Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | // SPDX-License-Identifier: GPL-2.0-only /* * AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support * * Copyright (C) 2013,2018 Advanced Micro Devices, Inc. * * Author: Tom Lendacky <thomas.lendacky@amd.com> */ #include <linux/module.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include <crypto/scatterwalk.h> #include "ccp-crypto.h" static int ccp_aes_cmac_complete(struct crypto_async_request *async_req, int ret) { struct ahash_request *req = ahash_request_cast(async_req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req); unsigned int digest_size = crypto_ahash_digestsize(tfm); if (ret) goto e_free; if (rctx->hash_rem) { /* Save remaining data to buffer */ unsigned int offset = rctx->nbytes - rctx->hash_rem; scatterwalk_map_and_copy(rctx->buf, rctx->src, offset, rctx->hash_rem, 0); rctx->buf_count = rctx->hash_rem; } else { rctx->buf_count = 0; } /* Update result area if supplied */ if (req->result && rctx->final) memcpy(req->result, rctx->iv, digest_size); e_free: sg_free_table(&rctx->data_sg); return ret; } static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes, unsigned int final) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ccp_ctx *ctx = crypto_ahash_ctx(tfm); struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req); struct scatterlist *sg, *cmac_key_sg = NULL; unsigned int block_size = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); unsigned int need_pad, sg_count; gfp_t gfp; u64 len; int ret; if (!ctx->u.aes.key_len) return -EINVAL; if (nbytes) rctx->null_msg = 0; len = (u64)rctx->buf_count + (u64)nbytes; if (!final && (len <= block_size)) { scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src, 0, nbytes, 0); rctx->buf_count += nbytes; return 0; } rctx->src = req->src; rctx->nbytes = nbytes; rctx->final = final; rctx->hash_rem = final ? 0 : len & (block_size - 1); rctx->hash_cnt = len - rctx->hash_rem; if (!final && !rctx->hash_rem) { /* CCP can't do zero length final, so keep some data around */ rctx->hash_cnt -= block_size; rctx->hash_rem = block_size; } if (final && (rctx->null_msg || (len & (block_size - 1)))) need_pad = 1; else need_pad = 0; sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv)); /* Build the data scatterlist table - allocate enough entries for all * possible data pieces (buffer, input data, padding) */ sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2; gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp); if (ret) return ret; sg = NULL; if (rctx->buf_count) { sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count); sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg); if (!sg) { ret = -EINVAL; goto e_free; } } if (nbytes) { sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src); if (!sg) { ret = -EINVAL; goto e_free; } } if (need_pad) { int pad_length = block_size - (len & (block_size - 1)); rctx->hash_cnt += pad_length; memset(rctx->pad, 0, sizeof(rctx->pad)); rctx->pad[0] = 0x80; sg_init_one(&rctx->pad_sg, rctx->pad, pad_length); sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg); if (!sg) { ret = -EINVAL; goto e_free; } } if (sg) { sg_mark_end(sg); sg = rctx->data_sg.sgl; } /* Initialize the K1/K2 scatterlist */ if (final) cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg : &ctx->u.aes.k1_sg; memset(&rctx->cmd, 0, sizeof(rctx->cmd)); INIT_LIST_HEAD(&rctx->cmd.entry); rctx->cmd.engine = CCP_ENGINE_AES; rctx->cmd.u.aes.type = ctx->u.aes.type; rctx->cmd.u.aes.mode = ctx->u.aes.mode; rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT; rctx->cmd.u.aes.key = &ctx->u.aes.key_sg; rctx->cmd.u.aes.key_len = ctx->u.aes.key_len; rctx->cmd.u.aes.iv = &rctx->iv_sg; rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE; rctx->cmd.u.aes.src = sg; rctx->cmd.u.aes.src_len = rctx->hash_cnt; rctx->cmd.u.aes.dst = NULL; rctx->cmd.u.aes.cmac_key = cmac_key_sg; rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len; rctx->cmd.u.aes.cmac_final = final; ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd); return ret; e_free: sg_free_table(&rctx->data_sg); return ret; } static int ccp_aes_cmac_init(struct ahash_request *req) { struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req); memset(rctx, 0, sizeof(*rctx)); rctx->null_msg = 1; return 0; } static int ccp_aes_cmac_update(struct ahash_request *req) { return ccp_do_cmac_update(req, req->nbytes, 0); } static int ccp_aes_cmac_final(struct ahash_request *req) { return ccp_do_cmac_update(req, 0, 1); } static int ccp_aes_cmac_finup(struct ahash_request *req) { return ccp_do_cmac_update(req, req->nbytes, 1); } static int ccp_aes_cmac_digest(struct ahash_request *req) { int