Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 | // SPDX-License-Identifier: GPL-2.0-only /* * Generic helpers for smp ipi calls * * (C) Jens Axboe <jens.axboe@oracle.com> 2008 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/irq_work.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/gfp.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/sched/idle.h> #include <linux/hypervisor.h> #include <linux/sched/clock.h> #include <linux/nmi.h> #include <linux/sched/debug.h> #include <linux/jump_label.h> #include "smpboot.h" #include "sched/smp.h" #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG union cfd_seq_cnt { u64 val; struct { u64 src:16; u64 dst:16; #define CFD_SEQ_NOCPU 0xffff u64 type:4; #define CFD_SEQ_QUEUE 0 #define CFD_SEQ_IPI 1 #define CFD_SEQ_NOIPI 2 #define CFD_SEQ_PING 3 #define CFD_SEQ_PINGED 4 #define CFD_SEQ_HANDLE 5 #define CFD_SEQ_DEQUEUE 6 #define CFD_SEQ_IDLE 7 #define CFD_SEQ_GOTIPI 8 #define CFD_SEQ_HDLEND 9 u64 cnt:28; } u; }; static char *seq_type[] = { [CFD_SEQ_QUEUE] = "queue", [CFD_SEQ_IPI] = "ipi", [CFD_SEQ_NOIPI] = "noipi", [CFD_SEQ_PING] = "ping", [CFD_SEQ_PINGED] = "pinged", [CFD_SEQ_HANDLE] = "handle", [CFD_SEQ_DEQUEUE] = "dequeue (src CPU 0 == empty)", [CFD_SEQ_IDLE] = "idle", [CFD_SEQ_GOTIPI] = "gotipi", [CFD_SEQ_HDLEND] = "hdlend (src CPU 0 == early)", }; struct cfd_seq_local { u64 ping; u64 pinged; u64 handle; u64 dequeue; u64 idle; u64 gotipi; u64 hdlend; }; #endif struct cfd_percpu { call_single_data_t csd; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG u64 seq_queue; u64 seq_ipi; u64 seq_noipi; #endif }; struct call_function_data { struct cfd_percpu __percpu *pcpu; cpumask_var_t cpumask; cpumask_var_t cpumask_ipi; }; static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); static void flush_smp_call_function_queue(bool warn_cpu_offline); int smpcfd_prepare_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, cpu_to_node(cpu))) return -ENOMEM; if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, cpu_to_node(cpu))) { free_cpumask_var(cfd->cpumask); return -ENOMEM; } cfd->pcpu = alloc_percpu(struct cfd_percpu); if (!cfd->pcpu) { free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); return -ENOMEM; } return 0; } int smpcfd_dead_cpu(unsigned int cpu) { struct call_function_data *cfd = &per_cpu(cfd_data, cpu); free_cpumask_var(cfd->cpumask); free_cpumask_var(cfd->cpumask_ipi); free_percpu(cfd->pcpu); return 0; } int smpcfd_dying_cpu(unsigned int cpu) { /* * The IPIs for the smp-call-function callbacks queued by other * CPUs might arrive late, either due to hardware latencies or * because this CPU disabled interrupts (inside stop-machine) * before the IPIs were sent. So flush out any pending callbacks * explicitly (without waiting for the IPIs to arrive), to * ensure that the outgoing CPU doesn't go offline with work * still pending. */ flush_smp_call_function_queue(false); irq_work_run(); return 0; } void __init call_function_init(void) { int i; for_each_possible_cpu(i) init_llist_head(&per_cpu(call_single_queue, i)); smpcfd_prepare_cpu(smp_processor_id()); } #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled); static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended); static int __init csdlock_debug(char *str) { unsigned int val = 0; if (str && !strcmp(str, "ext")) { val = 1; static_branch_enable(&csdlock_debug_extended); } else get_option(&str, &val); if (val) static_branch_enable(&csdlock_debug_enabled); return 1; } __setup("csdlock_debug=", csdlock_debug); static DEFINE_PER_CPU(call_single_data_t *, cur_csd); static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); static DEFINE_PER_CPU(void *, cur_csd_info); static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local); #define CSD_LOCK_TIMEOUT (5ULL * NSEC_PER_SEC) static atomic_t csd_bug_count = ATOMIC_INIT(0); static u64 cfd_seq; #define CFD_SEQ(s, d, t, c) \ (union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c } static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type) { union cfd_seq_cnt new, old; new = CFD_SEQ(src, dst, type, 0); do { old.val = READ_ONCE(cfd_seq); new.u.cnt = old.u.cnt + 1; } while (cmpxchg(&cfd_seq, old.val, new.val) != old.val); return old.val; } #define cfd_seq_store(var, src, dst, type) \ do { \ if (static_branch_unlikely(&csdlock_debug_extended)) \ var = cfd_seq_inc(src, dst, type); \ } while (0) /* Record current CSD work for current CPU, NULL to erase. */ static void __csd_lock_record(struct __call_single_data *csd) { if (!csd) { smp_mb(); /* NULL cur_csd after unlock. */ __this_cpu_write(cur_csd, NULL); return; } __this_cpu_write(cur_csd_func, csd->func); __this_cpu_write(cur_csd_info, csd->info); smp_wmb(); /* func and info before csd. */ __this_cpu_write(cur_csd, csd); smp_mb(); /* Update cur_csd before function call. */ /* Or before unlock, as the case may be. */ } static __always_inline void csd_lock_record(struct __call_single_data *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) __csd_lock_record(csd); } static int csd_lock_wait_getcpu(struct __call_single_data *csd) { unsigned int csd_type; csd_type = CSD_TYPE(csd); if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ return -1; } static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst, unsigned int type, union cfd_seq_cnt *data, unsigned int *n_data, unsigned int now) { union cfd_seq_cnt new[2]; unsigned int i, j, k; new[0].val = val; new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1); for (i = 0; i < 2; i++) { if (new[i].u.cnt <= now) new[i].u.cnt |= 0x80000000U; for (j = 0; j < *n_data; j++) { if (new[i].u.cnt == data[j].u.cnt) { /* Direct read value trumps generated one. */ if (i == 0) data[j].val = new[i].val; break; } if (new[i].u.cnt < data[j].u.cnt) { for (k = *n_data; k > j; k--) data[k].val = data[k - 1].val; data[j].val = new[i].val; (*n_data)++; break; } } if (j == *n_data) { data[j].val = new[i].val; (*n_data)++; } } } static const char *csd_lock_get_type(unsigned int type) { return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type]; } static void csd_lock_print_extended(struct __call_single_data *csd, int cpu) { struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu); unsigned int srccpu = csd->node.src; struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu); struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); unsigned int now; union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)]; unsigned int n_data = 0, i; data[0].val = READ_ONCE(cfd_seq); now = data[0].u.cnt; cfd_seq_data_add(pcpu->seq_queue, srccpu, cpu, CFD_SEQ_QUEUE, data, &n_data, now); cfd_seq_data_add(pcpu->seq_ipi, srccpu, cpu, CFD_SEQ_IPI, data, &n_data, now); cfd_seq_data_add(pcpu->seq_noipi, srccpu, cpu, CFD_SEQ_NOIPI, data, &n_data, now); cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING, data, &n_data, now); cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now); cfd_seq_data_add(seq->idle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE, data, &n_data, now); cfd_seq_data_add(seq->gotipi, CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI, data, &n_data, now); cfd_seq_data_add(seq->handle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE, data, &n_data, now); cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now); cfd_seq_data_add(seq->hdlend, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND, data, &n_data, now); for (i = 0; i < n_data; i++) { pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n", data[i].u.cnt & ~0x80000000U, data[i].u.src, data[i].u.dst, csd_lock_get_type(data[i].u.type)); } pr_alert("\tcsd: cnt now: %07x\n", now); } /* * Complain if too much time spent waiting. Note that only * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, * so waiting on other types gets much less information. */ static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id) { int cpu = -1; int cpux; bool firsttime; u64 ts2, ts_delta; call_single_data_t *cpu_cur_csd; unsigned int flags = READ_ONCE(csd->node.u_flags); if (!(flags & CSD_FLAG_LOCK)) { if (!unlikely(*bug_id)) return true; cpu = csd_lock_wait_getcpu(csd); pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", *bug_id, raw_smp_processor_id(), cpu); return true; } ts2 = sched_clock(); ts_delta = ts2 - *ts1; if (likely(ts_delta <= CSD_LOCK_TIMEOUT)) return false; firsttime = !*bug_id; if (firsttime) *bug_id = atomic_inc_return(&csd_bug_count); cpu = csd_lock_wait_getcpu(csd); if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) cpux = 0; else cpux = cpu; cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n", firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0, cpu, csd->func, csd->info); if (cpu_cur_csd && csd != cpu_cur_csd) { pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), READ_ONCE(per_cpu(cur_csd_info, cpux))); } else { pr_alert("\tcsd: CSD lock (#%d) %s.