Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
// SPDX-License-Identifier: GPL-2.0
/*
 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
 * scalable techniques.
 *
 * Copyright (C) 2017 Facebook
 */

#include <linux/kernel.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/module.h>
#include <linux/sbitmap.h>

#include <trace/events/block.h>

#include "elevator.h"
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"

#define CREATE_TRACE_POINTS
#include <trace/events/kyber.h>

/*
 * Scheduling domains: the device is divided into multiple domains based on the
 * request type.
 */
enum {
	KYBER_READ,
	KYBER_WRITE,
	KYBER_DISCARD,
	KYBER_OTHER,
	KYBER_NUM_DOMAINS,
};

static const char *kyber_domain_names[] = {
	[KYBER_READ] = "READ",
	[KYBER_WRITE] = "WRITE",
	[KYBER_DISCARD] = "DISCARD",
	[KYBER_OTHER] = "OTHER",
};

enum {
	/*
	 * In order to prevent starvation of synchronous requests by a flood of
	 * asynchronous requests, we reserve 25% of requests for synchronous
	 * operations.
	 */
	KYBER_ASYNC_PERCENT = 75,
};

/*
 * Maximum device-wide depth for each scheduling domain.
 *
 * Even for fast devices with lots of tags like NVMe, you can saturate the
 * device with only a fraction of the maximum possible queue depth. So, we cap
 * these to a reasonable value.
 */
static const unsigned int kyber_depth[] = {
	[KYBER_READ] = 256,
	[KYBER_WRITE] = 128,
	[KYBER_DISCARD] = 64,
	[KYBER_OTHER] = 16,
};

/*
 * Default latency targets for each scheduling domain.
 */
static const u64 kyber_latency_targets[] = {
	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
};

/*
 * Batch size (number of requests we'll dispatch in a row) for each scheduling
 * domain.
 */
static const unsigned int kyber_batch_size[] = {
	[KYBER_READ] = 16,
	[KYBER_WRITE] = 8,
	[KYBER_DISCARD] = 1,
	[KYBER_OTHER] = 1,
};

/*
 * Requests latencies are recorded in a histogram with buckets defined relative
 * to the target latency:
 *
 * <= 1/4 * target latency
 * <= 1/2 * target latency
 * <= 3/4 * target latency
 * <= target latency
 * <= 1 1/4 * target latency
 * <= 1 1/2 * target latency
 * <= 1 3/4 * target latency
 * > 1 3/4 * target latency
 */
enum {
	/*
	 * The width of the latency histogram buckets is
	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
	 */
	KYBER_LATENCY_SHIFT = 2,
	/*
	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
	 * thus, "good".
	 */
	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
};

/*
 * We measure both the total latency and the I/O latency (i.e., latency after
 * submitting to the device).
 */
enum {
	KYBER_TOTAL_LATENCY,
	KYBER_IO_LATENCY,
};

static const char *kyber_latency_type_names[] = {
	[KYBER_TOTAL_LATENCY] = "total",
	[KYBER_IO_LATENCY] = "I/O",
};

/*
 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 * domain except for KYBER_OTHER.
 */
struct kyber_cpu_latency {
	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
};

/*
 * There is a same mapping between ctx & hctx and kcq & khd,
 * we use request->mq_ctx->index_hw to index the kcq in khd.
 */
struct kyber_ctx_queue {
	/*
	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
	 * Also protect the rqs on rq_list when merge.
	 */
	spinlock_t lock;
	struct list_head rq_list[KYBER_NUM_DOMAINS];
} ____cacheline_aligned_in_smp;

struct kyber_queue_data {
	struct request_queue *q;
	dev_t dev;

	/*
	 * Each scheduling domain has a limited number of in-flight requests
	 * device-wide, limited by these tokens.
	 */
	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];

	/*
	 * Async request percentage, converted to per-word depth for
	 * sbitmap_get_shallow().
	 */
	unsigned int async_depth;

	struct kyber_cpu_latency __percpu *cpu_latency;

	/* Timer for stats aggregation and adjusting domain tokens. */
	struct timer_list timer;

	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];

	unsigned long latency_timeout[KYBER_OTHER];

	int domain_p99[KYBER_OTHER];

