Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Intel IXP4xx Network Processor Engine driver for Linux
 *
 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
 *
 * The code is based on publicly available information:
 * - Intel IXP4xx Developer's Manual and other e-papers
 * - Intel IXP400 Access Library Software (BSD license)
 * - previous works by Christian Hohnstaedt <chohnstaedt@innominate.com>
 *   Thanks, Christian.
 */

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/soc/ixp4xx/npe.h>
#include <linux/soc/ixp4xx/cpu.h>

#define DEBUG_MSG			0
#define DEBUG_FW			0

#define NPE_COUNT			3
#define MAX_RETRIES			1000	/* microseconds */
#define NPE_42X_DATA_SIZE		0x800	/* in dwords */
#define NPE_46X_DATA_SIZE		0x1000
#define NPE_A_42X_INSTR_SIZE		0x1000
#define NPE_B_AND_C_42X_INSTR_SIZE	0x800
#define NPE_46X_INSTR_SIZE		0x1000
#define REGS_SIZE			0x1000

#define NPE_PHYS_REG			32

#define FW_MAGIC			0xFEEDF00D
#define FW_BLOCK_TYPE_INSTR		0x0
#define FW_BLOCK_TYPE_DATA		0x1
#define FW_BLOCK_TYPE_EOF		0xF

/* NPE exec status (read) and command (write) */
#define CMD_NPE_STEP			0x01
#define CMD_NPE_START			0x02
#define CMD_NPE_STOP			0x03
#define CMD_NPE_CLR_PIPE		0x04
#define CMD_CLR_PROFILE_CNT		0x0C
#define CMD_RD_INS_MEM			0x10 /* instruction memory */
#define CMD_WR_INS_MEM			0x11
#define CMD_RD_DATA_MEM			0x12 /* data memory */
#define CMD_WR_DATA_MEM			0x13
#define CMD_RD_ECS_REG			0x14 /* exec access register */
#define CMD_WR_ECS_REG			0x15

#define STAT_RUN			0x80000000
#define STAT_STOP			0x40000000
#define STAT_CLEAR			0x20000000
#define STAT_ECS_K			0x00800000 /* pipeline clean */

#define NPE_STEVT			0x1B
#define NPE_STARTPC			0x1C
#define NPE_REGMAP			0x1E
#define NPE_CINDEX			0x1F

#define INSTR_WR_REG_SHORT		0x0000C000
#define INSTR_WR_REG_BYTE		0x00004000
#define INSTR_RD_FIFO			0x0F888220
#define INSTR_RESET_MBOX		0x0FAC8210

#define ECS_BG_CTXT_REG_0		0x00 /* Background Executing Context */
#define ECS_BG_CTXT_REG_1		0x01 /*		Stack level */
#define ECS_BG_CTXT_REG_2		0x02
#define ECS_PRI_1_CTXT_REG_0		0x04 /* Priority 1 Executing Context */
#define ECS_PRI_1_CTXT_REG_1		0x05 /*		Stack level */
#define ECS_PRI_1_CTXT_REG_2		0x06
#define ECS_PRI_2_CTXT_REG_0		0x08 /* Priority 2 Executing Context */
#define ECS_PRI_2_CTXT_REG_1		0x09 /*		Stack level */
#define ECS_PRI_2_CTXT_REG_2		0x0A
#define ECS_DBG_CTXT_REG_0		0x0C /* Debug Executing Context */
#define ECS_DBG_CTXT_REG_1		0x0D /*		Stack level */
#define ECS_DBG_CTXT_REG_2		0x0E
#define ECS_INSTRUCT_REG		0x11 /* NPE Instruction Register */

#define ECS_REG_0_ACTIVE		0x80000000 /* all levels */
#define ECS_REG_0_NEXTPC_MASK		0x1FFF0000 /* BG/PRI1/PRI2 levels */
#define ECS_REG_0_LDUR_BITS		8
#define ECS_REG_0_LDUR_MASK		0x00000700 /* all levels */
#define ECS_REG_1_CCTXT_BITS		16
#define ECS_REG_1_CCTXT_MASK		0x000F0000 /* all levels */
#define ECS_REG_1_SELCTXT_BITS		0
#define ECS_REG_1_SELCTXT_MASK		0x0000000F /* all levels */
#define ECS_DBG_REG_2_IF		0x00100000 /* debug level */
#define ECS_DBG_REG_2_IE		0x00080000 /* debug level */