\n", *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); } if (cpu >= 0) { if (static_branch_unlikely(&csdlock_debug_extended)) csd_lock_print_extended(csd, cpu); if (!trigger_single_cpu_backtrace(cpu)) dump_cpu_task(cpu); if (!cpu_cur_csd) { pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); arch_send_call_function_single_ipi(cpu); } } dump_stack(); *ts1 = ts2; return false; } /* * csd_lock/csd_unlock used to serialize access to per-cpu csd resources * * For non-synchronous ipi calls the csd can still be in use by the * previous function call. For multi-cpu calls its even more interesting * as we'll have to ensure no other cpu is observing our csd. */ static void __csd_lock_wait(struct __call_single_data *csd) { int bug_id = 0; u64 ts0, ts1; ts1 = ts0 = sched_clock(); for (;;) { if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id)) break; cpu_relax(); } smp_acquire__after_ctrl_dep(); } static __always_inline void csd_lock_wait(struct __call_single_data *csd) { if (static_branch_unlikely(&csdlock_debug_enabled)) { __csd_lock_wait(csd); return; } smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } static void __smp_call_single_queue_debug(int cpu, struct llist_node *node) { unsigned int this_cpu = smp_processor_id(); struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local); struct call_function_data *cfd = this_cpu_ptr(&cfd_data); struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE); if (llist_add(node, &per_cpu(call_single_queue, cpu))) { cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI); cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING); send_call_function_single_ipi(cpu); cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED); } else { cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI); } } #else #define cfd_seq_store(var, src, dst, type) static void csd_lock_record(struct __call_single_data *csd) { } static __always_inline void csd_lock_wait(struct __call_single_data *csd) { smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); } #endif static __always_inline void csd_lock(struct __call_single_data *csd) { csd_lock_wait(csd); csd->node.u_flags |= CSD_FLAG_LOCK; /* * prevent CPU from reordering the above assignment * to ->flags with any subsequent assignments to other * fields of the specified call_single_data_t structure: */ smp_wmb(); } static __always_inline void csd_unlock(struct __call_single_data *csd) { WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); /* * ensure we're all done before releasing data: */ smp_store_release(&csd->node.u_flags, 0); } static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); void __smp_call_single_queue(int cpu, struct llist_node *node) { #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG if (static_branch_unlikely(&csdlock_debug_extended)) { unsigned int type; type = CSD_TYPE(container_of(node, call_single_data_t, node.llist)); if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) { __smp_call_single_queue_debug(cpu, node); return; } } #endif /* * The list addition should be visible before sending the IPI * handler locks the list to pull the entry off it because of * normal cache coherency rules implied by spinlocks. * * If IPIs can go out of order to the cache coherency protocol * in an architecture, sufficient synchronisation should be added * to arch code to make it appear to obey cache coherency WRT * locking and barrier primitives. Generic code isn't really * equipped to do the right thing... */ if (llist_add(node, &per_cpu(call_single_queue, cpu))) send_call_function_single_ipi(cpu); } /* * Insert a previously allocated call_single_data_t element * for execution on the given CPU. data must already have * ->func, ->info, and ->flags set. */ static int generic_exec_single(int cpu, struct __call_single_data *csd) { if (cpu == smp_processor_id()) { smp_call_func_t func = csd->func; void *info = csd->info; unsigned long flags; /* * We can unlock early even for the synchronous on-stack case, * since we're doing this from the same CPU.. */ csd_lock_record(csd); csd_unlock(csd); local_irq_save(flags); func(info); csd_lock_record(NULL); local_irq_restore(flags); return 0; } if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { csd_unlock(csd); return -ENXIO; } __smp_call_single_queue(cpu, &csd->node.llist); return 0; } /** * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks * * Invoked by arch to handle an IPI for call function single. * Must be called with interrupts disabled. */ void generic_smp_call_function_single_interrupt(void) { cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_GOTIPI); flush_smp_call_function_queue(true); } /** * flush_smp_call_function_queue - Flush pending smp-call-function callbacks * * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an * offline CPU. Skip this check if set to 'false'. * * Flush any pending smp-call-function callbacks queued on this CPU. This is * invoked by the generic IPI handler, as well as by a CPU about to go offline, * to ensure that all pending IPI callbacks are run before it goes completely * offline. * * Loop through the call_single_queue and run all the queued callbacks. * Must be called with interrupts disabled. */ static void flush_smp_call_function_queue(bool warn_cpu_offline) { call_single_data_t *csd, *csd_next; struct llist_node *entry, *prev; struct llist_head *head; static bool warned; lockdep_assert_irqs_disabled(); head = this_cpu_ptr(&call_single_queue); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_HANDLE); entry = llist_del_all(head); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue, /* Special meaning of source cpu: 0 == queue empty */ entry ? CFD_SEQ_NOCPU : 0, smp_processor_id(), CFD_SEQ_DEQUEUE); entry = llist_reverse_order(entry); /* There shouldn't be any pending callbacks on an offline CPU. */ if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && !warned && entry != NULL)) { warned = true; WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); /* * We don't have to use the _safe() variant here * because we are not invoking the IPI handlers yet. */ llist_for_each_entry(csd, entry, node.llist) { switch (CSD_TYPE(csd)) { case CSD_TYPE_ASYNC: case CSD_TYPE_SYNC: case CSD_TYPE_IRQ_WORK: pr_warn("IPI callback %pS sent to offline CPU\n", csd->func); break; case CSD_TYPE_TTWU: pr_warn("IPI task-wakeup sent to offline CPU\n"); break; default: pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", CSD_TYPE(csd)); break; } } } /* * First; run all SYNC callbacks, people are waiting for us. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { /* Do we wait until *after* callback? */ if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { smp_call_func_t func = csd->func; void *info = csd->info; if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } csd_lock_record(csd); func(info); csd_unlock(csd); csd_lock_record(NULL); } else { prev = &csd->node.llist; } } if (!entry) { cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, 0, smp_processor_id(), CFD_SEQ_HDLEND); return; } /* * Second; run all !SYNC callbacks. */ prev = NULL; llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { int type = CSD_TYPE(csd); if (type != CSD_TYPE_TTWU) { if (prev) { prev->next = &csd_next->node.llist; } else { entry = &csd_next->node.llist; } if (type == CSD_TYPE_ASYNC) { smp_call_func_t func = csd->func; void *info = csd->info; csd_lock_record(csd); csd_unlock(csd); func(info); csd_lock_record(NULL); } else if (type == CSD_TYPE_IRQ_WORK) { irq_work_single(csd); } } else { prev = &csd->node.llist; } } /* * Third; only CSD_TYPE_TTWU is left, issue those. */ if (entry) sched_ttwu_pending(entry); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_HDLEND); } void flush_smp_call_function_from_idle(void) { unsigned long flags; if (llist_empty(this_cpu_ptr(&call_single_queue))) return; cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU, smp_processor_id(), CFD_SEQ_IDLE); local_irq_save(flags); flush_smp_call_function_queue(true); if (local_softirq_pending()) do_softirq(); local_irq_restore(flags); } /* * smp_call_function_single - Run a function on a specific CPU * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed on other CPUs. * * Returns 0 on success, else a negative status code. */ int smp_call_function_single(int cpu, smp_call_func_t func, void *info, int wait) { call_single_data_t *csd; call_single_data_t csd_stack = { .