	/* Target latencies in nanoseconds. */
	u64 latency_targets[KYBER_OTHER];
};

struct kyber_hctx_data {
	spinlock_t lock;
	struct list_head rqs[KYBER_NUM_DOMAINS];
	unsigned int cur_domain;
	unsigned int batching;
	struct kyber_ctx_queue *kcqs;
	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
	atomic_t wait_index[KYBER_NUM_DOMAINS];
};

static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
			     void *key);

static unsigned int kyber_sched_domain(unsigned int op)
{
	switch (op & REQ_OP_MASK) {
	case REQ_OP_READ:
		return KYBER_READ;
	case REQ_OP_WRITE:
		return KYBER_WRITE;
	case REQ_OP_DISCARD:
		return KYBER_DISCARD;
	default:
		return KYBER_OTHER;
	}
}

static void flush_latency_buckets(struct kyber_queue_data *kqd,
				  struct kyber_cpu_latency *cpu_latency,
				  unsigned int sched_domain, unsigned int type)
{
	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
	unsigned int bucket;

	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
}

/*
 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 * aren't enough samples yet.
 */
static int calculate_percentile(struct kyber_queue_data *kqd,
				unsigned int sched_domain, unsigned int type,
				unsigned int percentile)
{
	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
	unsigned int bucket, samples = 0, percentile_samples;

	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
		samples += buckets[bucket];

	if (!samples)
		return -1;

	/*
	 * We do the calculation once we have 500 samples or one second passes
	 * since the first sample was recorded, whichever comes first.
	 */
	if (!kqd->latency_timeout[sched_domain])
		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
	if (samples < 500 &&
	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
		return -1;
	}
	kqd->latency_timeout[sched_domain] = 0;

	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
		if (buckets[bucket] >= percentile_samples)
			break;
		percentile_samples -= buckets[bucket];
	}
	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));

	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
			    kyber_latency_type_names[type], percentile,
			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);

	return bucket;
}

static void kyber_resize_domain(struct kyber_queue_data *kqd,
				unsigned int sched_domain, unsigned int depth)
{
	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
				   depth);
	}
}

static void kyber_timer_fn(struct timer_list *t)
{
	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
	unsigned int sched_domain;
	int cpu;
	bool bad = false;

	/* Sum all of the per-cpu latency histograms. */
	for_each_online_cpu(cpu) {
		struct kyber_cpu_latency *cpu_latency;

		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
			flush_latency_buckets(kqd, cpu_latency, sched_domain,
					      KYBER_TOTAL_LATENCY);
			flush_latency_buckets(kqd, cpu_latency, sched_domain,
					      KYBER_IO_LATENCY);
		}
	}

	/*
	 * Check if any domains have a high I/O latency, which might indicate
	 * congestion in the device. Note that we use the p90; we don't want to
	 * be too sensitive to outliers here.
	 */
	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
		int p90;

		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
					   90);
		if (p90 >= KYBER_GOOD_BUCKETS)
			bad = true;
	}

	/*
	 * Adjust the scheduling domain depths. If we determined that there was
	 * congestion, we throttle all domains with good latencies. Either way,
	 * we ease up on throttling domains with bad latencies.
	 */
	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
		unsigned int orig_depth, depth;
		int p99;

		p99 = calculate_percentile(kqd, sched_domain,
					   KYBER_TOTAL_LATENCY, 99);
		/*
		 * This is kind of subtle: different domains will not
		 * necessarily have enough samples to calculate the latency
		 * percentiles during the same window, so we have to remember
		 * the p99 for the next time we observe congestion; once we do,
		 * we don't want to throttle again until we get more data, so we
		 * reset it to -1.
		 */
		if (bad) {
			if (p99 < 0)
				p99 = kqd->domain_p99[sched_domain];
			kqd->domain_p99[sched_domain] = -1;
		} else if (p99 >= 0) {
			kqd->domain_p99[sched_domain] = p99;
		}
		if (p99 < 0)
			continue;

		/*
		 * If this domain has bad latency, throttle less. Otherwise,
		 * throttle more iff we determined that there is congestion.
		 *
		 * The new depth is scaled linearly with the p99 latency vs the
		 * latency target. E.g., if the p99 is 3/4 of the target, then
		 * we throttle down to 3/4 of the current depth, and if the p99
		 * is 2x the target, then we double the depth.
		 */
		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
			kyber_resize_domain(kqd, sched_domain, depth);
		}
	}
}

static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
{
	struct kyber_queue_data *kqd;
	int ret = -ENOMEM;
	int i;

