Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012-2016 Mentor Graphics Inc. * * Queued image conversion support, with tiling and rotation. */ #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <video/imx-ipu-image-convert.h> #include "ipu-prv.h" /* * The IC Resizer has a restriction that the output frame from the * resizer must be 1024 or less in both width (pixels) and height * (lines). * * The image converter attempts to split up a conversion when * the desired output (converted) frame resolution exceeds the * IC resizer limit of 1024 in either dimension. * * If either dimension of the output frame exceeds the limit, the * dimension is split into 1, 2, or 4 equal stripes, for a maximum * of 4*4 or 16 tiles. A conversion is then carried out for each * tile (but taking care to pass the full frame stride length to * the DMA channel's parameter memory!). IDMA double-buffering is used * to convert each tile back-to-back when possible (see note below * when double_buffering boolean is set). * * Note that the input frame must be split up into the same number * of tiles as the output frame: * * +---------+-----+ * +-----+---+ | A | B | * | A | B | | | | * +-----+---+ --> +---------+-----+ * | C | D | | C | D | * +-----+---+ | | | * +---------+-----+ * * Clockwise 90° rotations are handled by first rescaling into a * reusable temporary tile buffer and then rotating with the 8x8 * block rotator, writing to the correct destination: * * +-----+-----+ * | | | * +-----+---+ +---------+ | C | A | * | A | B | | A,B, | | | | | * +-----+---+ --> | C,D | | --> | | | * | C | D | +---------+ +-----+-----+ * +-----+---+ | D | B | * | | | * +-----+-----+ * * If the 8x8 block rotator is used, horizontal or vertical flipping * is done during the rotation step, otherwise flipping is done * during the scaling step. * With rotation or flipping, tile order changes between input and * output image. Tiles are numbered row major from top left to bottom * right for both input and output image. */ #define MAX_STRIPES_W 4 #define MAX_STRIPES_H 4 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) #define MIN_W 16 #define MIN_H 8 #define MAX_W 4096 #define MAX_H 4096 enum ipu_image_convert_type { IMAGE_CONVERT_IN = 0, IMAGE_CONVERT_OUT, }; struct ipu_image_convert_dma_buf { void *virt; dma_addr_t phys; unsigned long len; }; struct ipu_image_convert_dma_chan { int in; int out; int rot_in; int rot_out; int vdi_in_p; int vdi_in; int vdi_in_n; }; /* dimensions of one tile */ struct ipu_image_tile { u32 width; u32 height; u32 left; u32 top; /* size and strides are in bytes */ u32 size; u32 stride; u32 rot_stride; /* start Y or packed offset of this tile */ u32 offset; /* offset from start to tile in U plane, for planar formats */ u32 u_off; /* offset from start to tile in V plane, for planar formats */ u32 v_off; }; struct ipu_image_convert_image { struct ipu_image base; enum ipu_image_convert_type type; const struct ipu_image_pixfmt *fmt; unsigned int stride; /* # of rows (horizontal stripes) if dest height is > 1024 */ unsigned int num_rows; /* # of columns (vertical stripes) if dest width is > 1024 */ unsigned int num_cols; struct ipu_image_tile tile[MAX_TILES]; }; struct ipu_image_pixfmt { u32 fourcc; /* V4L2 fourcc */ int bpp; /* total bpp */ int uv_width_dec; /* decimation in width for U/V planes */ int uv_height_dec; /* decimation in height for U/V planes */ bool planar; /* planar format */ bool uv_swapped; /* U and V planes are swapped */ bool uv_packed; /* partial planar (U and V in same plane) */ }; struct ipu_image_convert_ctx; struct ipu_image_convert_chan; struct ipu_image_convert_priv; enum eof_irq_mask { EOF_IRQ_IN = BIT(0), EOF_IRQ_ROT_IN = BIT(1), EOF_IRQ_OUT = BIT(2), EOF_IRQ_ROT_OUT = BIT(3), }; #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT) #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \ EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT) struct ipu_image_convert_ctx { struct ipu_image_convert_chan *chan; ipu_image_convert_cb_t complete; void *complete_context; /* Source/destination image data and rotation mode */ struct ipu_image_convert_image in; struct ipu_image_convert_image out; struct ipu_ic_csc csc; enum ipu_rotate_mode rot_mode; u32 downsize_coeff_h; u32 downsize_coeff_v; u32 image_resize_coeff_h; u32 image_resize_coeff_v; u32 resize_coeffs_h[MAX_STRIPES_W]; u32 resize_coeffs_v[MAX_STRIPES_H]; /* intermediate buffer for rotation */ struct ipu_image_convert_dma_buf rot_intermediate[2]; /* current buffer number for double buffering */ int cur_buf_num; bool aborting; struct completion aborted; /* can we use double-buffering for this conversion operation? */ bool double_buffering; /* num_rows * num_cols */ unsigned int num_tiles; /* next tile to process */ unsigned int next_tile; /* where to place converted tile in dest image */ unsigned int out_tile_map[MAX_TILES]; /* mask of completed EOF irqs at every tile conversion */ enum eof_irq_mask eof_mask; struct list_head list; }; struct ipu_image_convert_chan { struct ipu_image_convert_priv *priv; enum ipu_ic_task ic_task; const struct ipu_image_convert_dma_chan *dma_ch; struct ipu_ic *ic; struct ipuv3_channel *in_chan; struct ipuv3_channel *out_chan; struct ipuv3_channel *rotation_in_chan; struct ipuv3_channel *rotation_out_chan; /* the IPU end-of-frame irqs */ int in_eof_irq; int rot_in_eof_irq; int out_eof_irq; int rot_out_eof_irq; spinlock_t irqlock; /* list of convert contexts */ struct list_head ctx_list; /* queue of conversion runs */ struct list_head pending_q; /* queue of completed runs */ struct list_head done_q; /* the current conversion run */ struct ipu_image_convert_run *current_run; }; struct ipu_image_convert_priv { struct ipu_image_convert_chan chan[IC_NUM_TASKS]; struct ipu_soc *ipu; }; static const struct ipu_image_convert_dma_chan image_convert_dma_chan[IC_NUM_TASKS] = { [IC_TASK_VIEWFINDER] = { .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV, .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR, .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT, }, [IC_TASK_POST_PROCESSOR] = { .in = IPUV3_CHANNEL_MEM_IC_PP, .out = IPUV3_CHANNEL_IC_PP_MEM, .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, }, }; static const struct ipu_image_pixfmt image_convert_formats[] = { { .fourcc = V4L2_PIX_FMT_RGB565, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB24, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_BGR24, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_RGB32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_BGR32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_XRGB32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_XBGR32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_BGRX32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_RGBX32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_YUYV, .bpp = 16, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_UYVY, .bpp = 16, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_YUV420, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, }, { .fourcc = V4L2_PIX_FMT_YVU420, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, .uv_swapped = true, }, { .fourcc = V4L2_PIX_FMT_NV12, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, .uv_packed = true, }, { .fourcc = V4L2_PIX_FMT_YUV422P, .bpp = 16, .planar = true, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_NV16, .bpp = 16, .planar = true, .uv_width_dec = 2, .uv_height_dec = 1, .uv_packed = true, }, }; static const struct ipu_image_pixfmt *get_format(u32 fourcc) { const struct ipu_image_pixfmt *ret = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) { if (image_convert_formats[i].fourcc == fourcc) { ret = &image_convert_formats[i]; break; } } return ret; } static void