->digest_oid = OID_gost2012Digest256; ctx->digest_len = 256 / 8; } else if (algo == OID_gost2012PKey512) { ctx->digest = "streebog512"; ctx->digest_oid = OID_gost2012Digest512; ctx->digest_len = 512 / 8; } else return -ENOPKG; ctx->algo_oid = algo; /* Parse SubjectPublicKeyInfo.AlgorithmIdentifier.parameters. */ err = asn1_ber_decoder(&ecrdsa_params_decoder, ctx, params, paramlen); if (err < 0) return err; /* * Sizes of algo (set in digest_len) and curve should match * each other. */ if (!ctx->curve || ctx->curve->g.ndigits * sizeof(u64) != ctx->digest_len) return -ENOPKG; /* * Key is two 256- or 512-bit coordinates which should match * curve size. */ if ((ctx->key_len != (2 * 256 / 8) && ctx->key_len != (2 * 512 / 8)) || ctx->key_len != ctx->curve->g.ndigits * sizeof(u64) * 2) return -ENOPKG; ndigits = ctx->key_len / sizeof(u64) / 2; ctx->pub_key = ECC_POINT_INIT(ctx->_pubp[0], ctx->_pubp[1], ndigits); vli_from_le64(ctx->pub_key.x, ctx->key, ndigits); vli_from_le64(ctx->pub_key.y, ctx->key + ndigits * sizeof(u64), ndigits); if (ecc_is_pubkey_valid_partial(ctx->curve, &ctx->pub_key)) return -EKEYREJECTED; return 0; } static unsigned int ecrdsa_max_size(struct crypto_akcipher *tfm) { struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm); /* * Verify doesn't need any output, so it's just informational * for keyctl to determine the key bit size. */ return ctx->pub_key.ndigits * sizeof(u64); } static void ecrdsa_exit_tfm(struct crypto_akcipher *tfm) { } static struct akcipher_alg ecrdsa_alg = { .verify = ecrdsa_verify, .set_pub_key = ecrdsa_set_pub_key, .max_size = ecrdsa_max_size, .exit = ecrdsa_exit_tfm, .base = { .cra_name = "ecrdsa", .cra_driver_name = "ecrdsa-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ecrdsa_ctx), }, }; static int __init ecrdsa_mod_init(void) { return crypto_register_akcipher(&ecrdsa_alg); } static void __exit ecrdsa_mod_fini(void) { crypto_unregister_akcipher(&ecrdsa_alg); } module_init(ecrdsa_mod_init); module_exit(ecrdsa_mod_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vitaly Chikunov <vt@altlinux.org>"); MODULE_DESCRIPTION("EC-RDSA generic algorithm"); MODULE_ALIAS_CRYPTO("ecrdsa-generic"); |