/* NPE watchpoint_fifo register bit */
#define WFIFO_VALID			0x80000000

/* NPE messaging_status register bit definitions */
#define MSGSTAT_OFNE	0x00010000 /* OutFifoNotEmpty */
#define MSGSTAT_IFNF	0x00020000 /* InFifoNotFull */
#define MSGSTAT_OFNF	0x00040000 /* OutFifoNotFull */
#define MSGSTAT_IFNE	0x00080000 /* InFifoNotEmpty */
#define MSGSTAT_MBINT	0x00100000 /* Mailbox interrupt */
#define MSGSTAT_IFINT	0x00200000 /* InFifo interrupt */
#define MSGSTAT_OFINT	0x00400000 /* OutFifo interrupt */
#define MSGSTAT_WFINT	0x00800000 /* WatchFifo interrupt */

/* NPE messaging_control register bit definitions */
#define MSGCTL_OUT_FIFO			0x00010000 /* enable output FIFO */
#define MSGCTL_IN_FIFO			0x00020000 /* enable input FIFO */
#define MSGCTL_OUT_FIFO_WRITE		0x01000000 /* enable FIFO + WRITE */
#define MSGCTL_IN_FIFO_WRITE		0x02000000

/* NPE mailbox_status value for reset */
#define RESET_MBOX_STAT			0x0000F0F0

#define NPE_A_FIRMWARE "NPE-A"
#define NPE_B_FIRMWARE "NPE-B"
#define NPE_C_FIRMWARE "NPE-C"

const char *npe_names[] = { NPE_A_FIRMWARE, NPE_B_FIRMWARE, NPE_C_FIRMWARE };

#define print_npe(pri, npe, fmt, ...)					\
	printk(pri "%s: " fmt, npe_name(npe), ## __VA_ARGS__)

#if DEBUG_MSG
#define debug_msg(npe, fmt, ...)					\
	print_npe(KERN_DEBUG, npe, fmt, ## __VA_ARGS__)
#else
#define debug_msg(npe, fmt, ...)
#endif

static struct {
	u32 reg, val;
} ecs_reset[] = {
	{ ECS_BG_CTXT_REG_0,	0xA0000000 },
	{ ECS_BG_CTXT_REG_1,	0x01000000 },
	{ ECS_BG_CTXT_REG_2,	0x00008000 },
	{ ECS_PRI_1_CTXT_REG_0,	0x20000080 },
	{ ECS_PRI_1_CTXT_REG_1,	0x01000000 },
	{ ECS_PRI_1_CTXT_REG_2,	0x00008000 },
	{ ECS_PRI_2_CTXT_REG_0,	0x20000080 },
	{ ECS_PRI_2_CTXT_REG_1,	0x01000000 },
	{ ECS_PRI_2_CTXT_REG_2,	0x00008000 },
	{ ECS_DBG_CTXT_REG_0,	0x20000000 },
	{ ECS_DBG_CTXT_REG_1,	0x00000000 },
	{ ECS_DBG_CTXT_REG_2,	0x001E0000 },
	{ ECS_INSTRUCT_REG,	0x1003C00F },
};

static struct npe npe_tab[NPE_COUNT] = {
	{
		.id	= 0,
	}, {
		.id	= 1,
	}, {
		.id	= 2,
	}
};

int npe_running(struct npe *npe)
{
	return (__raw_readl(&npe->regs->exec_status_cmd) & STAT_RUN) != 0;
}

static void npe_cmd_write(struct npe *npe, u32 addr, int cmd, u32 data)
{
	__raw_writel(data, &npe->regs->exec_data);
	__raw_writel(addr, &npe->regs->exec_addr);
	__raw_writel(cmd, &npe->regs->exec_status_cmd);
}

static u32 npe_cmd_read(struct npe *npe, u32 addr, int cmd)
{
	__raw_writel(addr, &npe->regs->exec_addr);
	__raw_writel(cmd, &npe->regs->exec_status_cmd);
	/* Iintroduce extra read cycles after issuing read command to NPE
	   so that we read the register after the NPE has updated it.
	   This is to overcome race condition between XScale and NPE */
	__raw_readl(&npe->regs->exec_data);
	__raw_readl(&npe->regs->exec_data);
	return __raw_readl(&npe->regs->exec_data);
}