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, }; int this_cpu; int err; /* * prevent preemption and reschedule on another processor, * as well as CPU removal */ this_cpu = get_cpu(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() && !oops_in_progress); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); csd = &csd_stack; if (!wait) { csd = this_cpu_ptr(&csd_data); csd_lock(csd); } csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif err = generic_exec_single(cpu, csd); if (wait) csd_lock_wait(csd); put_cpu(); return err; } EXPORT_SYMBOL(smp_call_function_single); /** * smp_call_function_single_async() - Run an asynchronous function on a * specific CPU. * @cpu: The CPU to run on. * @csd: Pre-allocated and setup data structure * * Like smp_call_function_single(), but the call is asynchonous and * can thus be done from contexts with disabled interrupts. * * The caller passes his own pre-allocated data structure * (ie: embedded in an object) and is responsible for synchronizing it * such that the IPIs performed on the @csd are strictly serialized. * * If the function is called with one csd which has not yet been * processed by previous call to smp_call_function_single_async(), the * function will return immediately with -EBUSY showing that the csd * object is still in progress. * * NOTE: Be careful, there is unfortunately no current debugging facility to * validate the correctness of this serialization. * * Return: %0 on success or negative errno value on error */ int smp_call_function_single_async(int cpu, struct __call_single_data *csd) { int err = 0; preempt_disable(); if (csd->node.u_flags & CSD_FLAG_LOCK) { err = -EBUSY; goto out; } csd->node.u_flags = CSD_FLAG_LOCK; smp_wmb(); err = generic_exec_single(cpu, csd); out: preempt_enable(); return err; } EXPORT_SYMBOL_GPL(smp_call_function_single_async); /* * smp_call_function_any - Run a function on any of the given cpus * @mask: The mask of cpus it can run on. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait until function has completed. * * Returns 0 on success, else a negative status code (if no cpus were online). * * Selection preference: * 1) current cpu if in @mask * 2) any cpu of current node if in @mask * 3) any other online cpu in @mask */ int smp_call_function_any(const struct cpumask *mask, smp_call_func_t func, void *info, int wait) { unsigned int cpu; const struct cpumask *nodemask; int ret; /* Try for same CPU (cheapest) */ cpu = get_cpu(); if (cpumask_test_cpu(cpu, mask)) goto call; /* Try for same node. */ nodemask = cpumask_of_node(cpu_to_node(cpu)); for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; cpu = cpumask_next_and(cpu, nodemask, mask)) { if (cpu_online(cpu)) goto call; } /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ cpu = cpumask_any_and(mask, cpu_online_mask); call: ret = smp_call_function_single(cpu, func, info, wait); put_cpu(); return ret; } EXPORT_SYMBOL_GPL(smp_call_function_any); /* * Flags to be used as scf_flags argument of smp_call_function_many_cond(). * * %SCF_WAIT: Wait until function execution is completed * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask */ #define SCF_WAIT (1U << 0) #define SCF_RUN_LOCAL (1U << 1) static void smp_call_function_many_cond(const struct cpumask *mask, smp_call_func_t func, void *info, unsigned int scf_flags, smp_cond_func_t cond_func) { int cpu, last_cpu, this_cpu = smp_processor_id(); struct call_function_data *cfd; bool wait = scf_flags & SCF_WAIT; bool run_remote = false; bool run_local = false; int nr_cpus = 0; lockdep_assert_preemption_disabled(); /* * Can deadlock when called with interrupts disabled. * We allow cpu's that are not yet online though, as no one else can * send smp call function interrupt to this cpu and as such deadlocks * can't happen. */ if (cpu_online(this_cpu) && !oops_in_progress && !early_boot_irqs_disabled) lockdep_assert_irqs_enabled(); /* * When @wait we can deadlock when we interrupt between llist_add() and * arch_send_call_function_ipi*(); when !