Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | /* * Copyright (c) 2013, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _CRYPTO_ECC_H #define _CRYPTO_ECC_H #include <crypto/ecc_curve.h> #include <asm/unaligned.h> /* One digit is u64 qword. */ #define ECC_CURVE_NIST_P192_DIGITS 3 #define ECC_CURVE_NIST_P256_DIGITS 4 #define ECC_CURVE_NIST_P384_DIGITS 6 #define ECC_MAX_DIGITS (512 / 64) /* due to ecrdsa */ #define ECC_DIGITS_TO_BYTES_SHIFT 3 #define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT) #define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } /** * ecc_swap_digits() - Copy ndigits from big endian array to native array * @in: Input array * @out: Output array * @ndigits: Number of digits to copy */ static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits) { const __be64 *src = (__force __be64 *)in; int i; for (i = 0; i < ndigits; i++) out[i] = get_unaligned_be64(&src[ndigits - 1 - i]); } /** * ecc_is_key_valid() - Validate a given ECDH private key * * @curve_id: id representing the curve to use * @ndigits: curve's number of digits * @private_key: private key to be used for the given curve * @private_key_len: private key length * * Returns 0 if the key is acceptable, a negative value otherwise */ int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, const u64 *private_key, unsigned int private_key_len); /** * ecc_gen_privkey() - Generates an ECC private key. * The private key is a random integer in the range 0 < random < n, where n is a * prime that is the order of the cyclic subgroup generated by the distinguished * point G. * @curve_id: id representing the curve to use * @ndigits: curve number of digits * @private_key: buffer for storing the generated private key * * Returns 0 if the private key was generated successfully, a negative value * if an error occurred. */ int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey); /** * ecc_make_pub_key() - Compute an ECC public key * * @curve_id: id representing the curve to use * @ndigits: curve's number of digits * @private_key: pregenerated private key for the given curve * @public_key: buffer for storing the generated public key * * Returns 0 if the public key was generated successfully, a negative value * if an error occurred. */ int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits, const u64 *private_key, u64 *public_key); /** * crypto_ecdh_shared_secret() - Compute a shared secret * * @curve_id: id representing the curve to use * @ndigits: curve's number of digits * @private_key: private key of part A * @public_key: public key of counterpart B * @secret: buffer for storing the calculated shared secret * * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret * before using it for symmetric encryption or HMAC. * * Returns 0 if the shared secret was generated successfully, a negative value * if an error occurred. */ int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, const u64 *private_key, const u64 *public_key, u64 *secret); /** * ecc_is_pubkey_valid_partial() - Partial public key validation * * @curve: elliptic curve domain parameters * @pk: public key as a point * * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial * Public-Key Validation Routine. * * Note: There is no check that the public key is in the correct elliptic curve * subgroup. * * Return: 0 if validation is successful, -EINVAL if validation is failed. */ int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, struct ecc_point *pk); /** * ecc_is_pubkey_valid_full() - Full public key validation * * @curve: elliptic curve domain parameters * @pk: public key as a point * * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full * Public-Key Validation Routine. * * Return: 0 if validation is successful, -EINVAL if validation is failed. */ int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, struct ecc_point *pk); /** * vli_is_zero() - Determine is vli is zero * * @vli: vli to check. * @ndigits: length of the @vli */ bool vli_is_zero(const u64 *vli, unsigned int ndigits); /** * vli_cmp() - compare left and right vlis * * @left: vli * @right: vli * @ndigits: length of both vlis * * Returns sign of @left - @right, i.e. -1 if @left < @right, * 0 if @left == @right, 1 if @left > @right. */ int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); /** * vli_sub() - Subtracts right from left * * @result: where to write result * @left: vli * @right vli * @ndigits: length of all vlis * * Note: can modify in-place. * * Return: carry bit. */ u64 vli_sub(u64 *result, const u64 *left, const u64 *right, unsigned int ndigits); /** * vli_from_be64() - Load vli from big-endian u64 array * * @dest: destination vli * @src: source array of u64 BE values * @ndigits: length of both vli and array */ void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); /** * vli_from_le64() - Load vli from little-endian u64 array * * @dest: destination vli * @src: source array of u64 LE values * @ndigits: length of both vli and array */ void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); /** * vli_mod_inv() - Modular inversion * * @result: where to write vli number * @input: vli value to operate on * @mod: modulus * @ndigits: length of all vlis */ void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, unsigned int ndigits); /** * vli_mod_mult_slow() - Modular multiplication * * @result: where to write result value * @left: vli number to multiply with @right * @right: vli number to multiply with @left * @mod: modulus * @ndigits: length of all vlis * * Note: Assumes that mod is big enough curve order. */ void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, const u64 *mod, unsigned int ndigits); /** * ecc_point_mult_shamir() - Add two points multiplied by scalars * * @result: resulting point * @x: scalar to multiply with @p * @p: point to multiply with @x * @y: scalar to multiply with @q * @q: point to multiply with @y * @curve: curve * * Returns result = x * p + x * q over the curve. * This works faster than two multiplications and addition. */ void ecc_point_mult_shamir(const struct ecc_point *result, const u64 *x, const struct ecc_point *p, const u64 *y, const struct ecc_point *q, const struct ecc_curve *curve); #endif |