	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
	if (!kqd)
		goto err;

	kqd->q = q;
	kqd->dev = disk_devt(q->disk);

	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
					    GFP_KERNEL | __GFP_ZERO);
	if (!kqd->cpu_latency)
		goto err_kqd;

	timer_setup(&kqd->timer, kyber_timer_fn, 0);

	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
		WARN_ON(!kyber_depth[i]);
		WARN_ON(!kyber_batch_size[i]);
		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
					      kyber_depth[i], -1, false,
					      GFP_KERNEL, q->node);
		if (ret) {
			while (--i >= 0)
				sbitmap_queue_free(&kqd->domain_tokens[i]);
			goto err_buckets;
		}
	}

	for (i = 0; i < KYBER_OTHER; i++) {
		kqd->domain_p99[i] = -1;
		kqd->latency_targets[i] = kyber_latency_targets[i];
	}

	return kqd;

err_buckets:
	free_percpu(kqd->cpu_latency);
err_kqd:
	kfree(kqd);
err:
	return ERR_PTR(ret);
}

static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct kyber_queue_data *kqd;
	struct elevator_queue *eq;

	eq = elevator_alloc(q, e);
	if (!eq)
		return -ENOMEM;

	kqd = kyber_queue_data_alloc(q);
	if (IS_ERR(kqd)) {
		kobject_put(&eq->kobj);
		return PTR_ERR(kqd);
	}

	blk_stat_enable_accounting(q);

	eq->elevator_data = kqd;
	q->elevator = eq;

	return 0;
}

static void kyber_exit_sched(struct elevator_queue *e)
{
	struct kyber_queue_data *kqd = e->elevator_data;
	int i;

	del_timer_sync(&kqd->timer);

	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
		sbitmap_queue_free(&kqd->domain_tokens[i]);
	free_percpu(kqd->cpu_latency);
	kfree(kqd);
}

static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
{
	unsigned int i;

	spin_lock_init(&kcq->lock);
	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
		INIT_LIST_HEAD(&kcq->rq_list[i]);
}

static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
{
	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
	struct blk_mq_tags *tags = hctx->sched_tags;
	unsigned int shift = tags->bitmap_tags.sb.shift;

	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;

	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
}

static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
	struct kyber_hctx_data *khd;
	int i;

	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
	if (!khd)
		return -ENOMEM;

	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
				       sizeof(struct kyber_ctx_queue),
				       GFP_KERNEL, hctx->numa_node);
	if (!khd->kcqs)
		goto err_khd;

	for (i = 0; i < hctx->nr_ctx; i++)
		kyber_ctx_queue_init(&khd->kcqs[i]);

	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
				      ilog2(8), GFP_KERNEL, hctx->numa_node,
				      false, false)) {
			while (--i >= 0)
				sbitmap_free(&khd->kcq_map[i]);
			goto err_kcqs;
		}
	}

	spin_lock_init(&khd->lock);

	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
		INIT_LIST_HEAD(&khd->rqs[i]);
		khd->domain_wait[i].sbq = NULL;
		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
					  kyber_domain_wake);
		khd->domain_wait[i].wait.private = hctx;
		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
		atomic_set(&khd->wait_index[i], 0);
	}

	khd->cur_domain = 0;
	khd->batching = 0;

	hctx->sched_data = khd;
	kyber_depth_updated(hctx);

	return 0;

err_kcqs:
	kfree(khd->kcqs);
err_khd:
	kfree(khd);
	return -ENOMEM;
}

static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
	struct kyber_hctx_data *khd = hctx->sched_data;
	int i;

	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
		sbitmap_free(&khd->kcq_map[i]);
	kfree(khd->kcqs);
	kfree(hctx->sched_data);
}

static int rq_get_domain_token(struct request *rq)
{
	return (long)rq->elv.priv[0];
}

static void rq_set_domain_token(struct request *rq, int token)
{
	rq->elv.priv[0] = (void *)(long)token;
}

static void rq_clear_domain_token(struct kyber_queue_data *kqd,
				  struct request *rq)
{
	unsigned int sched_domain;
	int nr;

	nr = rq_get_domain_token(rq);
	if (nr != -1) {
		sched_domain = kyber_sched_domain(rq->cmd_flags);
		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
				    rq->mq_ctx->cpu);
	}
}