@wait we can deadlock due to * csd_lock() on because the interrupt context uses the same csd * storage. */ WARN_ON_ONCE(!in_task()); /* Check if we need local execution. */ if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask)) run_local = true; /* Check if we need remote execution, i.e., any CPU excluding this one. */ cpu = cpumask_first_and(mask, cpu_online_mask); if (cpu == this_cpu) cpu = cpumask_next_and(cpu, mask, cpu_online_mask); if (cpu < nr_cpu_ids) run_remote = true; if (run_remote) { cfd = this_cpu_ptr(&cfd_data); cpumask_and(cfd->cpumask, mask, cpu_online_mask); __cpumask_clear_cpu(this_cpu, cfd->cpumask); cpumask_clear(cfd->cpumask_ipi); for_each_cpu(cpu, cfd->cpumask) { struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu); call_single_data_t *csd = &pcpu->csd; if (cond_func && !cond_func(cpu, info)) continue; csd_lock(csd); if (wait) csd->node.u_flags |= CSD_TYPE_SYNC; csd->func = func; csd->info = info; #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG csd->node.src = smp_processor_id(); csd->node.dst = cpu; #endif cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE); if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { __cpumask_set_cpu(cpu, cfd->cpumask_ipi); nr_cpus++; last_cpu = cpu; cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI); } else { cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI); } } cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING); /* * Choose the most efficient way to send an IPI. Note that the * number of CPUs might be zero due to concurrent changes to the * provided mask. */ if (nr_cpus == 1) send_call_function_single_ipi(last_cpu); else if (likely(nr_cpus > 1)) arch_send_call_function_ipi_mask(cfd->cpumask_ipi); cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED); } if (run_local && (!cond_func || cond_func(this_cpu, info))) { unsigned long flags; local_irq_save(flags); func(info); local_irq_restore(flags); } if (run_remote && wait) { for_each_cpu(cpu, cfd->cpumask) { call_single_data_t *csd; csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd; csd_lock_wait(csd); } } } /** * smp_call_function_many(): Run a function on a set of CPUs. * @mask: The set of cpus to run on (only runs on online subset). * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait * (atomically) until function has completed on other CPUs. If * %SCF_RUN_LOCAL is set, the function will also be run locally * if the local CPU is set in the @cpumask. * * If @wait is true, then returns once @func has returned. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. Preemption * must be disabled when calling this function. */ void smp_call_function_many(const struct cpumask *mask, smp_call_func_t func, void *info, bool wait) { smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); } EXPORT_SYMBOL(smp_call_function_many); /** * smp_call_function(): Run a function on all other CPUs. * @func: The function to run. This must be fast and non-blocking. * @info: An arbitrary pointer to pass to the function. * @wait: If true, wait (atomically) until function has completed * on other CPUs. * * Returns 0. * * If @wait is true, then returns once @func has returned; otherwise * it returns just before the target cpu calls @func. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ void smp_call_function(smp_call_func_t func, void *info, int wait) { preempt_disable(); smp_call_function_many(cpu_online_mask, func, info, wait); preempt_enable(); } EXPORT_SYMBOL(smp_call_function); /* Setup configured maximum number of CPUs to activate */ unsigned int setup_max_cpus = NR_CPUS; EXPORT_SYMBOL(setup_max_cpus); /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */ void __weak arch_disable_smp_support(void) { } static int __init nosmp(char *str) { setup_max_cpus = 0; arch_disable_smp_support(); return 0; } early_param("nosmp", nosmp); /* this is hard limit */ static int __init nrcpus(char *str) { int nr_cpus; if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) nr_cpu_ids = nr_cpus; return 0; } early_param("nr_cpus", nrcpus); static int __init maxcpus(char *str) { get_option(&str, &setup_max_cpus); if (setup_max_cpus == 0) arch_disable_smp_support(); return 0; } early_param("maxcpus", maxcpus); /* Setup number of possible processor ids */ unsigned int nr_cpu_ids __read_mostly = NR_CPUS; EXPORT_SYMBOL(nr_cpu_ids); /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ void __init setup_nr_cpu_ids(void) { nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1; } /* Called by boot processor to activate the rest. */ void __init smp_init(void) { int num_nodes, num_cpus; idle_threads_init(); cpuhp_threads_init(); pr_info("Bringing up secondary CPUs ...