Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | // SPDX-License-Identifier: GPL-2.0 #include <linux/tcp.h> #include <net/tcp.h> static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) { return t1 > t2 || (t1 == t2 && after(seq1, seq2)); } static u32 tcp_rack_reo_wnd(const struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); if (!tp->reord_seen) { /* If reordering has not been observed, be aggressive during * the recovery or starting the recovery by DUPACK threshold. */ if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery) return 0; if (tp->sacked_out >= tp->reordering && !(sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_NO_DUPTHRESH)) return 0; } /* To be more reordering resilient, allow min_rtt/4 settling delay. * Use min_rtt instead of the smoothed RTT because reordering is * often a path property and less related to queuing or delayed ACKs. * Upon receiving DSACKs, linearly increase the window up to the * smoothed RTT. */ return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps, tp->srtt_us >> 3); } s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd) { return tp->rack.rtt_us + reo_wnd - tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(skb)); } /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01): * * Marks a packet lost, if some packet sent later has been (s)acked. * The underlying idea is similar to the traditional dupthresh and FACK * but they look at different metrics: * * dupthresh: 3 OOO packets delivered (packet count) * FACK: sequence delta to highest sacked sequence (sequence space) * RACK: sent time delta to the latest delivered packet (time domain) * * The advantage of RACK is it applies to both original and retransmitted * packet and therefore is robust against tail losses. Another advantage * is being more resilient to reordering by simply allowing some * "settling delay", instead of tweaking the dupthresh. * * When tcp_rack_detect_loss() detects some packets are lost and we * are not already in the CA_Recovery state, either tcp_rack_reo_timeout() * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will * make us enter the CA_Recovery state. */ static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb, *n; u32 reo_wnd; *reo_timeout = 0; reo_wnd = tcp_rack_reo_wnd(sk); list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue, tcp_tsorted_anchor) { struct tcp_skb_cb *scb = TCP_SKB_CB(skb); s32 remaining; /* Skip ones marked lost but not yet retransmitted */ if ((scb->sacked & TCPCB_LOST) && !(scb->sacked & TCPCB_SACKED_RETRANS)) continue; if (!tcp_rack_sent_after(tp->rack.mstamp, tcp_skb_timestamp_us(skb), tp->rack.end_seq, scb->end_seq)) break; /* A packet is lost if it has not been s/acked beyond * the recent RTT plus the reordering window. */ remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd); if (remaining <= 0) { tcp_mark_skb_lost(sk, skb); list_del_init(&skb->tcp_tsorted_anchor); } else { /* Record maximum wait time */ *reo_timeout = max_t(u32, *reo_timeout, remaining); } } } bool tcp_rack_mark_lost(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); u32 timeout; if (!tp->rack.advanced) return false; /* Reset the advanced flag to avoid unnecessary queue scanning */ tp->rack.advanced = 0; tcp_rack_detect_loss(sk, &timeout); if (timeout) { timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN; inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT, timeout, inet_csk(sk)->icsk_rto); } return !!timeout; } /* Record the most recently (re)sent time among the (s)acked packets * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from * draft-cheng-tcpm-rack-00.txt */ void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, u64 xmit_time) { u32 rtt_us; rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time); if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) { /* If the sacked packet was retransmitted, it's ambiguous * whether the retransmission or the original (or the prior * retransmission) was sacked. * * If the original is lost, there is no ambiguity. Otherwise * we assume the original can be delayed up to aRTT + min_rtt. * the aRTT term is bounded by the fast recovery or timeout, * so it's at least one RTT (i.e., retransmission is at least * an RTT later). */ return; } tp->rack.advanced = 1; tp->rack.rtt_us = rtt_us; if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp, end_seq, tp->rack.end_seq)) { tp->rack.mstamp = xmit_time; tp->rack.end_seq = end_seq; } } /* We have waited long enough to accommodate reordering. Mark the expired * packets lost and retransmit them. */ void tcp_rack_reo_timeout(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); u32 timeout, prior_inflight; u32 lost = tp->lost; prior_inflight = tcp_packets_in_flight(tp); tcp_rack_detect_loss(sk, &timeout); if (prior_inflight != tcp_packets_in_flight(tp)) { if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) { tcp_enter_recovery(sk, false); if (!inet_csk(sk)->icsk_ca_ops->cong_control) tcp_cwnd_reduction(sk, 1, tp->lost - lost, 0); } tcp_xmit_retransmit_queue(sk); } if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS) tcp_rearm_rto(sk); } /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries. * * If a DSACK is received that seems like it may have been due to reordering * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded * by srtt), since there is possibility that spurious retransmission was * due to reordering delay longer than reo_wnd. * * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) * no. of successful recoveries (accounts for full DSACK-based loss * recovery undo). After that, reset it to default (min_rtt/4). * * At max, reo_wnd is incremented only once per rtt. So that the new * DSACK on which we are reacting, is due to the spurious retx (approx) * after the reo_wnd has been updated last time. * * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than * absolute value to account for change in rtt. */ void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs) { struct tcp_sock *tp = tcp_sk(sk); if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_STATIC_REO_WND || !rs->prior_delivered) return; /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */ if (before(rs->prior_delivered, tp->rack.last_delivered)) tp->rack.dsack_seen = 0; /* Adjust the reo_wnd if update is pending */ if (tp->rack.dsack_seen) { tp->rack.reo_wnd_steps = min_t(u32, 0xFF, tp->rack.reo_wnd_steps + 1); tp->rack.dsack_seen = 0; tp->rack.last_delivered = tp->delivered; tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH; } else if (!tp->rack.reo_wnd_persist) { tp->rack.reo_wnd_steps = 1; } } /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits * the next unacked packet upon receiving * a) three or more DUPACKs to start the fast recovery * b) an ACK acknowledging new data during the fast recovery. */ void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced) { const u8 state = inet_csk(sk)->icsk_ca_state; struct tcp_sock *tp = tcp_sk(sk); if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) || (state == TCP_CA_Recovery && snd_una_advanced)) { struct sk_buff *skb = tcp_rtx_queue_head(sk); u32 mss; if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) return; mss = tcp_skb_mss(skb); if (tcp_skb_pcount(skb) > 1 && skb->len > mss) tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, mss, mss, GFP_ATOMIC); tcp_mark_skb_lost(sk, skb); } } |