dump_format(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *ic_image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; dev_dbg(priv->ipu->dev, "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n", chan->ic_task, ctx, ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", ic_image->base.pix.width, ic_image->base.pix.height, ic_image->num_cols, ic_image->num_rows, ic_image->fmt->fourcc & 0xff, (ic_image->fmt->fourcc >> 8) & 0xff, (ic_image->fmt->fourcc >> 16) & 0xff, (ic_image->fmt->fourcc >> 24) & 0xff); } int ipu_image_convert_enum_format(int index, u32 *fourcc) { const struct ipu_image_pixfmt *fmt; if (index >= (int)ARRAY_SIZE(image_convert_formats)) return -EINVAL; /* Format found */ fmt = &image_convert_formats[index]; *fourcc = fmt->fourcc; return 0; } EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); static void free_dma_buf(struct ipu_image_convert_priv *priv, struct ipu_image_convert_dma_buf *buf) { if (buf->virt) dma_free_coherent(priv->ipu->dev, buf->len, buf->virt, buf->phys); buf->virt = NULL; buf->phys = 0; } static int alloc_dma_buf(struct ipu_image_convert_priv *priv, struct ipu_image_convert_dma_buf *buf, int size) { buf->len = PAGE_ALIGN(size); buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, GFP_DMA | GFP_KERNEL); if (!buf->virt) { dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); return -ENOMEM; } return 0; } static inline int num_stripes(int dim) { return (dim - 1) / 1024 + 1; } /* * Calculate downsizing coefficients, which are the same for all tiles, * and initial bilinear resizing coefficients, which are used to find the * best seam positions. * Also determine the number of tiles necessary to guarantee that no tile * is larger than 1024 pixels in either dimension at the output and between * IC downsizing and main processing sections. */ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx, struct ipu_image *in, struct ipu_image *out) { u32 downsized_width = in->rect.width; u32 downsized_height = in->rect.height; u32 downsize_coeff_v = 0; u32 downsize_coeff_h = 0; u32 resized_width = out->rect.width; u32 resized_height = out->rect.height; u32 resize_coeff_h; u32 resize_coeff_v; u32 cols; u32 rows; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { resized_width = out->rect.height; resized_height = out->rect.width; } /* Do not let invalid input lead to an endless loop below */ if (WARN_ON(resized_width == 0 || resized_height == 0)) return -EINVAL; while (downsized_width >= resized_width * 2) { downsized_width >>= 1; downsize_coeff_h++; } while (downsized_height >= resized_height * 2) { downsized_height >>= 1; downsize_coeff_v++; } /* * Calculate the bilinear resizing coefficients that could be used if * we were converting with a single tile. The bottom right output pixel * should sample as close as possible to the bottom right input pixel * out of the decimator, but not overshoot it: */ resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1); resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1); /* * Both the output of the IC downsizing section before being passed to * the IC main processing section and the final output of the IC main * processing section must be <= 1024 pixels in both dimensions. */ cols = num_stripes(max_t(u32, downsized_width, resized_width)); rows = num_stripes(max_t(u32, downsized_height, resized_height)); dev_dbg(ctx->chan->priv->ipu->dev, "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n", __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v, resize_coeff_v, cols, rows); if (downsize_coeff_h > 2 || downsize_coeff_v > 2 || resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff) return -EINVAL; ctx->downsize_coeff_h = downsize_coeff_h; ctx->downsize_coeff_v = downsize_coeff_v; ctx->image_resize_coeff_h = resize_coeff_h; ctx->image_resize_coeff_v = resize_coeff_v; ctx->in.num_cols = cols; ctx->in.num_rows = rows; return 0; } #define round_closest(x, y) round_down((x) + (y)/2, (y)) /* * Find the best aligned seam position for the given column / row index. * Rotation and image offsets are out of scope. * * @index: column / row index, used to calculate valid interval * @in_edge: input right / bottom edge * @out_edge: output right / bottom edge * @in_align: input alignment, either horizontal 8-byte line start address * alignment, or pixel alignment due to image format * @out_align: output alignment, either horizontal 8-byte line start address * alignment, or pixel alignment due to image format or rotator * block size * @in_burst: horizontal input burst size in case of horizontal flip * @out_burst: horizontal output burst size or rotator block size * @downsize_coeff: downsizing section coefficient * @resize_coeff: main processing section resizing coefficient * @_in_seam: aligned input seam position return value * @_out_seam: aligned output seam position return value */ static void find_best_seam(struct ipu_image_convert_ctx *ctx, unsigned int index, unsigned int in_edge, unsigned int out_edge, unsigned int in_align, unsigned int out_align, unsigned int in_burst, unsigned int out_burst, unsigned int downsize_coeff, unsigned int resize_coeff, u32 *_in_seam, u32 *_out_seam) { struct device *dev = ctx->chan->priv->ipu->dev; unsigned int out_pos; /* Input / output seam position candidates */ unsigned int out_seam = 0; unsigned int in_seam = 0; unsigned int min_diff = UINT_MAX; unsigned int out_start; unsigned int out_end; unsigned int in_start; unsigned int in_end; /* Start within 1024 pixels of the right / bottom edge */ out_start = max_t(int, index * out_align, out_edge - 1024); /* End before having to add more columns to the left / rows above */ out_end = min_t(unsigned int, out_edge, index * 1024 + 1); /* * Limit input seam position to make sure that the downsized input tile * to the right or bottom does not exceed 1024 pixels. */ in_start = max_t(int, index * in_align, in_edge - (1024 << downsize_coeff)); in_end = min_t(unsigned int, in_edge, index * (1024 << downsize_coeff) + 1); /* * Output tiles must start at a multiple of 8 bytes horizontally and * possibly at an even line horizontally depending on the pixel format. * Only consider output aligned positions for the seam. */ out_start = round_up(out_start, out_align); for (out_pos = out_start; out_pos < out_end; out_pos += out_align) { unsigned int in_pos; unsigned int in_pos_aligned; unsigned int in_pos_rounded; unsigned int abs_diff; /* * Tiles in the right row / bottom column may not be allowed to * overshoot horizontally / vertically. out_burst may be the * actual DMA burst size, or the rotator block size. */ if ((out_burst > 1) && (out_edge - out_pos) % out_burst) continue; /* * Input sample position, corresponding to out_pos, 19.13 fixed * point. */ in_pos = (out_pos * resize_coeff) << downsize_coeff; /* * The closest input sample position that we could actually * start the input tile at, 19.13 fixed point. */ in_pos_aligned = round_closest(in_pos, 8192U * in_align); /* Convert 19.13 fixed point to integer */ in_pos_rounded = in_pos_aligned / 8192U; if (in_pos_rounded < in_start) continue; if (in_pos_rounded >= in_end) break; if ((in_burst > 1) && (in_edge - in_pos_rounded) % in_burst) continue; if (in_pos < in_pos_aligned) abs_diff = in_pos_aligned - in_pos; else abs_diff = in_pos - in_pos_aligned; if (abs_diff < min_diff) { in_seam = in_pos_rounded; out_seam = out_pos; min_diff = abs_diff; } } *_out_seam = out_seam; *_in_seam = in_seam; dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n", __func__, out_seam, out_align, out_start, out_end, in_seam, in_align, in_start, in_end, min_diff / 8192, DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192)); } /* * Tile left edges are required to be aligned to multiples of 8 bytes * by the IDMAC. */ static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt) { if (fmt->planar) return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec; else return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8; } /* * Tile top edge alignment is only limited by chroma subsampling. */ static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt) { return fmt->uv_height_dec > 1 ? 