Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 | /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion (tree-based version) * Internal non-public definitions that provide either classic * or preemptible semantics. * * Copyright Red Hat, 2009 * Copyright IBM Corporation, 2009 * * Author: Ingo Molnar <mingo@elte.hu> * Paul E. McKenney <paulmck@linux.ibm.com> */ #include "../locking/rtmutex_common.h" static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) { /* * In order to read the offloaded state of an rdp is a safe * and stable way and prevent from its value to be changed * under us, we must either hold the barrier mutex, the cpu * hotplug lock (read or write) or the nocb lock. Local * non-preemptible reads are also safe. NOCB kthreads and * timers have their own means of synchronization against the * offloaded state updaters. */ RCU_LOCKDEP_WARN( !(lockdep_is_held(&rcu_state.barrier_mutex) || (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || rcu_lockdep_is_held_nocb(rdp) || (rdp == this_cpu_ptr(&rcu_data) && !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || rcu_current_is_nocb_kthread(rdp)), "Unsafe read of RCU_NOCB offloaded state" ); return rcu_segcblist_is_offloaded(&rdp->cblist); } /* * Check the RCU kernel configuration parameters and print informative * messages about anything out of the ordinary. */ static void __init rcu_bootup_announce_oddness(void) { if (IS_ENABLED(CONFIG_RCU_TRACE)) pr_info("\tRCU event tracing is enabled.\n"); if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", RCU_FANOUT); if (rcu_fanout_exact) pr_info("\tHierarchical RCU autobalancing is disabled.\n"); if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); if (IS_ENABLED(CONFIG_PROVE_RCU)) pr_info("\tRCU lockdep checking is enabled.\n"); if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); if (RCU_NUM_LVLS >= 4) pr_info("\tFour(or more)-level hierarchy is enabled.\n"); if (RCU_FANOUT_LEAF != 16) pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", RCU_FANOUT_LEAF); if (rcu_fanout_leaf != RCU_FANOUT_LEAF) pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); if (nr_cpu_ids != NR_CPUS) pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); #ifdef CONFIG_RCU_BOOST pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY); #endif if (blimit != DEFAULT_RCU_BLIMIT) pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); if (qhimark != DEFAULT_RCU_QHIMARK) pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); if (qlowmark != DEFAULT_RCU_QLOMARK) pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); if (qovld != DEFAULT_RCU_QOVLD) pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); if (jiffies_till_first_fqs != ULONG_MAX) pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); if (jiffies_till_next_fqs != ULONG_MAX) pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); if (jiffies_till_sched_qs != ULONG_MAX) pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); if (rcu_kick_kthreads) pr_info("\tKick kthreads if too-long grace period.\n"); if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); if (gp_preinit_delay) pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); if (gp_init_delay) pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); if (gp_cleanup_delay) pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); if (!use_softirq) pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) pr_info("\tRCU debug extended QS entry/exit.\n"); rcupdate_announce_bootup_oddness(); } #ifdef CONFIG_PREEMPT_RCU static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); static void rcu_read_unlock_special(struct task_struct *t); /* * Tell them what RCU they are running. */ static void __init rcu_bootup_announce(void) { pr_info("Preemptible hierarchical RCU implementation.\n"); rcu_bootup_announce_oddness(); } /* Flags for rcu_preempt_ctxt_queue() decision table. */ #define RCU_GP_TASKS 0x8 #define RCU_EXP_TASKS 0x4 #define RCU_GP_BLKD 0x2 #define RCU_EXP_BLKD 0x1 /* * Queues a task preempted within an RCU-preempt read-side critical * section into the appropriate location within the ->blkd_tasks list, * depending on the states of any ongoing normal and expedited grace * periods. The ->gp_tasks pointer indicates which element the normal * grace period is waiting on (NULL if none), and the ->exp_tasks pointer * indicates which element the expedited grace period is waiting on (again, * NULL if none). If a grace period is waiting on a given element in the * ->blkd_tasks list, it also waits on all subsequent elements. Thus, * adding a task to the tail of the list blocks any grace period that is * already waiting on one of the elements. In contrast, adding a task * to the head of the list won't block any grace period that is already * waiting on one of the elements. * * This queuing is imprecise, and can sometimes make an ongoing grace * period wait for a task that is not strictly speaking blocking it. * Given the choice, we needlessly block a normal grace period rather than * blocking an expedited grace period. * * Note that an endless sequence of expedited grace periods still cannot * indefinitely postpone a normal grace period. Eventually, all of the * fixed number of preempted tasks blocking the normal grace period that are * not also blocking the expedited grace period will resume and complete * their RCU read-side critical