static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
{
	/*
	 * We use the scheduler tags as per-hardware queue queueing tokens.
	 * Async requests can be limited at this stage.
	 */
	if (!op_is_sync(op)) {
		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;

		data->shallow_depth = kqd->async_depth;
	}
}

static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
{
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
	struct kyber_hctx_data *khd = hctx->sched_data;
	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
	struct list_head *rq_list = &kcq->rq_list[sched_domain];
	bool merged;

	spin_lock(&kcq->lock);
	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
	spin_unlock(&kcq->lock);

	return merged;
}

static void kyber_prepare_request(struct request *rq)
{
	rq_set_domain_token(rq, -1);
}

static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
				  struct list_head *rq_list, bool at_head)
{
	struct kyber_hctx_data *khd = hctx->sched_data;
	struct request *rq, *next;

	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
		struct list_head *head = &kcq->rq_list[sched_domain];

		spin_lock(&kcq->lock);
		trace_block_rq_insert(rq);
		if (at_head)
			list_move(&rq->queuelist, head);
		else
			list_move_tail(&rq->queuelist, head);
		sbitmap_set_bit(&khd->kcq_map[sched_domain],
				rq->mq_ctx->index_hw[hctx->type]);
		spin_unlock(&kcq->lock);
	}
}

static void kyber_finish_request(struct request *rq)
{
	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;

	rq_clear_domain_token(kqd, rq);
}

static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
			       unsigned int sched_domain, unsigned int type,
			       u64 target, u64 latency)
{
	unsigned int bucket;
	u64 divisor;

	if (latency > 0) {
		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
			       KYBER_LATENCY_BUCKETS - 1);
	} else {
		bucket = 0;
	}

	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
}

static void kyber_completed_request(struct request *rq, u64 now)
{
	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
	struct kyber_cpu_latency *cpu_latency;
	unsigned int sched_domain;
	u64 target;

	sched_domain = kyber_sched_domain(rq->cmd_flags);
	if (sched_domain == KYBER_OTHER)
		return;

	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
	target = kqd->latency_targets[sched_domain];
	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
			   target, now - rq->start_time_ns);
	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
			   now - rq->io_start_time_ns);
	put_cpu_ptr(kqd->cpu_latency);

	timer_reduce(&kqd->timer, jiffies + HZ / 10);
}

struct flush_kcq_data {
	struct kyber_hctx_data *khd;
	unsigned int sched_domain;
	struct list_head *list;
};

static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_kcq_data *flush_data = data;
	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];

	spin_lock(&kcq->lock);
	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
			      flush_data->list);
	sbitmap_clear_bit(sb, bitnr);
	spin_unlock(&kcq->lock);

	return true;
}

static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
				  unsigned int sched_domain,
				  struct list_head *list)
{
	struct flush_kcq_data data = {
		.khd = khd,
		.sched_domain = sched_domain,
		.list = list,
	};

	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
			     flush_busy_kcq, &data);
}

static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
			     void *key)
{
	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);

	sbitmap_del_wait_queue(wait);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static int kyber_get_domain_token(struct kyber_queue_data *kqd,
				  struct kyber_hctx_data *khd,
				  struct blk_mq_hw_ctx *hctx)
{
	unsigned int sched_domain = khd->cur_domain;
	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
	struct sbq_wait_state *ws;
	int nr;

	nr = __sbitmap_queue_get(domain_tokens);

	/*
	 * If we failed to get a domain token, make sure the hardware queue is
	 * run when one becomes available. Note that this is serialized on
	 * khd->lock, but we still need to be careful about the waker.
	 */
	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
		ws = sbq_wait_ptr(domain_tokens,
				  &khd->wait_index[sched_domain]);
		khd->domain_ws[sched_domain] = ws;
		sbitmap_add_wait_queue(domain_tokens, ws, wait);

		/*
		 * Try again in case a token was freed before we got on the wait
		 * queue.
		 */
		nr = __sbitmap_queue_get(domain_tokens);
	}