2 : 1; } static inline u32 tile_width_align(enum ipu_image_convert_type type, const struct ipu_image_pixfmt *fmt, enum ipu_rotate_mode rot_mode) { if (type == IMAGE_CONVERT_IN) { /* * The IC burst reads 8 pixels at a time. Reading beyond the * end of the line is usually acceptable. Those pixels are * ignored, unless the IC has to write the scaled line in * reverse. */ return (!ipu_rot_mode_is_irt(rot_mode) && (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2; } /* * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled * formats to guarantee 8-byte aligned line start addresses in the * chroma planes when IRT is used. Align to 8x8 pixel IRT block size * for all other formats. */ return (ipu_rot_mode_is_irt(rot_mode) && fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; } static inline u32 tile_height_align(enum ipu_image_convert_type type, const struct ipu_image_pixfmt *fmt, enum ipu_rotate_mode rot_mode) { if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode)) return 2; /* * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled * formats to guarantee 8-byte aligned line start addresses in the * chroma planes when IRT is used. Align to 8x8 pixel IRT block size * for all other formats. */ return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; } /* * Fill in left position and width and for all tiles in an input column, and * for all corresponding output tiles. If the 90° rotator is used, the output * tiles are in a row, and output tile top position and height are set. */ static void fill_tile_column(struct ipu_image_convert_ctx *ctx, unsigned int col, struct ipu_image_convert_image *in, unsigned int in_left, unsigned int in_width, struct ipu_image_convert_image *out, unsigned int out_left, unsigned int out_width) { unsigned int row, tile_idx; struct ipu_image_tile *in_tile, *out_tile; for (row = 0; row < in->num_rows; row++) { tile_idx = in->num_cols * row + col; in_tile = &in->tile[tile_idx]; out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; in_tile->left = in_left; in_tile->width = in_width; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { out_tile->top = out_left; out_tile->height = out_width; } else { out_tile->left = out_left; out_tile->width = out_width; } } } /* * Fill in top position and height and for all tiles in an input row, and * for all corresponding output tiles. If the 90° rotator is used, the output * tiles are in a column, and output tile left position and width are set. */ static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row, struct ipu_image_convert_image *in, unsigned int in_top, unsigned int in_height, struct ipu_image_convert_image *out, unsigned int out_top, unsigned int out_height) { unsigned int col, tile_idx; struct ipu_image_tile *in_tile, *out_tile; for (col = 0; col < in->num_cols; col++) { tile_idx = in->num_cols * row + col; in_tile = &in->tile[tile_idx]; out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; in_tile->top = in_top; in_tile->height = in_height; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { out_tile->left = out_top; out_tile->width = out_height; } else { out_tile->top = out_top; out_tile->height = out_height; } } } /* * Find the best horizontal and vertical seam positions to split into tiles. * Minimize the fractional part of the input sampling position for the * top / left pixels of each tile. */ static void find_seams(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *in, struct ipu_image_convert_image *out) { struct device *dev = ctx->chan->priv->ipu->dev; unsigned int resized_width = out->base.rect.width; unsigned int resized_height = out->base.rect.height; unsigned int col; unsigned int row; unsigned int in_left_align = tile_left_align(in->fmt); unsigned int in_top_align = tile_top_align(in->fmt); unsigned int out_left_align = tile_left_align(out->fmt); unsigned int out_top_align = tile_top_align(out->fmt); unsigned int out_width_align = tile_width_align(out->type, out->fmt, ctx->rot_mode); unsigned int out_height_align = tile_height_align(out->type, out->fmt, ctx->rot_mode); unsigned int in_right = in->base.rect.width; unsigned int in_bottom = in->base.rect.height; unsigned int out_right = out->base.rect.width; unsigned int out_bottom = out->base.rect.height; unsigned int flipped_out_left; unsigned int flipped_out_top; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* Switch width/height and align top left to IRT block size */ resized_width = out->base.rect.height; resized_height = out->base.rect.width; out_left_align = out_height_align; out_top_align = out_width_align; out_width_align = out_left_align; out_height_align = out_top_align; out_right = out->base.rect.height; out_bottom = out->base.rect.width; } for (col = in->num_cols - 1; col > 0; col--) { bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) || !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); bool allow_out_overshoot = (col < in->num_cols - 1) && !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); unsigned int in_left; unsigned int out_left; /* * Align input width to burst length if the scaling step flips * horizontally. */ find_best_seam(ctx, col, in_right, out_right, in_left_align, out_left_align, allow_in_overshoot ? 1 : 8 /* burst length */, allow_out_overshoot ? 1 : out_width_align, ctx->downsize_coeff_h, ctx->image_resize_coeff_h, &in_left, &out_left); if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) flipped_out_left = resized_width - out_right; else flipped_out_left = out_left; fill_tile_column(ctx, col, in, in_left, in_right - in_left, out, flipped_out_left, out_right - out_left); dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col, in_left, in_right - in_left, flipped_out_left, out_right - out_left); in_right = in_left; out_right = out_left; } flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ? resized_width - out_right : 0; fill_tile_column(ctx, 0, in, 0, in_right, out, flipped_out_left, out_right); dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__, in_right, flipped_out_left, out_right); for (row = in->num_rows - 1; row > 0; row--) { bool allow_overshoot = row < in->num_rows - 1; unsigned int in_top; unsigned int out_top; find_best_seam(ctx, row, in_bottom, out_bottom, in_top_align, out_top_align, 1, allow_overshoot ? 1 : out_height_align, ctx->downsize_coeff_v, ctx->image_resize_coeff_v, &in_top, &out_top); if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ ipu_rot_mode_is_irt(ctx->rot_mode)) flipped_out_top = resized_height - out_bottom; else flipped_out_top = out_top; fill_tile_row(ctx, row, in, in_top, in_bottom - in_top, out, flipped_out_top, out_bottom - out_top); dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row, in_top, in_bottom - in_top, flipped_out_top, out_bottom - out_top); in_bottom = in_top; out_bottom = out_top; } if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ ipu_rot_mode_is_irt(ctx->rot_mode)) flipped_out_top = resized_height - out_bottom; else flipped_out_top = 0; fill_tile_row(ctx, 0, in, 0, in_bottom, out, flipped_out_top, out_bottom); dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__, in_bottom, flipped_out_top, out_bottom); } static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; unsigned int max_width = 1024; unsigned int max_height = 1024; unsigned int i; if (image->type == IMAGE_CONVERT_IN) { /* Up to 4096x4096 input tile size */ max_width <<= ctx->downsize_coeff_h; max_height <<= ctx->downsize_coeff_v; } for (i = 0; i < ctx->num_tiles; i++) { struct ipu_image_tile *tile; const unsigned int row = i / image->num_cols; const unsigned int col = i % image->num_cols; if (image->type == IMAGE_CONVERT_OUT) tile = &image->tile[ctx->out_tile_map[i]]; else tile = &image->tile[i]; tile->size = ((tile->height * image->fmt->bpp) >> 3) * tile->width; if (image->fmt->planar) { tile->stride = tile->width; tile->rot_stride = tile->height; } else { tile->stride = (image->fmt->bpp * tile->width) >> 3; tile->rot_stride = (image->fmt->bpp * tile->height) >> 3; } dev_dbg(priv->ipu->dev, "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, tile->width, tile->height, tile->left, tile->top); if (!tile->width || tile->width > max_width || !tile->height || tile->height > max_height) { dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n", image->type == IMAGE_CONVERT_IN ? "input" : "output", tile->width, tile->height); return -EINVAL; } } return 0; } /* * Use the rotation transformation to find the tile coordinates * (row, col) of a tile in the destination frame that corresponds * to the given tile coordinates of a source frame. The destination * coordinate is then converted to a tile index. */ static int transform_tile_index(struct ipu_image_convert_ctx *ctx, int src_row, int src_col) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; int dst_row, dst_col; /* with no rotation it's a 1:1 mapping */ if (ctx->rot_mode == IPU_ROTATE_NONE) return src_row * s_image->num_cols + src_col; /* * before doing the transform, first we have to translate * source row,col for an origin in the center of s_image */ src_row = src_row * 2 - (s_image->num_rows - 1); src_col = src_col * 2 - (s_image->num_cols - 1); /* do the rotation transform */ if (ctx->rot_mode & IPU_ROT_BIT_90) { dst_col = -src_row; dst_row = src_col; } else { dst_col = src_col; dst_row = src_row; } /* apply flip */ if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) dst_col = -dst_col; if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) dst_row = -dst_row; dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n", chan->ic_task, ctx, src_col, src_row, dst_col, dst_row); /* * finally translate dest row,col using an origin in upper * left of d_image */ dst_row += d_image->num_rows - 1; dst_col += d_image->num_cols - 1; dst_row /= 2; dst_col /= 2; return dst_row * d_image->num_cols + dst_col; } /* * Fill the out_tile_map[] with transformed destination tile indeces. */ static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_image *s_image = &ctx->in; unsigned int row, col, tile = 0; for (row = 0; row < s_image->num_rows; row++) { for (col = 0; col < s_image->num_cols; col++) { ctx->out_tile_map[tile] = transform_tile_index(ctx, row, col); tile++; } } } static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; const struct ipu_image_pixfmt *fmt = image->fmt; unsigned int row, col, tile = 0; u32 H, top, y_stride, uv_stride; u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp; u32 y_row_off, y_col_off, y_off; u32 y_size, uv_size; /* setup some convenience vars */ H = image->base.pix.height; y_stride = image->stride; uv_stride = y_stride / fmt->uv_width_dec; if (fmt->uv_packed) uv_stride *= 2; y_size = H * y_stride; uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); for (row = 0; row < image->num_rows; row++) { top = image->tile[tile].top; y_row_off = top * y_stride; uv_row_off = (top * uv_stride) / fmt->uv_height_dec; for (col = 0; col < image->num_cols; col++) { y_col_off = image->tile[tile].left; uv_col_off = y_col_off / fmt->uv_width_dec; if (fmt->uv_packed) uv_col_off *= 2; y_off = y_row_off + y_col_off; uv_off = uv_row_off + uv_col_off; u_off = y_size - y_off + uv_off; v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; if (fmt->uv_swapped) { tmp = u_off; u_off = v_off; v_off = tmp; } image->tile[tile].offset = y_off; image->tile[tile].u_off = u_off; image->tile[tile++].v_off = v_off; if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) { dev_err(priv->ipu->dev, "task %u: ctx %p: %s@[%d,%d]: " "y_off %08x, u_off %08x, v_off %08x\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, y_off, u_off, v_off); return -EINVAL; } } } return 0; } static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; const struct ipu_image_pixfmt *fmt = image->fmt; unsigned int row, col, tile = 0; u32 bpp, stride, offset; u32 row_off, col_off; /* setup some convenience vars */ stride = image->stride; bpp = fmt->bpp; for (row = 0; row < image->num_rows; row++) { row_off = image->tile[tile].top * stride; for (col = 0; col < image->num_cols; col++) { col_off = (image->tile[tile].left * bpp) >> 3; offset = row_off + col_off; image->tile[tile].offset = offset; image->tile[tile].u_off = 0; image->tile[tile++].v_off = 0; if (offset & 0x7) { dev_err(priv->ipu->dev, "task %u: ctx %p: %s@[%d,%d]: " "phys %08x\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, row_off + col_off); return -EINVAL; } } } return 0; } static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { if (image->fmt->planar) return calc_tile_offsets_planar(ctx, image); return calc_tile_offsets_packed(ctx, image); } /* * Calculate the resizing ratio for the IC main processing section given input * size, fixed downsizing coefficient, and output size. * Either round to closest for the next tile's first pixel to minimize seams * and distortion (for all but right column / bottom row), or round down to * avoid sampling beyond the edges of the input image for this tile's last * pixel. * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff. */ static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff, u32 output_size, bool allow_overshoot) { u32 downsized = input_size >> downsize_coeff; if (allow_overshoot) return DIV_ROUND_CLOSEST(8192 * downsized, output_size); else return 8192 * (downsized - 1) / (output_size - 1); } /* * Slightly modify resize coefficients per tile to hide the bilinear * interpolator reset at tile borders, shifting the right / bottom edge * by up to a half input pixel. This removes noticeable seams between * tiles at higher upscaling factors. */ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_tile *in_tile, *out_tile; unsigned int col, row, tile_idx; unsigned int last_output; for (col = 0; col < ctx->in.num_cols; col++) { bool closest = (col < ctx->in.num_cols - 1) && !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); u32 resized_width; u32 resize_coeff_h; u32 in_width; tile_idx = col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) resized_width = out_tile->height; else resized_width = out_tile->width; resize_coeff_h = calc_resize_coeff(in_tile->width, ctx->downsize_coeff_h, resized_width, closest); dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n", __func__, col, resize_coeff_h); /* * With the horizontal scaling factor known, round up resized * width (output width or height) to burst size. */ resized_width = round_up(resized_width, 8); /* * Calculate input width from the last accessed input pixel * given resized width and scaling coefficients. Round up to * burst size. */ last_output = resized_width - 1; if (closest && ((last_output * resize_coeff_h) % 8192)) last_output++; in_width = round_up( (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1) << ctx->downsize_coeff_h, 8); for (row = 0; row < ctx->in.num_rows; row++) { tile_idx = row * ctx->in.num_cols + col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) out_tile->height = resized_width; else out_tile->width = resized_width; in_tile->width = in_width; } ctx->resize_coeffs_h[col] = resize_coeff_h; } for (row = 0; row < ctx->in.num_rows; row++) { bool closest = (row < ctx->in.num_rows - 1) && !