sections. At that point, the ->gp_tasks * pointer will equal the ->exp_tasks pointer, at which point the end of * the corresponding expedited grace period will also be the end of the * normal grace period. */ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) __releases(rnp->lock) /* But leaves rrupts disabled. */ { int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); struct task_struct *t = current; raw_lockdep_assert_held_rcu_node(rnp); WARN_ON_ONCE(rdp->mynode != rnp); WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); /* RCU better not be waiting on newly onlined CPUs! */ WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & rdp->grpmask); /* * Decide where to queue the newly blocked task. In theory, * this could be an if-statement. In practice, when I tried * that, it was quite messy. */ switch (blkd_state) { case 0: case RCU_EXP_TASKS: case RCU_EXP_TASKS + RCU_GP_BLKD: case RCU_GP_TASKS: case RCU_GP_TASKS + RCU_EXP_TASKS: /* * Blocking neither GP, or first task blocking the normal * GP but not blocking the already-waiting expedited GP. * Queue at the head of the list to avoid unnecessarily * blocking the already-waiting GPs. */ list_add(&t->rcu_node_entry, &rnp->blkd_tasks); break; case RCU_EXP_BLKD: case RCU_GP_BLKD: case RCU_GP_BLKD + RCU_EXP_BLKD: case RCU_GP_TASKS + RCU_EXP_BLKD: case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: /* * First task arriving that blocks either GP, or first task * arriving that blocks the expedited GP (with the normal * GP already waiting), or a task arriving that blocks * both GPs with both GPs already waiting. Queue at the * tail of the list to avoid any GP waiting on any of the * already queued tasks that are not blocking it. */ list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); break; case RCU_EXP_TASKS + RCU_EXP_BLKD: case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: /* * Second or subsequent task blocking the expedited GP. * The task either does not block the normal GP, or is the * first task blocking the normal GP. Queue just after * the first task blocking the expedited GP. */ list_add(&t->rcu_node_entry, rnp->exp_tasks); break; case RCU_GP_TASKS + RCU_GP_BLKD: case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: /* * Second or subsequent task blocking the normal GP. * The task does not block the expedited GP. Queue just * after the first task blocking the normal GP. */ list_add(&t->rcu_node_entry, rnp->gp_tasks); break; default: /* Yet another exercise in excessive paranoia. */ WARN_ON_ONCE(1); break; } /* * We have now queued the task. If it was the first one to * block either grace period, update the ->gp_tasks and/or * ->exp_tasks pointers, respectively, to reference the newly * blocked tasks. */ if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); } if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != !(rnp->qsmask & rdp->grpmask)); WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != !(rnp->expmask & rdp->grpmask)); raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ /* * Report the quiescent state for the expedited GP. This expedited * GP should not be able to end until we report, so there should be * no need to check for a subsequent expedited GP. (Though we are * still in a quiescent state in any case.) */ if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) rcu_report_exp_rdp(rdp); else WARN_ON_ONCE(rdp->exp_deferred_qs); } /* * Record a preemptible-RCU quiescent state for the specified CPU. * Note that this does not necessarily mean that the task currently running * on the CPU is in a quiescent state: Instead, it means that the current * grace period need not wait on any RCU read-side critical section that * starts later on this CPU. It also means that if the current task is * in an RCU read-side critical section, it has already added itself to * some leaf rcu_node structure's ->blkd_tasks list. In addition to the * current task, there might be any number of other tasks blocked while * in an RCU read-side critical section. * * Callers to this function must disable preemption. */ static void rcu_qs(void) { RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { trace_rcu_grace_period(TPS("rcu_preempt"), __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); } } /* * We have entered the scheduler, and the current task might soon be * context-switched away from. If this task is in an RCU read-side * critical section, we will no longer be able to rely on the CPU to * record that fact, so we enqueue the task on the blkd_tasks list. * The task will dequeue itself when it exits the outermost enclosing * RCU read-side critical section. Therefore, the current grace period * cannot be permitted to complete until the blkd_tasks list entries * predating the current grace period drain, in other words, until * rnp->gp_tasks becomes NULL. * * Caller must disable interrupts. */ void rcu_note_context_switch(bool preempt) { struct task_struct *t = current; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp; trace_rcu_utilization(TPS("Start context switch")); lockdep_assert_irqs_disabled(); WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); if (rcu_preempt_depth() > 0 && !t->rcu_read_unlock_special.b.blocked) { /* Possibly blocking in an RCU read-side critical section. */ rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); t->rcu_read_unlock_special.b.blocked = true; t->rcu_blocked_node = rnp; /* * Verify the CPU's sanity, trace the preemption, and * then queue the task as required based on the states * of any ongoing and expedited grace periods. */ WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); trace_rcu_preempt_task(rcu_state.name, t->pid, (rnp->qsmask & rdp->grpmask) ? rnp->gp_seq : rcu_seq_snap(&rnp->gp_seq)); rcu_preempt_ctxt_queue(rnp, rdp); } else { rcu_preempt_deferred_qs(t); } /* * Either we were not in an RCU read-side critical section to * begin with, or we have now recorded that critical section * globally. Either way, we can now note a quiescent state * for this CPU. Again, if we were in an RCU read-side critical * section, and if that critical section was blocking the current * grace period, then the fact that the task has been enqueued * means that we continue to block the current grace period. */ rcu_qs(); if (rdp->exp_deferred_qs) rcu_report_exp_rdp(rdp); rcu_tasks_qs(current, preempt); trace_rcu_utilization(TPS("End context switch")); } EXPORT_SYMBOL_GPL(rcu_note_context_switch); /* * Check for preempted RCU readers blocking the current grace period * for the specified rcu_node structure. If the caller needs a reliable * answer, it must hold the rcu_node's ->lock. */ static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) { return READ_ONCE(rnp->gp_tasks) != NULL; } /* limit value for ->rcu_read_lock_nesting. */ #define RCU_NEST_PMAX (INT_MAX / 2) static void rcu_preempt_read_enter(void) { WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); } static int rcu_preempt_read_exit(void) { int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; WRITE_ONCE(current->rcu_read_lock_nesting, ret); return ret; } static void rcu_preempt_depth_set(int val) { WRITE_ONCE(current->rcu_read_lock_nesting, val); } /* * Preemptible RCU implementation for rcu_read_lock(). * Just increment ->rcu_read_lock_nesting, shared state will be updated * if we block. */ void __rcu_read_lock(void) { rcu_preempt_read_enter(); if (IS_ENABLED(CONFIG_PROVE_LOCKING)) WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); barrier(); /* critical section after entry code. */ } EXPORT_SYMBOL_GPL(__rcu_read_lock); /* * Preemptible RCU implementation for rcu_read_unlock(). * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then * invoke rcu_read_unlock_special() to clean up after a context switch * in an RCU read-side critical section and other special cases. */ void __rcu_read_unlock(void) { struct task_struct *t = current; barrier(); // critical section before exit code. if (rcu_preempt_read_exit() == 0) { barrier(); // critical-section exit before .s check. if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) rcu_read_unlock_special(t); } if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { int rrln = rcu_preempt_depth(); WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); } } EXPORT_SYMBOL_GPL(__rcu_read_unlock); /* * Advance a ->blkd_tasks-list pointer to the next entry, instead * returning NULL if at the end of the list. */ static struct list_head *rcu_next_node_entry(struct task_struct *t, struct rcu_node *rnp) { struct list_head *np; np = t->rcu_node_entry.next; if (np == &rnp->blkd_tasks) np = NULL; return np; } /* * Return true if the specified rcu_node structure has tasks that were * preempted within an RCU read-side critical section. */ static bool rcu_preempt_has_tasks(struct rcu_node *rnp) { return !list_empty(&rnp->blkd_tasks); } /* * Report deferred quiescent states. The deferral time can * be quite short, for example, in the case of the call from * rcu_read_unlock_special(). */ static void rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) { bool empty_exp; bool empty_norm; bool empty_exp_now; struct list_head *np; bool drop_boost_mutex = false; struct rcu_data *rdp; struct rcu_node *rnp; union rcu_special special; /* * If RCU core is waiting for this CPU to exit its critical section, * report the fact that it has exited. Because irqs are disabled, * t->rcu_read_unlock_special cannot change. */ special = t->rcu_read_unlock_special; rdp = this_cpu_ptr(&rcu_data); if (!special.s && !rdp->exp_deferred_qs) { local_irq_restore(flags); return; } t->rcu_read_unlock_special.s = 0; if (special.b.need_qs) { if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { rcu_report_qs_rdp(rdp); udelay(rcu_unlock_delay); } else { rcu_qs(); } } /* * Respond to a request by an expedited grace period for a * quiescent state from this CPU. Note that requests from * tasks are handled when removing the task from the * blocked-tasks list below. */ if (rdp->exp_deferred_qs) rcu_report_exp_rdp(rdp); /* Clean up if blocked during RCU read-side critical section. */ if (special.b.blocked) { /* * Remove this task from the list it blocked on. The task * now remains queued on the rcu_node corresponding to the * CPU it first blocked on, so there is no longer any need * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. */ rnp = t->rcu_blocked_node; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ WARN_ON_ONCE(rnp != t->rcu_blocked_node); WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && (!empty_norm || rnp->qsmask)); empty_exp = sync_rcu_exp_done(rnp); smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ np = rcu_next_node_entry(t, rnp); list_del_init(&t->rcu_node_entry); t->rcu_blocked_node = NULL; trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), rnp->gp_seq, t->pid); if (&t->rcu_node_entry == rnp->gp_tasks) WRITE_ONCE(rnp->gp_tasks, np); if (&t->rcu_node_entry == rnp->exp_tasks) WRITE_ONCE(rnp->exp_tasks, np); if (IS_ENABLED(CONFIG_RCU_BOOST)) { /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; if (&t->rcu_node_entry == rnp->boost_tasks) WRITE_ONCE(rnp->boost_tasks, np); } /* * If this was the last task on the current list, and if * we aren't waiting on any CPUs, report the quiescent state. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, * so we must take a snapshot of the expedited state. */ empty_exp_now = sync_rcu_exp_done(rnp); if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { trace_rcu_quiescent_state_report(TPS("preempt_rcu"), rnp->gp_seq, 0, rnp->qsmask, rnp->level, rnp->grplo, rnp->grphi, !!rnp->gp_tasks); rcu_report_unblock_qs_rnp(rnp, flags); } else { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* Unboost if we were boosted. */ if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); /* * If this was the last task on the expedited lists, * then we need to report up the rcu_node hierarchy. */ if (!empty_exp && empty_exp_now) rcu_report_exp_rnp(rnp, true); } else { local_irq_restore(flags); } } /* * Is a deferred quiescent-state pending, and are we also not in * an RCU read-side critical section? It is the caller's responsibility * to ensure it is otherwise safe to report any deferred quiescent * states. The reason for this is that it is safe to report a * quiescent state during context switch even though preemption * is disabled. This function cannot be expected to understand these * nuances, so the caller must handle them. */ static bool rcu_preempt_need_deferred_qs(struct task_struct *t) { return (__this_cpu_read(rcu_data.exp_deferred_qs) || READ_ONCE(t->rcu_read_unlock_special.s)) && rcu_preempt_depth() == 0; } /* * Report a deferred quiescent state if needed and safe to do so. * As with rcu_preempt_need_deferred_qs(), "safe" involves only * not being in an RCU read-side critical section. The caller must * evaluate safety in terms of interrupt, softirq, and preemption * disabling. */ static void rcu_preempt_deferred_qs(struct task_struct *t) { unsigned long flags; if (!rcu_preempt_need_deferred_qs(t)) return; local_irq_save(flags); rcu_preempt_deferred_qs_irqrestore(t, flags); } /* * Minimal handler to give the scheduler a chance to re-evaluate. */ static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) { struct rcu_data *rdp; rdp = container_of(iwp, struct rcu_data, defer_qs_iw); rdp->defer_qs_iw_pending = false; } /* * Handle special cases during rcu_read_unlock(), such as needing to * notify RCU core processing or task having blocked during the RCU * read-side critical section. */ static void rcu_read_unlock_special(struct task_struct *t) { unsigned long flags; bool irqs_were_disabled; bool preempt_bh_were_disabled = !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); /* NMI handlers cannot block and cannot safely manipulate state. */ if (in_nmi()) return; local_irq_save(flags); irqs_were_disabled = irqs_disabled_flags(flags); if (preempt_bh_were_disabled || irqs_were_disabled) { bool expboost; // Expedited GP in flight or possible boosting. struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp = rdp->mynode; expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || (rdp->grpmask & READ_ONCE(rnp->expmask)) || IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && t->rcu_blocked_node); // Need to defer quiescent state until everything is enabled. if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) { // Using softirq, safe to awaken, and either the // wakeup is free or there is either an expedited // GP in flight or a potential need to deboost. raise_softirq_irqoff(RCU_SOFTIRQ); } else { // Enabling BH or preempt does reschedule, so... // Also if no expediting and no possible deboosting, // slow is OK. Plus nohz_full CPUs eventually get // tick enabled. set_tsk_need_resched(current); set_preempt_need_resched(); if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { // Get scheduler to re-evaluate and call hooks. // If !IRQ_WORK, FQS scan will eventually IPI. init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler); rdp->defer_qs_iw_pending = true; irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); } } local_irq_restore(flags); return; } rcu_preempt_deferred_qs_irqrestore(t, flags); } /* * Check that the list of blocked tasks for the newly completed grace * period is in fact empty. It is a serious bug to complete a grace * period that still has RCU readers blocked! This function must be * invoked -before- updating this rnp's ->gp_seq. * * Also, if there are blocked tasks on the list, they automatically * block the newly created grace period, so set up ->gp_tasks accordingly. */ static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) { struct task_struct *t; RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); raw_lockdep_assert_held_rcu_node(rnp); if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) dump_blkd_tasks(rnp, 10); if (rcu_preempt_has_tasks(rnp) && (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); t = container_of(rnp->gp_tasks, struct task_struct, rcu_node_entry); trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), rnp->gp_seq, t->pid); } WARN_ON_ONCE(rnp->qsmask); } /* * Check