\n"); bringup_nonboot_cpus(setup_max_cpus); num_nodes = num_online_nodes(); num_cpus = num_online_cpus(); pr_info("Brought up %d node%s, %d CPU%s\n", num_nodes, (num_nodes > 1 ? "s" : ""), num_cpus, (num_cpus > 1 ? "s" : "")); /* Any cleanup work */ smp_cpus_done(setup_max_cpus); } /* * on_each_cpu_cond(): Call a function on each processor for which * the supplied function cond_func returns true, optionally waiting * for all the required CPUs to finish. This may include the local * processor. * @cond_func: A callback function that is passed a cpu id and * the info parameter. The function is called * with preemption disabled. The function should * return a blooean value indicating whether to IPI * the specified CPU. * @func: The function to run on all applicable CPUs. * This must be fast and non-blocking. * @info: An arbitrary pointer to pass to both functions. * @wait: If true, wait (atomically) until function has * completed on other CPUs. * * Preemption is disabled to protect against CPUs going offline but not online. * CPUs going online during the call will not be seen or sent an IPI. * * You must not call this function with disabled interrupts or * from a hardware interrupt handler or from a bottom half handler. */ void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, void *info, bool wait, const struct cpumask *mask) { unsigned int scf_flags = SCF_RUN_LOCAL; if (wait) scf_flags |= SCF_WAIT; preempt_disable(); smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); preempt_enable(); } EXPORT_SYMBOL(on_each_cpu_cond_mask); static void do_nothing(void *unused) { } /** * kick_all_cpus_sync - Force all cpus out of idle * * Used to synchronize the update of pm_idle function pointer. It's * called after the pointer is updated and returns after the dummy * callback function has been executed on all cpus. The execution of * the function can only happen on the remote cpus after they have * left the idle function which had been called via pm_idle function * pointer. So it's guaranteed that nothing uses the previous pointer * anymore. */ void kick_all_cpus_sync(void) { /* Make sure the change is visible before we kick the cpus */ smp_mb(); smp_call_function(do_nothing, NULL, 1); } EXPORT_SYMBOL_GPL(kick_all_cpus_sync); /** * wake_up_all_idle_cpus - break all cpus out of idle * wake_up_all_idle_cpus try to break all cpus which is in idle state even * including idle polling cpus, for non-idle cpus, we will do nothing * for them. */ void wake_up_all_idle_cpus(void) { int cpu; preempt_disable(); for_each_online_cpu(cpu) { if (cpu == smp_processor_id()) continue; wake_up_if_idle(cpu); } preempt_enable(); } EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); /** * struct smp_call_on_cpu_struct - Call a function on a specific CPU * @work: &work_struct * @done: &completion to signal * @func: function to call * @data: function's data argument * @ret: return value from @func * @cpu: target CPU (%-1 for any CPU) * * Used to call a function on a specific cpu and wait for it to return. * Optionally make sure the call is done on a specified physical cpu via vcpu * pinning in order to support virtualized environments. */ struct smp_call_on_cpu_struct { struct work_struct work; struct completion done; int (*func)(void *); void *data; int ret; int cpu; }; static void smp_call_on_cpu_callback(struct work_struct *work) { struct smp_call_on_cpu_struct *sscs; sscs = container_of(work, struct smp_call_on_cpu_struct, work); if (sscs->cpu >= 0) hypervisor_pin_vcpu(sscs->cpu); sscs->ret = sscs->func(sscs->data); if (sscs->cpu >= 0) hypervisor_pin_vcpu(-1); complete(&sscs->done); } int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) { struct smp_call_on_cpu_struct sscs = { .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), .func = func, .data = par, .cpu = phys ? cpu : -1, }; INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); if (cpu >= nr_cpu_ids || !cpu_online(cpu)) return -ENXIO; queue_work_on(cpu, system_wq, &sscs.work); wait_for_completion(&sscs.done); return sscs.ret; } EXPORT_SYMBOL_GPL(smp_call_on_cpu); |