static void npe_clear_active(struct npe *npe, u32 reg)
{
	u32 val = npe_cmd_read(npe, reg, CMD_RD_ECS_REG);
	npe_cmd_write(npe, reg, CMD_WR_ECS_REG, val & ~ECS_REG_0_ACTIVE);
}

static void npe_start(struct npe *npe)
{
	/* ensure only Background Context Stack Level is active */
	npe_clear_active(npe, ECS_PRI_1_CTXT_REG_0);
	npe_clear_active(npe, ECS_PRI_2_CTXT_REG_0);
	npe_clear_active(npe, ECS_DBG_CTXT_REG_0);

	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
	__raw_writel(CMD_NPE_START, &npe->regs->exec_status_cmd);
}

static void npe_stop(struct npe *npe)
{
	__raw_writel(CMD_NPE_STOP, &npe->regs->exec_status_cmd);
	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd); /*FIXME?*/
}

static int __must_check npe_debug_instr(struct npe *npe, u32 instr, u32 ctx,
					u32 ldur)
{
	u32 wc;
	int i;

	/* set the Active bit, and the LDUR, in the debug level */
	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG,
		      ECS_REG_0_ACTIVE | (ldur << ECS_REG_0_LDUR_BITS));

	/* set CCTXT at ECS DEBUG L3 to specify in which context to execute
	   the instruction, and set SELCTXT at ECS DEBUG Level to specify
	   which context store to access.
	   Debug ECS Level Reg 1 has form 0x000n000n, where n = context number
	*/
	npe_cmd_write(npe, ECS_DBG_CTXT_REG_1, CMD_WR_ECS_REG,
		      (ctx << ECS_REG_1_CCTXT_BITS) |
		      (ctx << ECS_REG_1_SELCTXT_BITS));

	/* clear the pipeline */
	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);

	/* load NPE instruction into the instruction register */
	npe_cmd_write(npe, ECS_INSTRUCT_REG, CMD_WR_ECS_REG, instr);

	/* we need this value later to wait for completion of NPE execution
	   step */
	wc = __raw_readl(&npe->regs->watch_count);

	/* issue a Step One command via the Execution Control register */
	__raw_writel(CMD_NPE_STEP, &npe->regs->exec_status_cmd);

	/* Watch Count register increments when NPE completes an instruction */
	for (i = 0; i < MAX_RETRIES; i++) {
		if (wc != __raw_readl(&npe->regs->watch_count))
			return 0;
		udelay(1);
	}

	print_npe(KERN_ERR, npe, "reset: npe_debug_instr(): timeout\n");
	return -ETIMEDOUT;
}

static int __must_check npe_logical_reg_write8(struct npe *npe, u32 addr,
					       u8 val, u32 ctx)
{
	/* here we build the NPE assembler instruction: mov8 d0, #0 */
	u32 instr = INSTR_WR_REG_BYTE |	/* OpCode */
		addr << 9 |		/* base Operand */
		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
		(val & ~0x1F) << (18 - 5);/* higher 3 bits to CoProc instr. */
	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
}

static int __must_check npe_logical_reg_write16(struct npe *npe, u32 addr,
						u16 val, u32 ctx)
{
	/* here we build the NPE assembler instruction: mov16 d0, #0 */
	u32 instr = INSTR_WR_REG_SHORT | /* OpCode */
		addr << 9 |		/* base Operand */
		(val & 0x1F) << 4 |	/* lower 5 bits to immediate data */
		(val & ~0x1F) << (18 - 5);/* higher 11 bits to CoProc instr. */
	return npe_debug_instr(npe, instr, ctx, 1); /* execute it */
}

static int __must_check npe_logical_reg_write32(struct npe *npe, u32 addr,
						u32 val, u32 ctx)
{
	/* write in 16 bit steps first the high and then the low value */
	if (npe_logical_reg_write16(npe, addr, val >> 16, ctx))
		return -ETIMEDOUT;
	return npe_logical_reg_write16(npe, addr + 2, val & 0xFFFF, ctx);
}

static int npe_reset(struct npe *npe)
{
	u32 val, ctl, exec_count, ctx_reg2;
	int i;

	ctl = (__raw_readl(&npe->regs->messaging_control) | 0x3F000000) &
		0x3F3FFFFF;