for a quiescent state from the current CPU, including voluntary * context switches for Tasks RCU. When a task blocks, the task is * recorded in the corresponding CPU's rcu_node structure, which is checked * elsewhere, hence this function need only check for quiescent states * related to the current CPU, not to those related to tasks. */ static void rcu_flavor_sched_clock_irq(int user) { struct task_struct *t = current; lockdep_assert_irqs_disabled(); if (user || rcu_is_cpu_rrupt_from_idle()) { rcu_note_voluntary_context_switch(current); } if (rcu_preempt_depth() > 0 || (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { /* No QS, force context switch if deferred. */ if (rcu_preempt_need_deferred_qs(t)) { set_tsk_need_resched(t); set_preempt_need_resched(); } } else if (rcu_preempt_need_deferred_qs(t)) { rcu_preempt_deferred_qs(t); /* Report deferred QS. */ return; } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { rcu_qs(); /* Report immediate QS. */ return; } /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ if (rcu_preempt_depth() > 0 && __this_cpu_read(rcu_data.core_needs_qs) && __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && !t->rcu_read_unlock_special.b.need_qs && time_after(jiffies, rcu_state.gp_start + HZ)) t->rcu_read_unlock_special.b.need_qs = true; } /* * Check for a task exiting while in a preemptible-RCU read-side * critical section, clean up if so. No need to issue warnings, as * debug_check_no_locks_held() already does this if lockdep is enabled. * Besides, if this function does anything other than just immediately * return, there was a bug of some sort. Spewing warnings from this * function is like as not to simply obscure important prior warnings. */ void exit_rcu(void) { struct task_struct *t = current; if (unlikely(!list_empty(¤t->rcu_node_entry))) { rcu_preempt_depth_set(1); barrier(); WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); } else if (unlikely(rcu_preempt_depth())) { rcu_preempt_depth_set(1); } else { return; } __rcu_read_unlock(); rcu_preempt_deferred_qs(current); } /* * Dump the blocked-tasks state, but limit the list dump to the * specified number of elements. */ static void dump_blkd_tasks(struct rcu_node *rnp, int ncheck) { int cpu; int i; struct list_head *lhp; bool onl; struct rcu_data *rdp; struct rcu_node *rnp1; raw_lockdep_assert_held_rcu_node(rnp); pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", __func__, rnp->grplo, rnp->grphi, rnp->level, (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), READ_ONCE(rnp->exp_tasks)); pr_info("%s: ->blkd_tasks", __func__); i = 0; list_for_each(lhp, &rnp->blkd_tasks) { pr_cont(" %p", lhp); if (++i >= ncheck) break; } pr_cont("\n"); for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { rdp = per_cpu_ptr(&rcu_data, cpu); onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", cpu, ".o"[onl], (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); } } #else /* #ifdef CONFIG_PREEMPT_RCU */ /* * If strict grace periods are enabled, and if the calling * __rcu_read_unlock() marks the beginning of a quiescent state, immediately * report that quiescent state and, if requested, spin for a bit. */ void rcu_read_unlock_strict(void) { struct rcu_data *rdp; if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) return; rdp = this_cpu_ptr(&rcu_data); rcu_report_qs_rdp(rdp); udelay(rcu_unlock_delay); } EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); /* * Tell them what RCU they are running. */ static void __init rcu_bootup_announce(void) { pr_info("Hierarchical RCU implementation.\n"); rcu_bootup_announce_oddness(); } /* * Note a quiescent state for PREEMPTION=n. Because we do not need to know * how many quiescent states passed, just if there was at least one since * the start of the grace period, this just sets a flag. The caller must * have disabled preemption. */ static void rcu_qs(void) { RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) return; trace_rcu_grace_period(TPS("rcu_sched"), __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) return; __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); } /* * Register an urgently needed quiescent state. If there is an * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight * dyntick-idle quiescent state visible to other CPUs, which will in * some cases serve for expedited as well as normal grace periods. * Either way, register a lightweight quiescent state. */ void rcu_all_qs(void) { unsigned long flags; if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) return; preempt_disable(); /* Load rcu_urgent_qs before other flags. */ if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { preempt_enable(); return; } this_cpu_write(rcu_data.rcu_urgent_qs, false); if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { local_irq_save(flags); rcu_momentary_dyntick_idle(); local_irq_restore(flags); } rcu_qs(); preempt_enable(); } EXPORT_SYMBOL_GPL(rcu_all_qs); /* * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. */ void rcu_note_context_switch(bool preempt) { trace_rcu_utilization(TPS("Start context switch")); rcu_qs(); /* Load rcu_urgent_qs before other flags. */ if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) goto out; this_cpu_write(rcu_data.rcu_urgent_qs, false); if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) rcu_momentary_dyntick_idle(); rcu_tasks_qs(current, preempt); out: trace_rcu_utilization(TPS("End context switch")); } EXPORT_SYMBOL_GPL(rcu_note_context_switch); /* * Because preemptible RCU does not exist, there are never any preempted * RCU readers. */ static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) { return 0; } /* * Because there is no preemptible RCU, there can be no readers blocked. */ static bool rcu_preempt_has_tasks(struct rcu_node *rnp) { return false; } /* * Because there is no preemptible RCU, there can be no deferred quiescent * states. */ static bool rcu_preempt_need_deferred_qs(struct task_struct *t) { return false; } static void rcu_preempt_deferred_qs(struct task_struct *t) { } /* * Because there is no preemptible RCU, there can be no readers blocked, * so there is no need to check for blocked tasks. So check only for * bogus qsmask values. */ static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) { WARN_ON_ONCE(rnp->qsmask); } /* * Check to see if this CPU is in a non-context-switch quiescent state, * namely user mode and idle loop. */ static void rcu_flavor_sched_clock_irq(int user) { if (user || rcu_is_cpu_rrupt_from_idle()) { /* * Get here if this CPU took its interrupt from user * mode or from the idle loop, and if this is not a * nested interrupt. In this case, the CPU is in * a quiescent state, so note it. * * No memory barrier is required here because rcu_qs() * references only CPU-local variables that other CPUs * neither access nor modify, at least not while the * corresponding CPU is online. */ rcu_qs(); } } /* * Because preemptible RCU does not exist, tasks cannot possibly exit * while in preemptible RCU read-side critical sections. */ void exit_rcu(void) { } /* * Dump the guaranteed-empty blocked-tasks state. Trust but verify. */ static void dump_blkd_tasks(struct rcu_node *rnp, int ncheck) { WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* * If boosting, set rcuc kthreads to realtime priority. */ static void rcu_cpu_kthread_setup(unsigned int cpu) { #ifdef CONFIG_RCU_BOOST struct sched_param sp; sp.sched_priority = kthread_prio; sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); #endif /* #ifdef CONFIG_RCU_BOOST */ } #ifdef CONFIG_RCU_BOOST /* * Carry out RCU priority boosting on the task indicated by ->exp_tasks * or ->boost_tasks, advancing the pointer to the next task in the * ->blkd_tasks list. * * Note that irqs must be enabled: boosting the task can block. * Returns 1 if there are more tasks needing to be boosted. */ static int rcu_boost(struct rcu_node *rnp) { unsigned long flags; struct task_struct *t; struct list_head *tb; if (READ_ONCE(rnp->exp_tasks) == NULL && READ_ONCE(rnp->boost_tasks) == NULL) return 0; /* Nothing left to boost. */ raw_spin_lock_irqsave_rcu_node(rnp, flags); /* * Recheck under the lock: all tasks in need of boosting * might exit their RCU read-side critical sections on their own. */ if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return 0; } /* * Preferentially boost tasks blocking expedited grace periods. * This cannot starve the normal grace periods because a second * expedited grace period must boost all blocked tasks, including * those blocking the pre-existing normal grace period. */ if (rnp->exp_tasks != NULL) tb = rnp->exp_tasks; else tb = rnp->boost_tasks; /* * We boost task t by manufacturing an rt_mutex that appears to * be held by task t. We leave a pointer to that rt_mutex where * task t can find it, and task t will release the mutex when it * exits its outermost RCU read-side critical section. Then * simply acquiring this artificial rt_mutex will boost task * t's priority. (Thanks to tglx for suggesting this approach!) * * Note that task t must acquire rnp->lock to remove itself from * the ->blkd_tasks list, which it will do from exit() if from * nowhere else. We therefore are guaranteed that task t will * stay around at least until we drop rnp->lock. Note that * rnp->lock also resolves races between our priority boosting * and task t's exiting its outermost RCU read-side critical * section. */ t = container_of(tb, struct task_struct, rcu_node_entry); rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* Lock only for side effect: boosts task t's priority. */ rt_mutex_lock(&rnp->boost_mtx); rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ rnp->n_boosts++; return READ_ONCE(rnp->exp_tasks) != NULL || READ_ONCE(rnp->boost_tasks) != NULL; } /* * Priority-boosting kthread, one per leaf rcu_node. */ static int rcu_boost_kthread(void *arg) { struct rcu_node *rnp = (struct rcu_node *)arg; int spincnt = 0; int more2boost; trace_rcu_utilization(TPS("Start boost kthread@init")); for (;;) { WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); rcu_wait(READ_ONCE(rnp->boost_tasks) || READ_ONCE(rnp->exp_tasks)); trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); more2boost = rcu_boost(rnp); if (more2boost) spincnt++; else spincnt = 0; if (spincnt > 10) { WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); schedule_timeout_idle(2); trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); spincnt = 0; } } /* NOTREACHED */ trace_rcu_utilization(TPS("End boost kthread@notreached")); return 0; } /* * Check to see if it is time to start boosting RCU readers that are * blocking the current grace period, and, if so, tell the per-rcu_node * kthread to start boosting them. If there is an expedited grace * period in progress, it is always time to boost. * * The caller must hold rnp->lock, which this function releases. * The ->boost_kthread_task is immortal, so we don't need to worry * about it going away. */ static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) __releases(rnp->lock) { raw_lockdep_assert_held_rcu_node(rnp); if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } if (rnp->exp_tasks != NULL || (rnp->gp_tasks != NULL && rnp->boost_tasks == NULL && rnp->qsmask == 0 && (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { if (rnp->exp_tasks == NULL) WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rcu_wake_cond(rnp->boost_kthread_task, READ_ONCE(rnp->boost_kthread_status)); } else { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } /* * Is the current CPU running the RCU-callbacks kthread? * Caller must have preemption disabled. */ static bool rcu_is_callbacks_kthread(void) { return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; } #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) /* * Do priority-boost accounting for the start of a new grace period. */ static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) { rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; } /* * Create an RCU-boost kthread for the specified node if one does not * already exist. We only create this kthread for preemptible RCU. * Returns zero if all is well, a negated errno otherwise. */ static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) { unsigned long flags; int rnp_index = rnp - rcu_get_root(); struct sched_param sp; struct task_struct *t; if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) return; rcu_state.boost = 1; t = kthread_create(rcu_boost_kthread, (void *)rnp, "rcub/%d", rnp_index); if (WARN_ON_ONCE(IS_ERR(t))) return; raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->boost_kthread_task = t; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); sp.sched_priority = kthread_prio; sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ } /* * Set the per-rcu_node kthread's affinity to cover all CPUs that are * served by the rcu_node in question. The CPU hotplug lock is still * held, so the value of rnp->qsmaskinit will be stable. * * We don't include outgoingcpu in the affinity set, use -1 if there is * no outgoing CPU. If there are no CPUs left in the affinity set, * this function allows the kthread to execute on any CPU. */ static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) { struct task_struct *t = rnp->boost_kthread_task; unsigned long mask = rcu_rnp_online_cpus(rnp); cpumask_var_t cm; int cpu; if (!t) return; if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) return; for_each_leaf_node_possible_cpu(rnp, cpu) if ((mask & leaf_node_cpu_bit(rnp, cpu)) && cpu != outgoingcpu) cpumask_set_cpu(cpu, cm); if (cpumask_weight(cm) == 0) cpumask_setall(cm); set_cpus_allowed_ptr(t, cm); free_cpumask_var(cm); } /* * Spawn boost kthreads -- called as soon as the scheduler is running. */ static void __init rcu_spawn_boost_kthreads(void) { struct rcu_node *rnp; rcu_for_each_leaf_node(rnp) if (rcu_rnp_online_cpus(rnp)) rcu_spawn_one_boost_kthread(rnp); } #else /* #ifdef CONFIG_RCU_BOOST */ static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) __releases(rnp->lock) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } static bool rcu_is_callbacks_kthread(void) { return false; } static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) { } static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) { } static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) { } static void __init rcu_spawn_boost_kthreads(void) { } #endif /* #else #ifdef CONFIG_RCU_BOOST */ #if !defined(CONFIG_RCU_FAST_NO_HZ) /* * Check to see if any future non-offloaded RCU-related work will need * to be done by the current CPU, even if none need be done immediately, * returning 1 if so. This function is part of the RCU implementation; * it is -not- an exported member of the RCU API. * * Because we not have RCU_FAST_NO_HZ, just check whether or not this * CPU has RCU callbacks queued. */ int rcu_needs_cpu(u64 basemono, u64 *nextevt) { *nextevt = KTIME_MAX; return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); } /* * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up * after it. */ static void rcu_cleanup_after_idle(void) { } /* * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, * is nothing. */ static void rcu_prepare_for_idle(void) { } #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ /* * This code is invoked when a CPU goes idle, at which point we want * to have the CPU do everything required for RCU so that it can enter * the energy-efficient dyntick-idle mode. * * The following preprocessor symbol controls this: * * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted * to sleep in dyntick-idle mode with RCU callbacks pending. This * is sized to be roughly one RCU grace period. Those energy-efficiency * benchmarkers who might otherwise be tempted to set this to a large * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your * system. And if you are -that- concerned about energy efficiency, * just power the system down and be done with it! * * The value below works well in practice. If future workloads require * adjustment, they can be