	/*
	 * If we got a token while we were on the wait queue, remove ourselves
	 * from the wait queue to ensure that all wake ups make forward
	 * progress. It's possible that the waker already deleted the entry
	 * between the !list_empty_careful() check and us grabbing the lock, but
	 * list_del_init() is okay with that.
	 */
	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
		ws = khd->domain_ws[sched_domain];
		spin_lock_irq(&ws->wait.lock);
		sbitmap_del_wait_queue(wait);
		spin_unlock_irq(&ws->wait.lock);
	}

	return nr;
}

static struct request *
kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
			  struct kyber_hctx_data *khd,
			  struct blk_mq_hw_ctx *hctx)
{
	struct list_head *rqs;
	struct request *rq;
	int nr;

	rqs = &khd->rqs[khd->cur_domain];

	/*
	 * If we already have a flushed request, then we just need to get a
	 * token for it. Otherwise, if there are pending requests in the kcqs,
	 * flush the kcqs, but only if we can get a token. If not, we should
	 * leave the requests in the kcqs so that they can be merged. Note that
	 * khd->lock serializes the flushes, so if we observed any bit set in
	 * the kcq_map, we will always get a request.
	 */
	rq = list_first_entry_or_null(rqs, struct request, queuelist);
	if (rq) {
		nr = kyber_get_domain_token(kqd, khd, hctx);
		if (nr >= 0) {
			khd->batching++;
			rq_set_domain_token(rq, nr);
			list_del_init(&rq->queuelist);
			return rq;
		} else {
			trace_kyber_throttled(kqd->dev,
					      kyber_domain_names[khd->cur_domain]);
		}
	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
		nr = kyber_get_domain_token(kqd, khd, hctx);
		if (nr >= 0) {
			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
			rq = list_first_entry(rqs, struct request, queuelist);
			khd->batching++;
			rq_set_domain_token(rq, nr);
			list_del_init(&rq->queuelist);
			return rq;
		} else {
			trace_kyber_throttled(kqd->dev,
					      kyber_domain_names[khd->cur_domain]);
		}
	}

	/* There were either no pending requests or no tokens. */
	return NULL;
}

static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
{
	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
	struct kyber_hctx_data *khd = hctx->sched_data;
	struct request *rq;
	int i;

	spin_lock(&khd->lock);

	/*
	 * First, if we are still entitled to batch, try to dispatch a request
	 * from the batch.
	 */
	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
		if (rq)
			goto out;
	}

	/*
	 * Either,
	 * 1. We were no longer entitled to a batch.
	 * 2. The domain we were batching didn't have any requests.
	 * 3. The domain we were batching was out of tokens.
	 *
	 * Start another batch. Note that this wraps back around to the original
	 * domain if no other domains have requests or tokens.
	 */
	khd->batching = 0;
	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
			khd->cur_domain = 0;
		else
			khd->cur_domain++;

		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
		if (rq)
			goto out;
	}

	rq = NULL;
out:
	spin_unlock(&khd->lock);
	return rq;
}

static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
{
	struct kyber_hctx_data *khd = hctx->sched_data;
	int i;

	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
		if (!list_empty_careful(&khd->rqs[i]) ||
		    sbitmap_any_bit_set(&khd->kcq_map[i]))
			return true;
	}

	return false;
}

#define KYBER_LAT_SHOW_STORE(domain, name)				\
static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
				       char *page)			\
{									\
	struct kyber_queue_data *kqd = e->elevator_data;		\
									\
	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
}									\
									\
static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
					const char *page, size_t count)	\
{									\
	struct kyber_queue_data *kqd = e->elevator_data;		\
	unsigned long long nsec;					\
	int ret;							\
									\
	ret = kstrtoull(page, 10, &nsec);				\
	if (ret)							\
		return ret;						\
									\
	kqd->latency_targets[domain] = nsec;				\
									\
	return count;							\
}
KYBER_LAT_SHOW_STORE(KYBER_READ, read);
KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
#undef KYBER_LAT_SHOW_STORE

#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
static struct elv_fs_entry kyber_sched_attrs[] = {
	KYBER_LAT_ATTR(read),
	KYBER_LAT_ATTR(write),
	__ATTR_NULL
};
#undef KYBER_LAT_ATTR