	/* disable parity interrupt */
	__raw_writel(ctl & 0x3F00FFFF, &npe->regs->messaging_control);

	/* pre exec - debug instruction */
	/* turn off the halt bit by clearing Execution Count register. */
	exec_count = __raw_readl(&npe->regs->exec_count);
	__raw_writel(0, &npe->regs->exec_count);
	/* ensure that IF and IE are on (temporarily), so that we don't end up
	   stepping forever */
	ctx_reg2 = npe_cmd_read(npe, ECS_DBG_CTXT_REG_2, CMD_RD_ECS_REG);
	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2 |
		      ECS_DBG_REG_2_IF | ECS_DBG_REG_2_IE);

	/* clear the FIFOs */
	while (__raw_readl(&npe->regs->watchpoint_fifo) & WFIFO_VALID)
		;
	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE)
		/* read from the outFIFO until empty */
		print_npe(KERN_DEBUG, npe, "npe_reset: read FIFO = 0x%X\n",
			  __raw_readl(&npe->regs->in_out_fifo));

	while (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)
		/* step execution of the NPE intruction to read inFIFO using
		   the Debug Executing Context stack */
		if (npe_debug_instr(npe, INSTR_RD_FIFO, 0, 0))
			return -ETIMEDOUT;

	/* reset the mailbox reg from the XScale side */
	__raw_writel(RESET_MBOX_STAT, &npe->regs->mailbox_status);
	/* from NPE side */
	if (npe_debug_instr(npe, INSTR_RESET_MBOX, 0, 0))
		return -ETIMEDOUT;

	/* Reset the physical registers in the NPE register file */
	for (val = 0; val < NPE_PHYS_REG; val++) {
		if (npe_logical_reg_write16(npe, NPE_REGMAP, val >> 1, 0))
			return -ETIMEDOUT;
		/* address is either 0 or 4 */
		if (npe_logical_reg_write32(npe, (val & 1) * 4, 0, 0))
			return -ETIMEDOUT;
	}

	/* Reset the context store = each context's Context Store registers */

	/* Context 0 has no STARTPC. Instead, this value is used to set NextPC
	   for Background ECS, to set where NPE starts executing code */
	val = npe_cmd_read(npe, ECS_BG_CTXT_REG_0, CMD_RD_ECS_REG);
	val &= ~ECS_REG_0_NEXTPC_MASK;
	val |= (0 /* NextPC */ << 16) & ECS_REG_0_NEXTPC_MASK;
	npe_cmd_write(npe, ECS_BG_CTXT_REG_0, CMD_WR_ECS_REG, val);

	for (i = 0; i < 16; i++) {
		if (i) {	/* Context 0 has no STEVT nor STARTPC */
			/* STEVT = off, 0x80 */
			if (npe_logical_reg_write8(npe, NPE_STEVT, 0x80, i))
				return -ETIMEDOUT;
			if (npe_logical_reg_write16(npe, NPE_STARTPC, 0, i))
				return -ETIMEDOUT;
		}
		/* REGMAP = d0->p0, d8->p2, d16->p4 */
		if (npe_logical_reg_write16(npe, NPE_REGMAP, 0x820, i))
			return -ETIMEDOUT;
		if (npe_logical_reg_write8(npe, NPE_CINDEX, 0, i))
			return -ETIMEDOUT;
	}

	/* post exec */
	/* clear active bit in debug level */
	npe_cmd_write(npe, ECS_DBG_CTXT_REG_0, CMD_WR_ECS_REG, 0);
	/* clear the pipeline */
	__raw_writel(CMD_NPE_CLR_PIPE, &npe->regs->exec_status_cmd);
	/* restore previous values */
	__raw_writel(exec_count, &npe->regs->exec_count);
	npe_cmd_write(npe, ECS_DBG_CTXT_REG_2, CMD_WR_ECS_REG, ctx_reg2);

	/* write reset values to Execution Context Stack registers */
	for (val = 0; val < ARRAY_SIZE(ecs_reset); val++)
		npe_cmd_write(npe, ecs_reset[val].reg, CMD_WR_ECS_REG,
			      ecs_reset[val].val);

