Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org> */ #ifdef CONFIG_ARM64 #include <asm/neon-intrinsics.h> #define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b" #else #include <arm_neon.h> #define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0" #endif #define AEGIS_BLOCK_SIZE 16 #include <stddef.h> extern int aegis128_have_aes_insn; void *memcpy(void *dest, const void *src, size_t n); struct aegis128_state { uint8x16_t v[5]; }; extern const uint8_t crypto_aes_sbox[]; static struct aegis128_state aegis128_load_state_neon(const void *state) { return (struct aegis128_state){ { vld1q_u8(state), vld1q_u8(state + 16), vld1q_u8(state + 32), vld1q_u8(state + 48), vld1q_u8(state + 64) } }; } static void aegis128_save_state_neon(struct aegis128_state st, void *state) { vst1q_u8(state, st.v[0]); vst1q_u8(state + 16, st.v[1]); vst1q_u8(state + 32, st.v[2]); vst1q_u8(state + 48, st.v[3]); vst1q_u8(state + 64, st.v[4]); } static inline __attribute__((always_inline)) uint8x16_t aegis_aes_round(uint8x16_t w) { uint8x16_t z = {}; #ifdef CONFIG_ARM64 if (!__builtin_expect(aegis128_have_aes_insn, 1)) { static const uint8_t shift_rows[] = { 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, }; static const uint8_t ror32by8[] = { 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, }; uint8x16_t v; // shift rows w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); // sub bytes #ifndef CONFIG_CC_IS_GCC v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w); v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40); v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80); v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0); #else asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w)); w -= 0x40; asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w)); w -= 0x40; asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w)); w -= 0x40; asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w)); #endif // mix columns w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b); w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v); w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); return w; } #endif /* * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics * to force the compiler to issue the aese/aesmc instructions in pairs. * This is much faster on many cores, where the instruction pair can * execute in a single cycle. */ asm(AES_ROUND : "+w"(w) : "w"(z)); return w; } static inline __attribute__((always_inline)) struct aegis128_state aegis128_update_neon(struct aegis128_state st, uint8x16_t m) { m ^= aegis_aes_round(st.v[4]); st.v[4] ^= aegis_aes_round(st.v[3]); st.v[3] ^= aegis_aes_round(st.v[2]); st.v[2] ^= aegis_aes_round(st.v[1]); st.v[1] ^= aegis_aes_round(st.v[0]); st.v[0] ^= m; return st; } static inline __attribute__((always_inline)) void preload_sbox(void) { if (!IS_ENABLED(CONFIG_ARM64) || !IS_ENABLED(CONFIG_CC_IS_GCC) || __builtin_expect(aegis128_have_aes_insn, 1)) return; asm("ld1 {v16.16b-v19.16b}, [%0], #64 \n\t" "ld1 {v20.16b-v23.16b}, [%0], #64 \n\t" "ld1 {v24.16b-v27.16b}, [%0], #64 \n\t" "ld1 {v28.16b-v31.16b}, [%0] \n\t" :: "r"(crypto_aes_sbox)); } void crypto_aegis128_init_neon(void *state, const void *key, const void *iv) { static const uint8_t const0[] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d, 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62, }; static const uint8_t const1[] = { 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1, 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd, }; uint8x16_t k = vld1q_u8(key); uint8x16_t kiv = k ^ vld1q_u8(iv); struct aegis128_state st = {{ kiv, vld1q_u8(const1), vld1q_u8(const0), k ^ vld1q_u8(const0), k ^ vld1q_u8(const1), }}; int i; preload_sbox(); for (i = 0; i < 5; i++) { st = aegis128_update_neon(st, k); st = aegis128_update_neon(st, kiv); } aegis128_save_state_neon(st, state); } void