Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | // SPDX-License-Identifier: GPL-2.0-or-later /* * SHA-256, as specified in * http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf * * SHA-256 code by Jean-Luc Cooke <jlcooke@certainkey.com>. * * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2014 Red Hat Inc. */ #include <linux/bitops.h> #include <linux/export.h> #include <linux/module.h> #include <linux/string.h> #include <crypto/sha2.h> #include <asm/unaligned.h> static const u32 SHA256_K[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; static inline u32 Ch(u32 x, u32 y, u32 z) { return z ^ (x & (y ^ z)); } static inline u32 Maj(u32 x, u32 y, u32 z) { return (x & y) | (z & (x | y)); } #define e0(x) (ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22)) #define e1(x) (ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25)) #define s0(x) (ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3)) #define s1(x) (ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10)) static inline void LOAD_OP(int I, u32 *W, const u8 *input) { W[I] = get_unaligned_be32((__u32 *)input + I); } static inline void BLEND_OP(int I, u32 *W) { W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16]; } #define SHA256_ROUND(i, a, b, c, d, e, f, g, h) do { \ u32 t1, t2; \ t1 = h + e1(e) + Ch(e, f, g) + SHA256_K[i] + W[i]; \ t2 = e0(a) + Maj(a, b, c); \ d += t1; \ h = t1 + t2; \ } while (0) static void sha256_transform(u32 *state, const u8 *input, u32 *W) { u32 a, b, c, d, e, f, g, h; int i; /* load the input */ for (i = 0; i < 16; i += 8) { LOAD_OP(i + 0, W, input); LOAD_OP(i + 1, W, input); LOAD_OP(i + 2, W, input); LOAD_OP(i + 3, W, input); LOAD_OP(i + 4, W, input); LOAD_OP(i + 5, W, input); LOAD_OP(i + 6, W, input); LOAD_OP(i + 7, W, input); } /* now blend */ for (i = 16; i < 64; i += 8) { BLEND_OP(i + 0, W); BLEND_OP(i + 1, W); BLEND_OP(i + 2, W); BLEND_OP(i + 3, W); BLEND_OP(i + 4, W); BLEND_OP(i + 5, W); BLEND_OP(i + 6, W); BLEND_OP(i + 7, W); } /* load the state into our registers */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; /* now iterate */ for (i = 0; i < 64; i += 8) { SHA256_ROUND(i + 0, a, b, c, d, e, f, g, h); SHA256_ROUND(i + 1, h, a, b, c, d, e, f, g); SHA256_ROUND(i + 2, g, h, a, b, c, d, e, f); SHA256_ROUND(i + 3, f, g, h, a, b, c, d, e); SHA256_ROUND(i + 4, e, f, g, h, a, b, c, d); SHA256_ROUND(i + 5, d, e, f, g, h, a, b, c); SHA256_ROUND(i + 6, c, d, e, f, g, h, a, b); SHA256_ROUND(i + 7, b, c, d, e, f, g, h, a); } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } void sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len) { unsigned int partial, done; const u8 *src; u32 W[64]; partial = sctx->count & 0x3f; sctx->count += len; done = 0; src = data; if ((partial + len) > 63) { if (partial) { done = -partial; memcpy(sctx->buf + partial, data, done + 64); src = sctx->buf; } do { sha256_transform(sctx->state, src, W); done += 64; src = data + done; } while (done + 63 < len); memzero_explicit(W, sizeof(W)); partial = 0; } memcpy(sctx->buf + partial, src, len - done); } EXPORT_SYMBOL(sha256_update); void sha224_update(struct sha256_state *sctx, const u8 *data, unsigned int len) { sha256_update(sctx, data, len); } EXPORT_SYMBOL(sha224_update); static void __sha256_final(struct sha256_state *sctx, u8 *out, int digest_words) { __be32 *dst = (__be32 *)out; __be64 bits; unsigned int index, pad_len; int i; static const u8 padding[64] = { 0x80, }; /* Save number of bits */ bits = cpu_to_be64(sctx->count << 3); /* Pad out to 56 mod 64. */ index = sctx->count & 0x3f; pad_len = (index < 56) ? (56 - index) : ((64+56) - index); sha256_update(sctx, padding, pad_len); /* Append length (before padding) */ sha256_update(sctx, (const u8 *)&bits, sizeof(bits)); /* Store state in digest */ for (i = 0; i < digest_words; i++) put_unaligned_be32(sctx->state[i], &dst[i]); /* Zeroize sensitive information. */ memzero_explicit(sctx, sizeof(*sctx)); } void sha256_final(struct sha256_state *sctx, u8 *out) { __sha256_final(sctx, out, 8); } EXPORT_SYMBOL(sha256_final); void sha224_final(struct sha256_state *sctx, u8 *out) { __sha256_final(sctx, out, 7); } EXPORT_SYMBOL(sha224_final); void sha256(const u8 *data, unsigned int len, u8 *out) { struct sha256_state sctx; sha256_init(&sctx); sha256_update(&sctx, data, len); sha256_final(&sctx, out); } EXPORT_SYMBOL(sha256); MODULE_LICENSE("GPL"); |