	/* clear the profile counter */
	__raw_writel(CMD_CLR_PROFILE_CNT, &npe->regs->exec_status_cmd);

	__raw_writel(0, &npe->regs->exec_count);
	__raw_writel(0, &npe->regs->action_points[0]);
	__raw_writel(0, &npe->regs->action_points[1]);
	__raw_writel(0, &npe->regs->action_points[2]);
	__raw_writel(0, &npe->regs->action_points[3]);
	__raw_writel(0, &npe->regs->watch_count);

	val = ixp4xx_read_feature_bits();
	/* reset the NPE */
	ixp4xx_write_feature_bits(val &
				  ~(IXP4XX_FEATURE_RESET_NPEA << npe->id));
	/* deassert reset */
	ixp4xx_write_feature_bits(val |
				  (IXP4XX_FEATURE_RESET_NPEA << npe->id));
	for (i = 0; i < MAX_RETRIES; i++) {
		if (ixp4xx_read_feature_bits() &
		    (IXP4XX_FEATURE_RESET_NPEA << npe->id))
			break;	/* NPE is back alive */
		udelay(1);
	}
	if (i == MAX_RETRIES)
		return -ETIMEDOUT;

	npe_stop(npe);

	/* restore NPE configuration bus Control Register - parity settings */
	__raw_writel(ctl, &npe->regs->messaging_control);
	return 0;
}


int npe_send_message(struct npe *npe, const void *msg, const char *what)
{
	const u32 *send = msg;
	int cycles = 0;

	debug_msg(npe, "Trying to send message %s [%08X:%08X]\n",
		  what, send[0], send[1]);

	if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE) {
		debug_msg(npe, "NPE input FIFO not empty\n");
		return -EIO;
	}

	__raw_writel(send[0], &npe->regs->in_out_fifo);

	if (!(__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNF)) {
		debug_msg(npe, "NPE input FIFO full\n");
		return -EIO;
	}

	__raw_writel(send[1], &npe->regs->in_out_fifo);

	while ((cycles < MAX_RETRIES) &&
	       (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_IFNE)) {
		udelay(1);
		cycles++;
	}

	if (cycles == MAX_RETRIES) {
		debug_msg(npe, "Timeout sending message\n");
		return -ETIMEDOUT;
	}

#if DEBUG_MSG > 1
	debug_msg(npe, "Sending a message took %i cycles\n", cycles);
#endif
	return 0;
}

int npe_recv_message(struct npe *npe, void *msg, const char *what)
{
	u32 *recv = msg;
	int cycles = 0, cnt = 0;

	debug_msg(npe, "Trying to receive message %s\n", what);

	while (cycles < MAX_RETRIES) {
		if (__raw_readl(&npe->regs->messaging_status) & MSGSTAT_OFNE) {
			recv[cnt++] = __raw_readl(&npe->regs->in_out_fifo);
			if (cnt == 2)
				break;
		} else {
			udelay(1);
			cycles++;
		}
	}

	switch(cnt) {
	case 1:
		debug_msg(npe, "Received [%08X]\n", recv[0]);
		break;
	case 2:
		debug_msg(npe, "Received [%08X:%08X]\n", recv[0], recv[1]);
		break;
	}

	if (cycles == MAX_RETRIES) {
		debug_msg(npe, "Timeout waiting for message\n");
		return -ETIMEDOUT;
	}

#if DEBUG_MSG > 1
	debug_msg(npe, "Receiving a message took %i cycles\n", cycles);
#endif
	return 0;
}

int npe_send_recv_message(struct npe *npe, void *msg, const char *what)
{
	int result;
	u32 *send = msg, recv[2];

	if ((result = npe_send_message(npe, msg, what)) != 0)
		return result;
	if ((result = npe_recv_message(npe, recv, what)) != 0)
		return result;

	if ((recv[0] != send[0]) || (recv[1] != send[1])) {
		debug_msg(npe, "Message %s: unexpected message received\n",
			  what);
		return -EIO;
	}
	return 0;
}


int npe_load_firmware(struct npe *npe, const char *name, struct device *dev)
{
	const struct firmware *fw_entry;

	struct dl_block {
		u32 type;
		u32 offset;
	} *blk;

	struct dl_image {
		u32 magic;
		u32 id;
		u32 size;
		union {
			u32 data[0];
			struct dl_block blocks[0];
		};
	} *image;

	struct dl_codeblock {
		u32 npe_addr;
		u32 size;
		u32 data[0];
	} *cb;

	int i, j, err, data_size, instr_size, blocks, table_end;
	u32 cmd;

	if ((err = request_firmware(&fw_entry, name, dev)) != 0)
		return err;

	err = -EINVAL;
	if (fw_entry->size < sizeof(struct dl_image)) {
		print_npe(KERN_ERR, npe, "incomplete firmware file\n");
		goto err;
	}
	image = (struct dl_image*)fw_entry->data;