(ctx->rot_mode & IPU_ROT_BIT_VFLIP); u32 resized_height; u32 resize_coeff_v; u32 in_height; tile_idx = row * ctx->in.num_cols; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) resized_height = out_tile->width; else resized_height = out_tile->height; resize_coeff_v = calc_resize_coeff(in_tile->height, ctx->downsize_coeff_v, resized_height, closest); dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n", __func__, row, resize_coeff_v); /* * With the vertical scaling factor known, round up resized * height (output width or height) to IDMAC limitations. */ resized_height = round_up(resized_height, 2); /* * Calculate input width from the last accessed input pixel * given resized height and scaling coefficients. Align to * IDMAC restrictions. */ last_output = resized_height - 1; if (closest && ((last_output * resize_coeff_v) % 8192)) last_output++; in_height = round_up( (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1) << ctx->downsize_coeff_v, 2); for (col = 0; col < ctx->in.num_cols; col++) { tile_idx = row * ctx->in.num_cols + col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) out_tile->width = resized_height; else out_tile->height = resized_height; in_tile->height = in_height; } ctx->resize_coeffs_v[row] = resize_coeff_v; } } /* * return the number of runs in given queue (pending_q or done_q) * for this context. hold irqlock when calling. */ static int get_run_count(struct ipu_image_convert_ctx *ctx, struct list_head *q) { struct ipu_image_convert_run *run; int count = 0; lockdep_assert_held(&ctx->chan->irqlock); list_for_each_entry(run, q, list) { if (run->ctx == ctx) count++; } return count; } static void convert_stop(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n", __func__, chan->ic_task, ctx, run); /* disable IC tasks and the channels */ ipu_ic_task_disable(chan->ic); ipu_idmac_disable_channel(chan->in_chan); ipu_idmac_disable_channel(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_idmac_disable_channel(chan->rotation_in_chan); ipu_idmac_disable_channel(chan->rotation_out_chan); ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan); } ipu_ic_disable(chan->ic); } static void init_idmac_channel(struct ipu_image_convert_ctx *ctx, struct ipuv3_channel *channel, struct ipu_image_convert_image *image, enum ipu_rotate_mode rot_mode, bool rot_swap_width_height, unsigned int tile) { struct ipu_image_convert_chan *chan = ctx->chan; unsigned int burst_size; u32 width, height, stride; dma_addr_t addr0, addr1 = 0; struct ipu_image tile_image; unsigned int tile_idx[2]; if (image->type == IMAGE_CONVERT_OUT) { tile_idx[0] = ctx->out_tile_map[tile]; tile_idx[1] = ctx->out_tile_map[1]; } else { tile_idx[0] = tile; tile_idx[1] = 1; } if (rot_swap_width_height) { width = image->tile[tile_idx[0]].height; height = image->tile[tile_idx[0]].width; stride = image->tile[tile_idx[0]].rot_stride; addr0 = ctx->rot_intermediate[0].phys; if (ctx->double_buffering) addr1 = ctx->rot_intermediate[1].phys; } else { width = image->tile[tile_idx[0]].width; height = image->tile[tile_idx[0]].height; stride = image->stride; addr0 = image->base.phys0 + image->tile[tile_idx[0]].offset; if (ctx->double_buffering) addr1 = image->base.phys0 + image->tile[tile_idx[1]].offset; } ipu_cpmem_zero(channel); memset(&tile_image, 0, sizeof(tile_image)); tile_image.pix.width = tile_image.rect.width = width; tile_image.pix.height = tile_image.rect.height = height; tile_image.pix.bytesperline = stride; tile_image.pix.pixelformat = image->fmt->fourcc; tile_image.phys0 = addr0; tile_image.phys1 = addr1; if (image->fmt->planar && !rot_swap_width_height) { tile_image.u_offset = image->tile[tile_idx[0]].u_off; tile_image.v_offset = image->tile[tile_idx[0]].v_off; } ipu_cpmem_set_image(channel, &tile_image); if (rot_mode) ipu_cpmem_set_rotation(channel, rot_mode); /* * Skip writing U and V components to odd rows in the output * channels for planar 4:2:0. */ if ((channel == chan->out_chan || channel == chan->rotation_out_chan) && image->fmt->planar && image->fmt->uv_height_dec == 2) ipu_cpmem_skip_odd_chroma_rows(channel); if (channel == chan->rotation_in_chan || channel == chan->rotation_out_chan) { burst_size = 8; ipu_cpmem_set_block_mode(channel); } else burst_size = (width % 16) ? 8 : 16; ipu_cpmem_set_burstsize(channel, burst_size); ipu_ic_task_idma_init(chan->ic, channel, width, height, burst_size, rot_mode); /* * Setting a non-zero AXI ID collides with the PRG AXI snooping, so * only do this when there is no PRG present. */ if (!channel->ipu->prg_priv) ipu_cpmem_set_axi_id(channel, 1); ipu_idmac_set_double_buffer(channel, ctx->double_buffering); } static int convert_start(struct ipu_image_convert_run *run, unsigned int tile) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; unsigned int dst_tile = ctx->out_tile_map[tile]; unsigned int dest_width, dest_height; unsigned int col, row; u32 rsc; int ret; dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n", __func__, chan->ic_task, ctx, run, tile, dst_tile); /* clear EOF irq mask */ ctx->eof_mask = 0; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* swap width/height for resizer */ dest_width = d_image->tile[dst_tile].height; dest_height = d_image->tile[dst_tile].width; } else { dest_width = d_image->tile[dst_tile].width; dest_height = d_image->tile[dst_tile].height; } row = tile / s_image->num_cols; col = tile % s_image->num_cols; rsc = (ctx->downsize_coeff_v << 30) | (ctx->resize_coeffs_v[row] << 16) | (ctx->downsize_coeff_h << 14) | (ctx->resize_coeffs_h[col]); dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n", __func__, s_image->tile[tile].width, s_image->tile[tile].height, dest_width, dest_height, rsc); /* setup the IC resizer and CSC */ ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc, s_image->tile[tile].width, s_image->tile[tile].height, dest_width, dest_height, rsc); if (ret) { dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); return ret; } /* init the source MEM-->IC PP IDMAC channel */ init_idmac_channel(ctx, chan->in_chan, s_image, IPU_ROTATE_NONE, false, tile); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* init the IC PP-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->out_chan, d_image, IPU_ROTATE_NONE, true, tile); /* init the MEM-->IC PP ROT IDMAC channel */ init_idmac_channel(ctx, chan->rotation_in_chan, d_image, ctx->rot_mode, true, tile); /* init the destination IC PP ROT-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->rotation_out_chan, d_image, IPU_ROTATE_NONE, false, tile); /* now link IC PP-->MEM to MEM-->IC PP ROT */ ipu_idmac_link(chan->out_chan, chan->rotation_in_chan); } else { /* init the destination IC PP-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->out_chan, d_image, ctx->rot_mode, false, tile); } /* enable the IC */ ipu_ic_enable(chan->ic); /* set buffers ready */ ipu_idmac_select_buffer(chan->in_chan, 0); ipu_idmac_select_buffer(chan->out_chan, 0); if (ipu_rot_mode_is_irt(ctx->rot_mode)) ipu_idmac_select_buffer(chan->rotation_out_chan, 0); if (ctx->double_buffering) { ipu_idmac_select_buffer(chan->in_chan, 1); ipu_idmac_select_buffer(chan->out_chan, 1); if (ipu_rot_mode_is_irt(ctx->rot_mode)) ipu_idmac_select_buffer(chan->rotation_out_chan, 1); } /* enable the channels! */ ipu_idmac_enable_channel(chan->in_chan); ipu_idmac_enable_channel(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_idmac_enable_channel(chan->rotation_in_chan); ipu_idmac_enable_channel(chan->rotation_out_chan); } ipu_ic_task_enable(chan->ic); ipu_cpmem_dump(chan->in_chan); ipu_cpmem_dump(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_cpmem_dump(chan->rotation_in_chan); ipu_cpmem_dump(chan->rotation_out_chan); } ipu_dump(priv->ipu); return 0; } /* hold irqlock when calling */ static int do_run(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; lockdep_assert_held(&chan->irqlock); ctx->in.base.phys0 = run->in_phys; ctx->out.base.phys0 = run->out_phys; ctx->cur_buf_num = 0; ctx->next_tile = 1; /* remove run from pending_q and set as current */ list_del(&run->list); chan->current_run = run; return convert_start(run, 0); } /* hold irqlock when calling */ static void run_next(struct ipu_image_convert_chan *chan) { struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run, *tmp; int ret; lockdep_assert_held(&chan->irqlock); list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { /* skip contexts that are aborting */ if (run->ctx->aborting) { dev_dbg(priv->ipu->dev, "%s: task %u: skipping aborting ctx %p run %p\n", __func__, chan->ic_task, run->ctx, run); continue; } ret = do_run(run); if (!ret) break; /* * something went wrong with start, add the run * to done q and continue to the next run in the * pending q. */ run->status = ret; list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; } } static void empty_done_q(struct ipu_image_convert_chan *chan) { struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); while (!list_empty(&chan->done_q)) { run = list_entry(chan->done_q.next, struct ipu_image_convert_run, list); list_del(&run->list); dev_dbg(priv->ipu->dev, "%s: task %u: completing ctx %p run %p with %d\n", __func__, chan->ic_task, run->ctx, run, run->status); /* call the completion callback and free the run */ spin_unlock_irqrestore(&chan->irqlock, flags); run->ctx->complete(run, run->ctx->complete_context); spin_lock_irqsave(&chan->irqlock, flags); } spin_unlock_irqrestore(&chan->irqlock, flags); } /* * the bottom half thread clears out the done_q, calling the * completion handler for each. */ static irqreturn_t do_bh(int irq, void *dev_id) { struct ipu_image_convert_chan *chan = dev_id; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_ctx *ctx; unsigned long flags; dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__, chan->ic_task); empty_done_q(chan); spin_lock_irqsave(&chan->irqlock, flags); /* * the done_q is cleared out, signal any contexts * that are aborting that abort can complete. */ list_for_each_entry(ctx, &chan->ctx_list, list) { if (ctx->aborting) { dev_dbg(priv->ipu->dev, "%s: task %u: signaling abort for ctx %p\n", __func__, chan->ic_task, ctx); complete_all(&ctx->aborted); } } spin_unlock_irqrestore(&chan->irqlock, flags); dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__, chan->ic_task); return IRQ_HANDLED; } static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx) { unsigned int cur_tile = ctx->next_tile - 1; unsigned int next_tile = ctx->next_tile; if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] != ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] || ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] != ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] || ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width || ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height || ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width || ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height) return true; return false; } /* hold irqlock when calling */ static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_tile *src_tile, *dst_tile; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; struct ipuv3_channel *outch; unsigned int dst_idx; lockdep_assert_held(&chan->irqlock); outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? chan->rotation_out_chan : chan->out_chan; /* * It is difficult to stop the channel DMA before the channels * enter the paused state. Without double-buffering the channels * are always in a paused state when the EOF irq occurs, so it * is safe to stop the channels now. For double-buffering we * just ignore the abort until the operation completes, when it * is safe to shut down. */ if (ctx->aborting && !ctx->double_buffering) { convert_stop(run); run->status = -EIO; goto done; } if (ctx->next_tile == ctx->num_tiles) { /* * the conversion is complete */ convert_stop(run); run->status = 0; goto done; } /* * not done, place the next tile buffers. */ if (!ctx->double_buffering) { if (ic_settings_changed(ctx)) { convert_stop(run); convert_start(run, ctx->next_tile); } else { src_tile = &s_image->tile[ctx->next_tile]; dst_idx = ctx->out_tile_map[ctx->next_tile]; dst_tile = &d_image->tile[dst_idx]; ipu_cpmem_set_buffer(chan->in_chan, 0, s_image->base.phys0 + src_tile->offset); ipu_cpmem_set_buffer(outch, 0, d_image->base.phys0 + dst_tile->offset); if (s_image->fmt->planar) ipu_cpmem_set_uv_offset(chan->in_chan, src_tile->u_off, src_tile->v_off); if (d_image->fmt->planar) ipu_cpmem_set_uv_offset(outch, dst_tile->u_off, dst_tile->v_off); ipu_idmac_select_buffer(chan->in_chan, 0); ipu_idmac_select_buffer(outch, 0); } } else if (ctx->next_tile < ctx->num_tiles - 1) { src_tile = &s_image->tile[ctx->next_tile + 1]; dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; dst_tile = &d_image->tile[dst_idx]; ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num, s_image->base.phys0 + src_tile->offset); ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, d_image->base.phys0 + dst_tile->offset); ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num); ipu_idmac_select_buffer(outch, ctx->cur_buf_num); ctx->cur_buf_num ^= 1; } ctx->eof_mask = 0; /* clear EOF irq mask for next tile */ ctx->next_tile++; return IRQ_HANDLED; done: list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; run_next(chan); return IRQ_WAKE_THREAD; } static irqreturn_t eof_irq(int irq, void *data) { struct ipu_image_convert_chan *chan = data; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; irqreturn_t ret = IRQ_HANDLED; bool tile_complete = false; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); /* get current run and its context */ run = chan->current_run; if (!run) { ret = IRQ_NONE; goto out; } ctx = run->ctx; if (irq == chan->in_eof_irq) { ctx->eof_mask |= EOF_IRQ_IN; } else if (irq == chan->out_eof_irq) { ctx->eof_mask |= EOF_IRQ_OUT; } else if (irq == chan->rot_in_eof_irq || irq == chan->rot_out_eof_irq) { if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { /* this was NOT a rotation op, shouldn't happen */ dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); goto out; } ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ? EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT; } else { dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq); ret = IRQ_NONE; goto out; } if (ipu_rot_mode_is_irt(ctx->rot_mode)) tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE); else tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE); if (tile_complete) ret = do_tile_complete(run); out: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } /* * try to force the completion of runs for this ctx. Called when * abort wait times out in ipu_image_convert_abort(). */ static void force_abort(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_run *run; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); run = chan->current_run; if (run && run->ctx == ctx) { convert_stop(run); run->status = -EIO; list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; run_next(chan); } spin_unlock_irqrestore(&chan->irqlock, flags); empty_done_q(chan); } static void release_ipu_resources(struct ipu_image_convert_chan *chan) { if (chan->in_eof_irq >= 0) free_irq(chan->in_eof_irq, chan); if (chan->rot_in_eof_irq >= 0) free_irq(chan->rot_in_eof_irq, chan); if (chan->out_eof_irq >= 0) free_irq(chan->out_eof_irq, chan); if (chan->rot_out_eof_irq >= 0) free_irq(chan->rot_out_eof_irq, chan); if (!IS_ERR_OR_NULL(chan->in_chan)) ipu_idmac_put(chan->in_chan); if (!IS_ERR_OR_NULL(chan->out_chan)) ipu_idmac_put(chan->out_chan); if (!IS_ERR_OR_NULL(chan->rotation_in_chan)) ipu_idmac_put(chan->rotation_in_chan); if (!IS_ERR_OR_NULL(chan->rotation_out_chan)) ipu_idmac_put(chan->rotation_out_chan); if (!IS_ERR_OR_NULL(chan->ic)) ipu_ic_put(chan->ic); chan->in_chan = chan->out_chan = chan->rotation_in_chan = chan->rotation_out_chan = NULL; chan->in_eof_irq = -1; chan->rot_in_eof_irq = -1; chan->out_eof_irq = -1; chan->rot_out_eof_irq = -1; } static int get_eof_irq(struct ipu_image_convert_chan *chan, struct ipuv3_channel *channel) { struct ipu_image_convert_priv *priv = chan->priv; int ret, irq; irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF); ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan); if (ret < 0) { dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq); return ret; } return irq; } static int get_ipu_resources(struct ipu_image_convert_chan *chan) { const struct ipu_image_convert_dma_chan *dma = chan->dma_ch; struct ipu_image_convert_priv *priv = chan->priv; int ret; /* get IC */ chan->ic = ipu_ic_get(priv->ipu, chan->ic_task); if (IS_ERR(chan->ic)) { dev_err(priv->ipu->dev, "could not acquire IC\n"); ret = PTR_ERR(chan->ic); goto err; } /* get IDMAC channels */ chan->in_chan = ipu_idmac_get(priv->ipu, dma->in); chan->out_chan = ipu_idmac_get(priv->ipu, dma->out); if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) { dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); ret = -EBUSY; goto err; } chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in); chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out); if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) { dev_err(priv->ipu->dev, "could not acquire idmac rotation channels\n"); ret = -EBUSY; goto err; } /* acquire the EOF interrupts */ ret = get_eof_irq(chan, chan->in_chan); if (ret < 0) { chan->in_eof_irq = -1; goto err; } chan->in_eof_irq = ret; ret = get_eof_irq(chan, chan->rotation_in_chan); if (ret < 0) { chan->rot_in_eof_irq = -1; goto err; } chan->rot_in_eof_irq = ret; ret = get_eof_irq(chan, chan->out_chan); if (ret < 0) { chan->out_eof_irq = -1; goto err; } chan->out_eof_irq = ret; ret = get_eof_irq(chan, chan->rotation_out_chan); if (ret < 0) { chan->rot_out_eof_irq = -1; goto err; } chan->rot_out_eof_irq = ret; return 0; err: release_ipu_resources(chan); return ret; } static int fill_image(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *ic_image, struct ipu_image *image, enum ipu_image_convert_type type) { struct ipu_image_convert_priv *priv = ctx->chan->priv; ic_image->base = *image; ic_image->type = type; ic_image->fmt = get_format(image->pix.pixelformat); if (!ic_image->fmt) { dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", type == IMAGE_CONVERT_OUT ? "Output" : "Input"); return -EINVAL; } if (ic_image->fmt->planar) ic_image->stride = ic_image->base.pix.width; else ic_image->stride = ic_image->base.pix.bytesperline; return 0; } /* borrowed from drivers/media/v4l2-core/v4l2-common.c */ static unsigned int clamp_align(unsigned int x, unsigned int min, unsigned int max, unsigned int align) { /* Bits that must be zero to be aligned */ unsigned int mask = ~((1 << align) - 1); /* Clamp to aligned min and max */ x = clamp(x, (min + ~mask) & mask, max & mask); /* Round to nearest aligned value */ if (align) x = (x + (1 << (align - 1))) & mask; return x; } /* Adjusts input/output images to IPU restrictions */ void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { const struct ipu_image_pixfmt *infmt, *outfmt; u32 w_align_out, h_align_out; u32 w_align_in, h_align_in; infmt = get_format(in->pix.pixelformat); outfmt = get_format(out->pix.pixelformat); /* set some default pixel formats if needed */ if (!infmt) { in->pix.pixelformat = V4L2_PIX_FMT_RGB24; infmt = get_format(V4L2_PIX_FMT_RGB24); } if (!outfmt) { out->pix.pixelformat = V4L2_PIX_FMT_RGB24; outfmt = get_format(V4L2_PIX_FMT_RGB24); } /* image converter does not handle fields */ in->pix.field = out->pix.field = V4L2_FIELD_NONE; /* resizer cannot downsize more than 4:1 */ if (ipu_rot_mode_is_irt(rot_mode)) { out->pix.height = max_t(__u32, out->pix.height, in->pix.width / 4); out->pix.width = max_t(__u32, out->pix.width, in->pix.height / 4); } else { out->pix.width = max_t(__u32, out->pix.width, in->pix.width / 4); out->pix.height = max_t(__u32, out->pix.height, in->pix.height / 4); } /* align input width/height */ w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode)); h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode)); in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align_in); in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align_in); /* align output width/height */ w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode)); h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode)); out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align_out); out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align_out); /* set input/output strides and image sizes */ in->pix.bytesperline = infmt->planar ? clamp_align(in->pix.width, 2 << w_align_in, MAX_W, w_align_in) : clamp_align((in->pix.width * infmt->bpp) >> 3, ((2 << w_align_in) * infmt->bpp) >> 3, (MAX_W * infmt->bpp) >> 3, w_align_in); in->pix.sizeimage = infmt->planar ? (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 : in->pix.height * in->pix.bytesperline; out->pix.bytesperline = outfmt->planar ? out->pix.width : (out->pix.width * outfmt->bpp) >> 3; out->pix.sizeimage = outfmt->planar ? (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 : out->pix.height * out->pix.bytesperline; } EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); /* * this is used by ipu_image_convert_prepare() to verify set input and * output images are valid before starting the conversion. Clients can * also call it before calling ipu_image_convert_prepare(). */ int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { struct ipu_image testin, testout; testin = *in; testout = *out; ipu_image_convert_adjust(&testin, &testout, rot_mode); if (testin.pix.width != in->pix.width || testin.pix.height != in->pix.height || testout.pix.width != out->pix.width || testout.pix.height != out->pix.height) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(ipu_image_convert_verify); /* * Call ipu_image_convert_prepare() to prepare for the conversion of * given images and rotation mode. Returns a new conversion context. */ struct ipu_image_convert_ctx * ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode, ipu_image_convert_cb_t complete, void *complete_context) { struct ipu_image_convert_priv *priv = ipu->image_convert_priv; struct ipu_image_convert_image *s_image, *d_image; struct ipu_image_convert_chan *chan; struct ipu_image_convert_ctx *ctx; unsigned long flags; unsigned int i; bool get_res; int ret; if (!in || !out || !complete || (ic_task != IC_TASK_VIEWFINDER && ic_task != IC_TASK_POST_PROCESSOR)) return ERR_PTR(-EINVAL); /* verify the in/out images before continuing */ ret = ipu_image_convert_verify(in, out, rot_mode); if (ret) { dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", __func__); return ERR_PTR(ret); } chan = &priv->chan[ic_task]; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__, chan->ic_task, ctx); ctx->chan = chan; init_completion(&ctx->aborted); ctx->rot_mode = rot_mode; /* Sets ctx->in.num_rows/cols as well */ ret = calc_image_resize_coefficients(ctx, in, out); if (ret) goto out_free; s_image = &ctx->in; d_image = &ctx->out; /* set tiling and rotation */ if (ipu_rot_mode_is_irt(rot_mode)) { d_image->num_rows = s_image->num_cols; d_image->num_cols = s_image->num_rows; } else { d_image->num_rows = s_image->num_rows; d_image->num_cols = s_image->num_cols; } ctx->num_tiles = d_image->num_cols * d_image->num_rows; ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); if (ret) goto out_free; ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); if (ret) goto out_free; calc_out_tile_map(ctx); find_seams(ctx, s_image, d_image); ret = calc_tile_dimensions(ctx, s_image); if (ret) goto out_free; ret = calc_tile_offsets(ctx, s_image); if (ret) goto out_free; calc_tile_dimensions(ctx, d_image); ret = calc_tile_offsets(ctx, d_image); if (ret) goto out_free; calc_tile_resize_coefficients(ctx); ret = ipu_ic_calc_csc(&ctx->csc, s_image->base.pix.ycbcr_enc, s_image->base.pix.quantization, ipu_pixelformat_to_colorspace(s_image->fmt->fourcc), d_image->base.pix.ycbcr_enc, d_image->base.pix.quantization, ipu_pixelformat_to_colorspace(d_image->fmt->fourcc)); if (ret) goto out_free; dump_format(ctx, s_image); dump_format(ctx, d_image); ctx->complete = complete; ctx->complete_context = complete_context; /* * Can we use double-buffering for this operation? If there is * only one tile (the whole image can be converted in a single * operation) there's no point in using double-buffering. Also, * the IPU's IDMAC channels allow only a single U and V plane * offset shared between both buffers, but these offsets change * for every tile, and therefore would have to be updated for * each buffer which is not possible. So double-buffering is * impossible when either the source or destination images are * a planar format (YUV420, YUV422P, etc.). Further, differently * sized tiles or different resizing coefficients per tile * prevent double-buffering as well. */ ctx->double_buffering = (ctx->num_tiles > 1 && !s_image->fmt->planar && !d_image->fmt->planar); for (i = 1; i < ctx->num_tiles; i++) { if (ctx->in.tile[i].width != ctx->in.tile[0].width || ctx->in.tile[i].height != ctx->in.tile[0].height || ctx->out.tile[i].width != ctx->out.tile[0].width || ctx->out.tile[i].height != ctx->out.tile[0].height) { ctx->double_buffering = false; break; } } for (i = 1; i < ctx->in.num_cols; i++) { if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) { ctx->double_buffering = false; break; } } for (i = 1; i < ctx->in.num_rows; i++) { if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) { ctx->double_buffering = false; break; } } if (ipu_rot_mode_is_irt(ctx->rot_mode)) { unsigned long intermediate_size = d_image->tile[0].size; for (i = 1; i < ctx->num_tiles; i++) { if (d_image->tile[i].size > intermediate_size) intermediate_size = d_image->tile[i].size; } ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0], intermediate_size); if (ret) goto out_free; if (ctx->double_buffering) { ret = alloc_dma_buf(priv, &ctx->rot_intermediate[1], intermediate_size); if (ret) goto out_free_dmabuf0; } } spin_lock_irqsave(&chan->irqlock, flags); get_res = list_empty(&chan->ctx_list); list_add_tail(&ctx->list, &chan->ctx_list); spin_unlock_irqrestore(&chan->irqlock, flags); if (get_res) { ret = get_ipu_resources(chan); if (ret) goto out_free_dmabuf1; } return ctx; out_free_dmabuf1: free_dma_buf(priv, &ctx->rot_intermediate[1]); spin_lock_irqsave(&chan->irqlock, flags); list_del(&ctx->list); spin_unlock_irqrestore(&chan->irqlock, flags); out_free_dmabuf0: free_dma_buf(priv, &ctx->rot_intermediate[0]); out_free: kfree(ctx); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); /* * Carry out a single image conversion run. Only the physaddr's of the input * and output image buffers are needed. The conversion context must have * been created previously with ipu_image_convert_prepare(). */ int ipu_image_convert_queue(struct ipu_image_convert_run *run) { struct ipu_image_convert_chan *chan; struct ipu_image_convert_priv *priv; struct ipu_image_convert_ctx *ctx; unsigned long flags; int ret = 0; if (!run || !run->ctx || !run->in_phys || !run->out_phys) return -EINVAL; ctx = run->ctx; chan = ctx->chan; priv = chan->priv; dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__, chan->ic_task, ctx, run); INIT_LIST_HEAD(&run->list); spin_lock_irqsave(&chan->irqlock, flags); if (ctx->aborting) { ret = -EIO; goto unlock; } list_add_tail(&run->list, &chan->pending_q); if (!chan->current_run) { ret = do_run(run); if (ret) chan->current_run = NULL; } unlock: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_image_convert_queue); /* Abort any active or pending conversions for this context */ static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run, *active_run, *tmp; unsigned long flags; int run_count, ret; spin_lock_irqsave(&chan->irqlock, flags); /* move all remaining pending runs in this context to done_q */ list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { if (run->ctx != ctx) continue; run->status = -EIO; list_move_tail(&run->list, &chan->done_q); } run_count = get_run_count(ctx, &chan->done_q); active_run = (chan->current_run && chan->current_run->ctx == ctx) ? chan->current_run : NULL; if (active_run) reinit_completion(&ctx->aborted); ctx->aborting = true; spin_unlock_irqrestore(&chan->irqlock, flags); if (!run_count && !active_run) { dev_dbg(priv->ipu->dev, "%s: task %u: no abort needed for ctx %p\n", __func__, chan->ic_task, ctx); return; } if (!active_run) { empty_done_q(chan); return; } dev_dbg(priv->ipu->dev, "%s: task %u: wait for completion: %d runs\n", __func__, chan->ic_task, run_count); ret = wait_for_completion_timeout(&ctx->aborted, msecs_to_jiffies(10000)); if (ret == 0) { dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); force_abort(ctx); } } void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) { __ipu_image_convert_abort(ctx); ctx->aborting = false; } EXPORT_SYMBOL_GPL(ipu_image_convert_abort); /* Unprepare image conversion context */ void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; unsigned long flags; bool put_res; /* make sure no runs are hanging around */ __ipu_image_convert_abort(ctx); dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__, chan->ic_task, ctx); spin_lock_irqsave(&chan->irqlock, flags); list_del(&ctx->list); put_res = list_empty(&chan->ctx_list); spin_unlock_irqrestore(&chan->irqlock, flags); if (put_res) release_ipu_resources(chan); free_dma_buf(priv, &ctx->rot_intermediate[1]); free_dma_buf(priv, &ctx->rot_intermediate[0]); kfree(ctx); } EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); /* * "Canned" asynchronous single image conversion. Allocates and returns * a new conversion run. On successful return the caller must free the * run and call ipu_image_convert_unprepare() after conversion completes. */ struct ipu_image_convert_run * ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode, ipu_image_convert_cb_t complete, void *complete_context) { struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; int ret; ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode, complete, complete_context); if (IS_ERR(ctx)) return ERR_CAST(ctx); run = kzalloc(sizeof(*run), GFP_KERNEL); if (!run) { ipu_image_convert_unprepare(ctx); return ERR_PTR(-ENOMEM); } run->ctx = ctx; run->in_phys = in->phys0; run->out_phys = out->phys0; ret = ipu_image_convert_queue(run); if (ret) { ipu_image_convert_unprepare(ctx); kfree(run); return ERR_PTR(ret); } return run; } EXPORT_SYMBOL_GPL(ipu_image_convert); /* "Canned" synchronous single image conversion */ static void image_convert_sync_complete(struct ipu_image_convert_run *run, void *data) { struct completion *comp = data; complete(comp); } int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { struct ipu_image_convert_run *run; struct completion comp; int ret; init_completion(&comp); run = ipu_image_convert(ipu, ic_task, in, out, rot_mode, image_convert_sync_complete, &comp); if (IS_ERR(run)) return PTR_ERR(run); ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); ret = (ret == 0) ? -ETIMEDOUT : 0; ipu_image_convert_unprepare(run->ctx); kfree(run); return ret; } EXPORT_SYMBOL_GPL(ipu_image_convert_sync); int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev) { struct ipu_image_convert_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ipu->image_convert_priv = priv; priv->ipu = ipu; for (i = 0; i < IC_NUM_TASKS; i++) { struct ipu_image_convert_chan *chan = &priv->chan[i]; chan->ic_task = i; chan->priv = priv; chan->dma_ch = &image_convert_dma_chan[i]; chan->in_eof_irq = -1; chan->rot_in_eof_irq = -1; chan->out_eof_irq = -1; chan->rot_out_eof_irq = -1; spin_lock_init(&chan->irqlock); INIT_LIST_HEAD(&chan->ctx_list); INIT_LIST_HEAD(&chan->pending_q); INIT_LIST_HEAD(&chan->done_q); } return 0; } void ipu_image_convert_exit(struct ipu_soc *ipu) { } |