ret; ret = ccp_aes_cmac_init(req); if (ret) return ret; return ccp_aes_cmac_finup(req); } static int ccp_aes_cmac_export(struct ahash_request *req, void *out) { struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req); struct ccp_aes_cmac_exp_ctx state; /* Don't let anything leak to 'out' */ memset(&state, 0, sizeof(state)); state.null_msg = rctx->null_msg; memcpy(state.iv, rctx->iv, sizeof(state.iv)); state.buf_count = rctx->buf_count; memcpy(state.buf, rctx->buf, sizeof(state.buf)); /* 'out' may not be aligned so memcpy from local variable */ memcpy(out, &state, sizeof(state)); return 0; } static int ccp_aes_cmac_import(struct ahash_request *req, const void *in) { struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req); struct ccp_aes_cmac_exp_ctx state; /* 'in' may not be aligned so memcpy to local variable */ memcpy(&state, in, sizeof(state)); memset(rctx, 0, sizeof(*rctx)); rctx->null_msg = state.null_msg; memcpy(rctx->iv, state.iv, sizeof(rctx->iv)); rctx->buf_count = state.buf_count; memcpy(rctx->buf, state.buf, sizeof(rctx->buf)); return 0; } static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int key_len) { struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm)); struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm)); u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo; u64 rb_hi = 0x00, rb_lo = 0x87; struct crypto_aes_ctx aes; __be64 *gk; int ret; switch (key_len) { case AES_KEYSIZE_128: ctx->u.aes.type = CCP_AES_TYPE_128; break; case AES_KEYSIZE_192: ctx->u.aes.type = CCP_AES_TYPE_192; break; case AES_KEYSIZE_256: ctx->u.aes.type = CCP_AES_TYPE_256; break; default: return -EINVAL; } ctx->u.aes.mode = alg->mode; /* Set to zero until complete */ ctx->u.aes.key_len = 0; /* Set the key for the AES cipher used to generate the keys */ ret = aes_expandkey(&aes, key, key_len); if (ret) return ret; /* Encrypt a block of zeroes - use key area in context */ memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key)); aes_encrypt(&aes, ctx->u.aes.key, ctx->u.aes.key); memzero_explicit(&aes, sizeof(aes)); /* Generate K1 and K2 */ k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key)); k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1)); k1_hi = (k0_hi << 1) | (k0_lo >> 63); k1_lo = k0_lo << 1; if (ctx->u.aes.key[0] & 0x80) { k1_hi ^= rb_hi; k1_lo ^= rb_lo; } gk = (__be64 *)ctx->u.aes.k1; *gk = cpu_to_be64(k1_hi); gk++; *gk = cpu_to_be64(k1_lo); k2_hi = (k1_hi << 1) | (k1_lo >> 63); k2_lo = k1_lo << 1; if (ctx->u.aes.k1[0] & 0x80) { k2_hi ^= rb_hi; k2_lo ^= rb_lo; } gk = (__be64 *)ctx->u.aes.k2; *gk = cpu_to_be64(k2_hi); gk++; *gk = cpu_to_be64(k2_lo); ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1); sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1)); sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2)); /* Save the supplied key */ memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key)); memcpy(ctx->u.aes.key, key, key_len); ctx->u.aes.key_len = key_len; sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len); return ret; } static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm) { struct ccp_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); ctx->complete = ccp_aes_cmac_complete; ctx->u.aes.key_len = 0; crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_aes_cmac_req_ctx)); return 0; } int ccp_register_aes_cmac_algs(struct list_head *head) { struct ccp_crypto_ahash_alg *ccp_alg; struct ahash_alg *alg; struct hash_alg_common *halg; struct crypto_alg *base; int ret; ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL); if (!ccp_alg) return -ENOMEM; INIT_LIST_HEAD(&ccp_alg->entry); ccp_alg->mode = CCP_AES_MODE_CMAC; alg = &ccp_alg->alg; alg->init = ccp_aes_cmac_init; alg->update = ccp_aes_cmac_update; alg->final = ccp_aes_cmac_final; alg->finup = ccp_aes_cmac_finup; alg->digest = ccp_aes_cmac_digest; alg->export = ccp_aes_cmac_export; alg->import = ccp_aes_cmac_import; alg->setkey = ccp_aes_cmac_setkey; halg = &alg->halg; halg->digestsize = AES_BLOCK_SIZE; halg->statesize = sizeof(struct ccp_aes_cmac_exp_ctx); base = &halg->base; snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)"); snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp"); base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_NEED_FALLBACK; base->cra_blocksize = AES_BLOCK_SIZE; base->cra_ctxsize = sizeof(struct ccp_ctx); base->cra_priority = CCP_CRA_PRIORITY; base->cra_init = ccp_aes_cmac_cra_init; base->cra_module = THIS_MODULE; ret = crypto_register_ahash(alg); if (ret) { pr_err("%s ahash algorithm registration error (%d)\n", base->cra_name, ret); kfree(ccp_alg); return ret; } list_add(&ccp_alg->entry, head); return 0; } |