#if DEBUG_FW
	print_npe(KERN_DEBUG, npe, "firmware: %08X %08X %08X (0x%X bytes)\n",
		  image->magic, image->id, image->size, image->size * 4);
#endif

	if (image->magic == swab32(FW_MAGIC)) { /* swapped file */
		image->id = swab32(image->id);
		image->size = swab32(image->size);
	} else if (image->magic != FW_MAGIC) {
		print_npe(KERN_ERR, npe, "bad firmware file magic: 0x%X\n",
			  image->magic);
		goto err;
	}
	if ((image->size * 4 + sizeof(struct dl_image)) != fw_entry->size) {
		print_npe(KERN_ERR, npe,
			  "inconsistent size of firmware file\n");
		goto err;
	}
	if (((image->id >> 24) & 0xF /* NPE ID */) != npe->id) {
		print_npe(KERN_ERR, npe, "firmware file NPE ID mismatch\n");
		goto err;
	}
	if (image->magic == swab32(FW_MAGIC))
		for (i = 0; i < image->size; i++)
			image->data[i] = swab32(image->data[i]);

	if (cpu_is_ixp42x() && ((image->id >> 28) & 0xF /* device ID */)) {
		print_npe(KERN_INFO, npe, "IXP43x/IXP46x firmware ignored on "
			  "IXP42x\n");
		goto err;
	}

	if (npe_running(npe)) {
		print_npe(KERN_INFO, npe, "unable to load firmware, NPE is "
			  "already running\n");
		err = -EBUSY;
		goto err;
	}
#if 0
	npe_stop(npe);
	npe_reset(npe);
#endif

	print_npe(KERN_INFO, npe, "firmware functionality 0x%X, "
		  "revision 0x%X:%X\n", (image->id >> 16) & 0xFF,
		  (image->id >> 8) & 0xFF, image->id & 0xFF);

	if (cpu_is_ixp42x()) {
		if (!npe->id)
			instr_size = NPE_A_42X_INSTR_SIZE;
		else
			instr_size = NPE_B_AND_C_42X_INSTR_SIZE;
		data_size = NPE_42X_DATA_SIZE;
	} else {
		instr_size = NPE_46X_INSTR_SIZE;
		data_size = NPE_46X_DATA_SIZE;
	}

	for (blocks = 0; blocks * sizeof(struct dl_block) / 4 < image->size;
	     blocks++)
		if (image->blocks[blocks].type == FW_BLOCK_TYPE_EOF)
			break;
	if (blocks * sizeof(struct dl_block) / 4 >= image->size) {
		print_npe(KERN_INFO, npe, "firmware EOF block marker not "
			  "found\n");
		goto err;
	}

#if DEBUG_FW
	print_npe(KERN_DEBUG, npe, "%i firmware blocks found\n", blocks);
#endif

	table_end = blocks * sizeof(struct dl_block) / 4 + 1 /* EOF marker */;
	for (i = 0, blk = image->blocks; i < blocks; i++, blk++) {
		if (blk->offset > image->size - sizeof(struct dl_codeblock) / 4
		    || blk->offset < table_end) {
			print_npe(KERN_INFO, npe, "invalid offset 0x%X of "
				  "firmware block #%i\n", blk->offset, i);
			goto err;
		}

