Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017 Pablo Neira Ayuso <pablo@netfilter.org> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/list.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> struct nft_bitmap_elem { struct list_head head; struct nft_set_ext ext; }; /* This bitmap uses two bits to represent one element. These two bits determine * the element state in the current and the future generation. * * An element can be in three states. The generation cursor is represented using * the ^ character, note that this cursor shifts on every succesful transaction. * If no transaction is going on, we observe all elements are in the following * state: * * 11 = this element is active in the current generation. In case of no updates, * ^ it stays active in the next generation. * 00 = this element is inactive in the current generation. In case of no * ^ updates, it stays inactive in the next generation. * * On transaction handling, we observe these two temporary states: * * 01 = this element is inactive in the current generation and it becomes active * ^ in the next one. This happens when the element is inserted but commit * path has not yet been executed yet, so activation is still pending. On * transaction abortion, the element is removed. * 10 = this element is active in the current generation and it becomes inactive * ^ in the next one. This happens when the element is deactivated but commit * path has not yet been executed yet, so removal is still pending. On * transation abortion, the next generation bit is reset to go back to * restore its previous state. */ struct nft_bitmap { struct list_head list; u16 bitmap_size; u8 bitmap[]; }; static inline void nft_bitmap_location(const struct nft_set *set, const void *key, u32 *idx, u32 *off) { u32 k; if (set->klen == 2) k = *(u16 *)key; else k = *(u8 *)key; k <<= 1; *idx = k / BITS_PER_BYTE; *off = k % BITS_PER_BYTE; } /* Fetch the two bits that represent the element and check if it is active based * on the generation mask. */ static inline bool nft_bitmap_active(const u8 *bitmap, u32 idx, u32 off, u8 genmask) { return (bitmap[idx] & (0x3 << off)) & (genmask << off); } INDIRECT_CALLABLE_SCOPE bool nft_bitmap_lookup(const struct net *net, const struct nft_set *set, const u32 *key, const struct nft_set_ext **ext) { const struct nft_bitmap *priv = nft_set_priv(set); u8 genmask = nft_genmask_cur(net); u32 idx, off; nft_bitmap_location(set, key, &idx, &off); return nft_bitmap_active(priv->bitmap, idx, off, genmask); } static struct nft_bitmap_elem * nft_bitmap_elem_find(const struct nft_set *set, struct nft_bitmap_elem *this, u8 genmask) { const struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *be; list_for_each_entry_rcu(be, &priv->list, head) { if (memcmp(nft_set_ext_key(&be->ext), nft_set_ext_key(&this->ext), set->klen) || !nft_set_elem_active(&be->ext, genmask)) continue; return be; } return NULL; } static void *nft_bitmap_get(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem, unsigned int flags) { const struct nft_bitmap *priv = nft_set_priv(set); u8 genmask = nft_genmask_cur(net); struct nft_bitmap_elem *be; list_for_each_entry_rcu(be, &priv->list, head) { if (memcmp(nft_set_ext_key(&be->ext), elem->key.val.data, set->klen) || !nft_set_elem_active(&be->ext, genmask)) continue; return be; } return ERR_PTR(-ENOENT); } static int nft_bitmap_insert(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem, struct nft_set_ext **ext) { struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *new = elem->priv, *be; u8 genmask = nft_genmask_next(net); u32 idx, off; be = nft_bitmap_elem_find(set, new, genmask); if (be) { *ext = &be->ext; return -EEXIST; } nft_bitmap_location(set, nft_set_ext_key(&new->ext), &idx, &off); /* Enter 01 state. */ priv->bitmap[idx] |= (genmask << off); list_add_tail_rcu(&new->head, &priv->list); return 0; } static void nft_bitmap_remove(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem) { struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *be = elem->priv; u8 genmask = nft_genmask_next(net); u32 idx, off; nft_bitmap_location(set, nft_set_ext_key(&be->ext), &idx, &off); /* Enter 00 state. */ priv->bitmap[idx] &= ~(genmask << off); list_del_rcu(&be->head); } static void nft_bitmap_activate(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem) { struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *be = elem->priv; u8 genmask = nft_genmask_next(net); u32 idx, off; nft_bitmap_location(set, nft_set_ext_key(&be->ext), &idx, &off); /* Enter 11 state. */ priv->bitmap[idx] |= (genmask << off); nft_set_elem_change_active(net, set, &be->ext); } static bool nft_bitmap_flush(const struct net *net, const struct nft_set *set, void *_be) { struct nft_bitmap *priv = nft_set_priv(set); u8 genmask = nft_genmask_next(net); struct nft_bitmap_elem *be = _be; u32 idx, off; nft_bitmap_location(set, nft_set_ext_key(&be->ext), &idx, &off); /* Enter 10 state, similar to deactivation. */ priv->bitmap[idx] &= ~(genmask << off); nft_set_elem_change_active(net, set, &be->ext); return true; } static void *nft_bitmap_deactivate(const struct net *net, const struct nft_set *set, const struct nft_set_elem *elem) { struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *this = elem->priv, *be; u8 genmask = nft_genmask_next(net); u32 idx, off; nft_bitmap_location(set, elem->key.val.data, &idx, &off); be = nft_bitmap_elem_find(set, this, genmask); if (!be) return NULL; /* Enter 10 state. */ priv->bitmap[idx] &= ~(genmask << off); nft_set_elem_change_active(net, set, &be->ext); return be; } static void nft_bitmap_walk(const struct nft_ctx *ctx, struct nft_set *set, struct nft_set_iter *iter) { const struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *be; struct nft_set_elem elem; list_for_each_entry_rcu(be, &priv->list, head) { if (iter->count < iter->skip) goto cont; if (!nft_set_elem_active(&be->ext, iter->genmask)) goto cont; elem.priv = be; iter->err = iter->fn(ctx, set, iter, &elem); if (iter->err < 0) return; cont: iter->count++; } } /* The bitmap size is pow(2, key length in bits) / bits per byte. This is * multiplied by two since each element takes two bits. For 8 bit keys, the * bitmap consumes 66 bytes. For 16 bit keys, 16388 bytes. */ static inline u32 nft_bitmap_size(u32 klen) { return ((2 << ((klen * BITS_PER_BYTE) - 1)) / BITS_PER_BYTE) << 1; } static inline u64 nft_bitmap_total_size(u32 klen) { return sizeof(struct nft_bitmap) + nft_bitmap_size(klen); } static u64 nft_bitmap_privsize(const struct nlattr * const nla[], const struct nft_set_desc *desc) { u32 klen = ntohl(nla_get_be32(nla[NFTA_SET_KEY_LEN])); return nft_bitmap_total_size(klen); } static int nft_bitmap_init(const struct nft_set *set, const struct nft_set_desc *desc, const struct nlattr * const nla[]) { struct nft_bitmap *priv = nft_set_priv(set); INIT_LIST_HEAD(&priv->list); priv->bitmap_size = nft_bitmap_size(set->klen); return 0; } static void nft_bitmap_destroy(const struct nft_set *set) { struct nft_bitmap *priv = nft_set_priv(set); struct nft_bitmap_elem *be, *n; list_for_each_entry_safe(be, n, &priv->list, head) nft_set_elem_destroy(set, be, true); } static bool nft_bitmap_estimate(const struct nft_set_desc *desc, u32 features, struct nft_set_estimate *est) { /* Make sure bitmaps we don't get bitmaps larger than 16 Kbytes. */ if (desc->klen > 2) return false; else if (desc->expr) return false; est->size = nft_bitmap_total_size(desc->klen); est->lookup = NFT_SET_CLASS_O_1; est->space = NFT_SET_CLASS_O_1; return true; } const struct nft_set_type nft_set_bitmap_type = { .ops = { .privsize = nft_bitmap_privsize, .elemsize = offsetof(struct nft_bitmap_elem, ext), .estimate = nft_bitmap_estimate, .init = nft_bitmap_init, .destroy = nft_bitmap_destroy, .insert = nft_bitmap_insert, .remove = nft_bitmap_remove, .deactivate = nft_bitmap_deactivate, .flush = nft_bitmap_flush, .activate = nft_bitmap_activate, .lookup = nft_bitmap_lookup, .walk = nft_bitmap_walk, .get = nft_bitmap_get, }, }; |