Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | // SPDX-License-Identifier: GPL-2.0 /* * Shadow Call Stack support. * * Copyright (C) 2019 Google LLC */ #include <linux/cpuhotplug.h> #include <linux/kasan.h> #include <linux/mm.h> #include <linux/scs.h> #include <linux/vmalloc.h> #include <linux/vmstat.h> static void __scs_account(void *s, int account) { struct page *scs_page = vmalloc_to_page(s); mod_node_page_state(page_pgdat(scs_page), NR_KERNEL_SCS_KB, account * (SCS_SIZE / SZ_1K)); } /* Matches NR_CACHED_STACKS for VMAP_STACK */ #define NR_CACHED_SCS 2 static DEFINE_PER_CPU(void *, scs_cache[NR_CACHED_SCS]); static void *__scs_alloc(int node) { int i; void *s; for (i = 0; i < NR_CACHED_SCS; i++) { s = this_cpu_xchg(scs_cache[i], NULL); if (s) { kasan_unpoison_vmalloc(s, SCS_SIZE); memset(s, 0, SCS_SIZE); return s; } } return __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END, GFP_SCS, PAGE_KERNEL, 0, node, __builtin_return_address(0)); } void *scs_alloc(int node) { void *s; s = __scs_alloc(node); if (!s) return NULL; *__scs_magic(s) = SCS_END_MAGIC; /* * Poison the allocation to catch unintentional accesses to * the shadow stack when KASAN is enabled. */ kasan_poison_vmalloc(s, SCS_SIZE); __scs_account(s, 1); return s; } void scs_free(void *s) { int i; __scs_account(s, -1); /* * We cannot sleep as this can be called in interrupt context, * so use this_cpu_cmpxchg to update the cache, and vfree_atomic * to free the stack. */ for (i = 0; i < NR_CACHED_SCS; i++) if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL) return; kasan_unpoison_vmalloc(s, SCS_SIZE); vfree_atomic(s); } static int scs_cleanup(unsigned int cpu) { int i; void **cache = per_cpu_ptr(scs_cache, cpu); for (i = 0; i < NR_CACHED_SCS; i++) { vfree(cache[i]); cache[i] = NULL; } return 0; } void __init scs_init(void) { cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "scs:scs_cache", NULL, scs_cleanup); } int scs_prepare(struct task_struct *tsk, int node) { void *s = scs_alloc(node); if (!s) return -ENOMEM; task_scs(tsk) = task_scs_sp(tsk) = s; return 0; } static void scs_check_usage(struct task_struct *tsk) { static unsigned long highest; unsigned long *p, prev, curr = highest, used = 0; if (!IS_ENABLED(CONFIG_DEBUG_STACK_USAGE)) return; for (p = task_scs(tsk); p < __scs_magic(tsk); ++p) { if (!READ_ONCE_NOCHECK(*p)) break; used += sizeof(*p); } while (used > curr) { prev = cmpxchg_relaxed(&highest, curr, used); if (prev == curr) { pr_info("%s (%d): highest shadow stack usage: %lu bytes\n", tsk->comm, task_pid_nr(tsk), used); break; } curr = prev; } } void scs_release(struct task_struct *tsk) { void *s = task_scs(tsk); if (!s) return; WARN(task_scs_end_corrupted(tsk), "corrupted shadow stack detected when freeing task\n"); scs_check_usage(tsk); scs_free(s); } |