		cb = (struct dl_codeblock*)&image->data[blk->offset];
		if (blk->type == FW_BLOCK_TYPE_INSTR) {
			if (cb->npe_addr + cb->size > instr_size)
				goto too_big;
			cmd = CMD_WR_INS_MEM;
		} else if (blk->type == FW_BLOCK_TYPE_DATA) {
			if (cb->npe_addr + cb->size > data_size)
				goto too_big;
			cmd = CMD_WR_DATA_MEM;
		} else {
			print_npe(KERN_INFO, npe, "invalid firmware block #%i "
				  "type 0x%X\n", i, blk->type);
			goto err;
		}
		if (blk->offset + sizeof(*cb) / 4 + cb->size > image->size) {
			print_npe(KERN_INFO, npe, "firmware block #%i doesn't "
				  "fit in firmware image: type %c, start 0x%X,"
				  " length 0x%X\n", i,
				  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
				  cb->npe_addr, cb->size);
			goto err;
		}

		for (j = 0; j < cb->size; j++)
			npe_cmd_write(npe, cb->npe_addr + j, cmd, cb->data[j]);
	}

	npe_start(npe);
	if (!npe_running(npe))
		print_npe(KERN_ERR, npe, "unable to start\n");
	release_firmware(fw_entry);
	return 0;

too_big:
	print_npe(KERN_INFO, npe, "firmware block #%i doesn't fit in NPE "
		  "memory: type %c, start 0x%X, length 0x%X\n", i,
		  blk->type == FW_BLOCK_TYPE_INSTR ? 'I' : 'D',
		  cb->npe_addr, cb->size);
err:
	release_firmware(fw_entry);
	return err;
}


struct npe *npe_request(unsigned id)
{
	if (id < NPE_COUNT)
		if (npe_tab[id].valid)
			if (try_module_get(THIS_MODULE))
				return &npe_tab[id];
	return NULL;
}

void npe_release(struct npe *npe)
{
	module_put(THIS_MODULE);
}

static int ixp4xx_npe_probe(struct platform_device *pdev)
{
	int i, found = 0;
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct resource *res;

	for (i = 0; i < NPE_COUNT; i++) {
		struct npe *npe = &npe_tab[i];

		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
		if (!res)
			return -ENODEV;

		if (!(ixp4xx_read_feature_bits() &
		      (IXP4XX_FEATURE_RESET_NPEA << i))) {
			dev_info(dev, "NPE%d at %pR not available\n",
				 i, res);
			continue; /* NPE already disabled or not present */
		}
		npe->regs = devm_ioremap_resource(dev, res);
		if (IS_ERR(npe->regs))
			return PTR_ERR(npe->regs);

		if (npe_reset(npe)) {
			dev_info(dev, "NPE%d at %pR does not reset\n",
				 i, res);
			continue;
		}
		npe->valid = 1;
		dev_info(dev, "NPE%d at %pR registered\n", i, res);
		found++;
	}

	if (!found)
		return -ENODEV;

	/* Spawn crypto subdevice if using device tree */
	if (IS_ENABLED(CONFIG_OF) && np)
		devm_of_platform_populate(dev);

	return 0;
}

static int ixp4xx_npe_remove(struct platform_device *pdev)
{
	int i;

	for (i = 0; i < NPE_COUNT; i++)
		if (npe_tab[i].regs) {
			npe_reset(&npe_tab[i]);
		}

	return 0;
}

static const struct of_device_id ixp4xx_npe_of_match[] = {
	{
		.compatible = "intel,ixp4xx-network-processing-engine",
        },
	{},
};

static struct platform_driver ixp4xx_npe_driver = {
	.driver = {
		.name           = "ixp4xx-npe",
		.of_match_table = ixp4xx_npe_of_match,
	},
	.probe = ixp4xx_npe_probe,
	.remove = ixp4xx_npe_remove,
};
module_platform_driver(ixp4xx_npe_driver);

MODULE_AUTHOR("Krzysztof Halasa");
MODULE_LICENSE("GPL v2");
MODULE_FIRMWARE(NPE_A_FIRMWARE);
MODULE_FIRMWARE(NPE_B_FIRMWARE);
MODULE_FIRMWARE(NPE_C_FIRMWARE);

EXPORT_SYMBOL(npe_names);
EXPORT_SYMBOL(npe_running);
EXPORT_SYMBOL(npe_request);
EXPORT_SYMBOL(npe_release);
EXPORT_SYMBOL(npe_load_firmware);
EXPORT_SYMBOL(npe_send_message);
EXPORT_SYMBOL(npe_recv_message);
EXPORT_SYMBOL(npe_send_recv_message);