#ifdef CONFIG_BLK_DEBUG_FS
#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
{									\
	struct request_queue *q = data;					\
	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
									\
	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
	return 0;							\
}									\
									\
static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
	__acquires(&khd->lock)						\
{									\
	struct blk_mq_hw_ctx *hctx = m->private;			\
	struct kyber_hctx_data *khd = hctx->sched_data;			\
									\
	spin_lock(&khd->lock);						\
	return seq_list_start(&khd->rqs[domain], *pos);			\
}									\
									\
static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
				     loff_t *pos)			\
{									\
	struct blk_mq_hw_ctx *hctx = m->private;			\
	struct kyber_hctx_data *khd = hctx->sched_data;			\
									\
	return seq_list_next(v, &khd->rqs[domain], pos);		\
}									\
									\
static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
	__releases(&khd->lock)						\
{									\
	struct blk_mq_hw_ctx *hctx = m->private;			\
	struct kyber_hctx_data *khd = hctx->sched_data;			\
									\
	spin_unlock(&khd->lock);					\
}									\
									\
static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
	.start	= kyber_##name##_rqs_start,				\
	.next	= kyber_##name##_rqs_next,				\
	.stop	= kyber_##name##_rqs_stop,				\
	.show	= blk_mq_debugfs_rq_show,				\
};									\
									\
static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
{									\
	struct blk_mq_hw_ctx *hctx = data;				\
	struct kyber_hctx_data *khd = hctx->sched_data;			\
	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
									\
	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
	return 0;							\
}
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
#undef KYBER_DEBUGFS_DOMAIN_ATTRS

static int kyber_async_depth_show(void *data, struct seq_file *m)
{
	struct request_queue *q = data;
	struct kyber_queue_data *kqd = q->elevator->elevator_data;

	seq_printf(m, "%u\n", kqd->async_depth);
	return 0;
}

static int kyber_cur_domain_show(void *data, struct seq_file *m)
{
	struct blk_mq_hw_ctx *hctx = data;
	struct kyber_hctx_data *khd = hctx->sched_data;

	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
	return 0;
}

static int kyber_batching_show(void *data, struct seq_file *m)
{
	struct blk_mq_hw_ctx *hctx = data;
	struct kyber_hctx_data *khd = hctx->sched_data;

	seq_printf(m, "%u\n", khd->batching);
	return 0;
}

#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
	{#name "_tokens", 0400, kyber_##name##_tokens_show}
static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
	KYBER_QUEUE_DOMAIN_ATTRS(read),
	KYBER_QUEUE_DOMAIN_ATTRS(write),
	KYBER_QUEUE_DOMAIN_ATTRS(discard),
	KYBER_QUEUE_DOMAIN_ATTRS(other),
	{"async_depth", 0400, kyber_async_depth_show},
	{},
};
#undef KYBER_QUEUE_DOMAIN_ATTRS

#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
	{#name "_waiting", 0400, kyber_##name##_waiting_show}
static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
	KYBER_HCTX_DOMAIN_ATTRS(read),
	KYBER_HCTX_DOMAIN_ATTRS(write),
	KYBER_HCTX_DOMAIN_ATTRS(discard),
	KYBER_HCTX_DOMAIN_ATTRS(other),
	{"cur_domain", 0400, kyber_cur_domain_show},
	{"batching", 0400, kyber_batching_show},
	{},
};
#undef KYBER_HCTX_DOMAIN_ATTRS
#endif

static struct elevator_type kyber_sched = {
	.ops = {
		.init_sched = kyber_init_sched,
		.exit_sched = kyber_exit_sched,
		.init_hctx = kyber_init_hctx,
		.exit_hctx = kyber_exit_hctx,
		.limit_depth = kyber_limit_depth,
		.bio_merge = kyber_bio_merge,
		.prepare_request = kyber_prepare_request,
		.insert_requests = kyber_insert_requests,
		.finish_request = kyber_finish_request,
		.requeue_request = kyber_finish_request,
		.completed_request = kyber_completed_request,
		.dispatch_request = kyber_dispatch_request,
		.has_work = kyber_has_work,
		.depth_updated = kyber_depth_updated,
	},
#ifdef CONFIG_BLK_DEBUG_FS
	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
#endif
	.elevator_attrs = kyber_sched_attrs,
	.elevator_name = "kyber",
	.elevator_features = ELEVATOR_F_MQ_AWARE,
	.elevator_owner = THIS_MODULE,
};

static int __init kyber_init(void)
{
	return elv_register(&kyber_sched);
}

static void __exit kyber_exit(void)
{
	elv_unregister(&kyber_sched);
}

module_init(kyber_init);
module_exit(kyber_exit);

MODULE_AUTHOR("Omar Sandoval");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Kyber I/O scheduler");