crypto_aegis128_update_neon(void *state, const void *msg) { struct aegis128_state st = aegis128_load_state_neon(state); preload_sbox(); st = aegis128_update_neon(st, vld1q_u8(msg)); aegis128_save_state_neon(st, state); } #ifdef CONFIG_ARM /* * AArch32 does not provide these intrinsics natively because it does not * implement the underlying instructions. AArch32 only provides 64-bit * wide vtbl.8/vtbx.8 instruction, so use those instead. */ static uint8x16_t vqtbl1q_u8(uint8x16_t a, uint8x16_t b) { union { uint8x16_t val; uint8x8x2_t pair; } __a = { a }; return vcombine_u8(vtbl2_u8(__a.pair, vget_low_u8(b)), vtbl2_u8(__a.pair, vget_high_u8(b))); } static uint8x16_t vqtbx1q_u8(uint8x16_t v, uint8x16_t a, uint8x16_t b) { union { uint8x16_t val; uint8x8x2_t pair; } __a = { a }; return vcombine_u8(vtbx2_u8(vget_low_u8(v), __a.pair, vget_low_u8(b)), vtbx2_u8(vget_high_u8(v), __a.pair, vget_high_u8(b))); } static int8_t vminvq_s8(int8x16_t v) { int8x8_t s = vpmin_s8(vget_low_s8(v), vget_high_s8(v)); s = vpmin_s8(s, s); s = vpmin_s8(s, s); s = vpmin_s8(s, s); return vget_lane_s8(s, 0); } #endif static const uint8_t permute[] __aligned(64) = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src, unsigned int size) { struct aegis128_state st = aegis128_load_state_neon(state); const int short_input = size < AEGIS_BLOCK_SIZE; uint8x16_t msg; preload_sbox(); while (size >= AEGIS_BLOCK_SIZE) { uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; msg = vld1q_u8(src); st = aegis128_update_neon(st, msg); msg ^= s; vst1q_u8(dst, msg); size -= AEGIS_BLOCK_SIZE; src += AEGIS_BLOCK_SIZE; dst += AEGIS_BLOCK_SIZE; } if (size > 0) { uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; uint8_t buf[AEGIS_BLOCK_SIZE]; const void *in = src; void *out = dst; uint8x16_t m; if (__builtin_expect(short_input, 0)) in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size); m = vqtbl1q_u8(vld1q_u8(in + size - AEGIS_BLOCK_SIZE), vld1q_u8(permute + 32 - size)); st = aegis128_update_neon(st, m); vst1q_u8(out + size - AEGIS_BLOCK_SIZE, vqtbl1q_u8(m ^ s, vld1q_u8(permute + size))); if (__builtin_expect(short_input, 0)) memcpy(dst, out, size); else vst1q_u8(out - AEGIS_BLOCK_SIZE, msg); } aegis128_save_state_neon(st, state); } void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src, unsigned int size) { struct aegis128_state st = aegis128_load_state_neon(state); const int short_input = size < AEGIS_BLOCK_SIZE; uint8x16_t msg; preload_sbox(); while (size >= AEGIS_BLOCK_SIZE) { msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; st = aegis128_update_neon(st, msg); vst1q_u8(dst, msg); size -= AEGIS_BLOCK_SIZE; src += AEGIS_BLOCK_SIZE; dst += AEGIS_BLOCK_SIZE; } if (size > 0) { uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; uint8_t buf[AEGIS_BLOCK_SIZE]; const void *in = src; void *out = dst; uint8x16_t m; if (__builtin_expect(short_input, 0)) in = out = memcpy(buf + AEGIS_BLOCK_SIZE - size, src, size); m = s ^ vqtbx1q_u8(s, vld1q_u8(in + size - AEGIS_BLOCK_SIZE), vld1q_u8(permute + 32 - size)); st = aegis128_update_neon(st, m); vst1q_u8(out + size - AEGIS_BLOCK_SIZE, vqtbl1q_u8(m, vld1q_u8(permute + size))); if (__builtin_expect(short_input, 0)) memcpy(dst, out, size); else vst1q_u8(out - AEGIS_BLOCK_SIZE, msg); } aegis128_save_state_neon(st, state); } int crypto_aegis128_final_neon(void *state, void *tag_xor, unsigned int assoclen, unsigned int cryptlen, unsigned int authsize) { struct aegis128_state st = aegis128_load_state_neon(state); uint8x16_t v; int i; preload_sbox(); v = st.v[3] ^ (uint8x16_t)vcombine_u64(vmov_n_u64(8ULL * assoclen), vmov_n_u64(8ULL * cryptlen)); for (i = 0; i < 7; i++) st = aegis128_update_neon(st, v); v = st.v[0] ^ st.v[1] ^ st.v[2] ^ st.v[3] ^ st.v[4]; if (authsize > 0) { v = vqtbl1q_u8(~vceqq_u8(v, vld1q_u8(tag_xor)), vld1q_u8(permute + authsize)); return vminvq_s8((int8x16_t)v); } vst1q_u8(tag_xor, v); return 0; } |