converted into kernel config parameters, though * making the state machine smarter might be a better option. */ #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; module_param(rcu_idle_gp_delay, int, 0644); /* * Try to advance callbacks on the current CPU, but only if it has been * awhile since the last time we did so. Afterwards, if there are any * callbacks ready for immediate invocation, return true. */ static bool __maybe_unused rcu_try_advance_all_cbs(void) { bool cbs_ready = false; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp; /* Exit early if we advanced recently. */ if (jiffies == rdp->last_advance_all) return false; rdp->last_advance_all = jiffies; rnp = rdp->mynode; /* * Don't bother checking unless a grace period has * completed since we last checked and there are * callbacks not yet ready to invoke. */ if ((rcu_seq_completed_gp(rdp->gp_seq, rcu_seq_current(&rnp->gp_seq)) || unlikely(READ_ONCE(rdp->gpwrap))) && rcu_segcblist_pend_cbs(&rdp->cblist)) note_gp_changes(rdp); if (rcu_segcblist_ready_cbs(&rdp->cblist)) cbs_ready = true; return cbs_ready; } /* * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready * to invoke. If the CPU has callbacks, try to advance them. Tell the * caller about what to set the timeout. * * The caller must have disabled interrupts. */ int rcu_needs_cpu(u64 basemono, u64 *nextevt) { struct rcu_data *rdp = this_cpu_ptr(&rcu_data); unsigned long dj; lockdep_assert_irqs_disabled(); /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ if (rcu_segcblist_empty(&rdp->cblist) || rcu_rdp_is_offloaded(rdp)) { *nextevt = KTIME_MAX; return 0; } /* Attempt to advance callbacks. */ if (rcu_try_advance_all_cbs()) { /* Some ready to invoke, so initiate later invocation. */ invoke_rcu_core(); return 1; } rdp->last_accelerate = jiffies; /* Request timer and round. */ dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; *nextevt = basemono + dj * TICK_NSEC; return 0; } /* * Prepare a CPU for idle from an RCU perspective. The first major task is to * sense whether nohz mode has been enabled or disabled via sysfs. The second * major task is to accelerate (that is, assign grace-period numbers to) any * recently arrived callbacks. * * The caller must have disabled interrupts. */ static void rcu_prepare_for_idle(void) { bool needwake; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp; int tne; lockdep_assert_irqs_disabled(); if (rcu_rdp_is_offloaded(rdp)) return; /* Handle nohz enablement switches conservatively. */ tne = READ_ONCE(tick_nohz_active); if (tne != rdp->tick_nohz_enabled_snap) { if (!rcu_segcblist_empty(&rdp->cblist)) invoke_rcu_core(); /* force nohz to see update. */ rdp->tick_nohz_enabled_snap = tne; return; } if (!tne) return; /* * If we have not yet accelerated this jiffy, accelerate all * callbacks on this CPU. */ if (rdp->last_accelerate == jiffies) return; rdp->last_accelerate = jiffies; if (rcu_segcblist_pend_cbs(&rdp->cblist)) { rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ needwake = rcu_accelerate_cbs(rnp, rdp); raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ if (needwake) rcu_gp_kthread_wake(); } } /* * Clean up for exit from idle. Attempt to advance callbacks based on * any grace periods that elapsed while the CPU was idle, and if any * callbacks are now ready to invoke, initiate invocation. */ static void rcu_cleanup_after_idle(void) { struct rcu_data *rdp = this_cpu_ptr(&rcu_data); lockdep_assert_irqs_disabled(); if (rcu_rdp_is_offloaded(rdp)) return; if (rcu_try_advance_all_cbs()) invoke_rcu_core(); } #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ /* * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the * grace-period kthread will do force_quiescent_state() processing? * The idea is to avoid waking up RCU core processing on such a * CPU unless the grace period has extended for too long. * * This code relies on the fact that all NO_HZ_FULL CPUs are also * CONFIG_RCU_NOCB_CPU CPUs. */ static bool rcu_nohz_full_cpu(void) { #ifdef CONFIG_NO_HZ_FULL if (tick_nohz_full_cpu(smp_processor_id()) && (!rcu_gp_in_progress() || time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) return true; #endif /* #ifdef CONFIG_NO_HZ_FULL */ return false; } /* * Bind the RCU grace-period kthreads to the housekeeping CPU. */ static void rcu_bind_gp_kthread(void) { if (!tick_nohz_full_enabled()) return; housekeeping_affine(current, HK_FLAG_RCU); } /* Record the current task on dyntick-idle entry. */ static __always_inline void rcu_dynticks_task_enter(void) { #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ } /* Record no current task on dyntick-idle exit. */ static __always_inline void rcu_dynticks_task_exit(void) { #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ } /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ static __always_inline void rcu_dynticks_task_trace_enter(void) { #ifdef CONFIG_TASKS_TRACE_RCU if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) current->trc_reader_special.b.need_mb = true; #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ } /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ static __always_inline void rcu_dynticks_task_trace_exit(void) { #ifdef CONFIG_TASKS_TRACE_RCU if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) current->trc_reader_special.b.need_mb = false; #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ } |