Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | // SPDX-License-Identifier: GPL-2.0+ /* * Regular and Ethertype DSA tagging * Copyright (c) 2008-2009 Marvell Semiconductor * * Regular DSA * ----------- * For untagged (in 802.1Q terms) packets, the switch will splice in * the tag between the SA and the ethertype of the original * packet. Tagged frames will instead have their outermost .1Q tag * converted to a DSA tag. It expects the same layout when receiving * packets from the CPU. * * Example: * * .----.----.----.--------- * Pu: | DA | SA | ET | Payload ... * '----'----'----'--------- * 6 6 2 N * .----.----.--------.-----.----.--------- * Pt: | DA | SA | 0x8100 | TCI | ET | Payload ... * '----'----'--------'-----'----'--------- * 6 6 2 2 2 N * .----.----.-----.----.--------- * Pd: | DA | SA | DSA | ET | Payload ... * '----'----'-----'----'--------- * 6 6 4 2 N * * No matter if a packet is received untagged (Pu) or tagged (Pt), * they will both have the same layout (Pd) when they are sent to the * CPU. This is done by ignoring 802.3, replacing the ethertype field * with more metadata, among which is a bit to signal if the original * packet was tagged or not. * * Ethertype DSA * ------------- * Uses the exact same tag format as regular DSA, but also includes a * proper ethertype field (which the mv88e6xxx driver sets to * ETH_P_EDSA/0xdada) followed by two zero bytes: * * .----.----.--------.--------.-----.----.--------- * | DA | SA | 0xdada | 0x0000 | DSA | ET | Payload ... * '----'----'--------'--------'-----'----'--------- * 6 6 2 2 4 2 N */ #include <linux/dsa/mv88e6xxx.h> #include <linux/etherdevice.h> #include <linux/list.h> #include <linux/slab.h> #include "dsa_priv.h" #define DSA_HLEN 4 /** * enum dsa_cmd - DSA Command * @DSA_CMD_TO_CPU: Set on packets that were trapped or mirrored to * the CPU port. This is needed to implement control protocols, * e.g. STP and LLDP, that must not allow those control packets to * be switched according to the normal rules. * @DSA_CMD_FROM_CPU: Used by the CPU to send a packet to a specific * port, ignoring all the barriers that the switch normally * enforces (VLANs, STP port states etc.). No source address * learning takes place. "sudo send packet" * @DSA_CMD_TO_SNIFFER: Set on the copies of packets that matched some * user configured ingress or egress monitor criteria. These are * forwarded by the switch tree to the user configured ingress or * egress monitor port, which can be set to the CPU port or a * regular port. If the destination is a regular port, the tag * will be removed before egressing the port. If the destination * is the CPU port, the tag will not be removed. * @DSA_CMD_FORWARD: This tag is used on all bulk traffic passing * through the switch tree, including the flows that are directed * towards the CPU. Its device/port tuple encodes the original * source port on which the packet ingressed. It can also be used * on transmit by the CPU to defer the forwarding decision to the * hardware, based on the current config of PVT/VTU/ATU * etc. Source address learning takes places if enabled on the * receiving DSA/CPU port. */ enum dsa_cmd { DSA_CMD_TO_CPU = 0, DSA_CMD_FROM_CPU = 1, DSA_CMD_TO_SNIFFER = 2, DSA_CMD_FORWARD = 3 }; /** * enum dsa_code - TO_CPU Code * * @DSA_CODE_MGMT_TRAP: DA was classified as a management * address. Typical examples include STP BPDUs and LLDP. * @DSA_CODE_FRAME2REG: Response to a "remote management" request. * @DSA_CODE_IGMP_MLD_TRAP: IGMP/MLD signaling. * @DSA_CODE_POLICY_TRAP: Frame matched some policy configuration on * the device. Typical examples are matching on DA/SA/VID and DHCP * snooping. * @DSA_CODE_ARP_MIRROR: The name says it all really. * @DSA_CODE_POLICY_MIRROR: Same as @DSA_CODE_POLICY_TRAP, but the * particular policy was set to trigger a mirror instead of a * trap. * @DSA_CODE_RESERVED_6: Unused on all devices up to at least 6393X. * @DSA_CODE_RESERVED_7: Unused on all devices up to at least 6393X. * * A 3-bit code is used to relay why a particular frame was sent to * the CPU. We only use this to determine if the packet was mirrored * or trapped, i.e. whether the packet has been forwarded by hardware * or not. * * This is the superset of all possible codes. Any particular device * may only implement a subset. */ enum dsa_code { DSA_CODE_MGMT_TRAP = 0, DSA_CODE_FRAME2REG = 1, DSA_CODE_IGMP_MLD_TRAP = 2, DSA_CODE_POLICY_TRAP = 3, DSA_CODE_ARP_MIRROR = 4, DSA_CODE_POLICY_MIRROR = 5, DSA_CODE_RESERVED_6 = 6, DSA_CODE_RESERVED_7 = 7 }; static struct sk_buff *dsa_xmit_ll(struct sk_buff *skb, struct net_device *dev, u8 extra) { struct dsa_port *dp = dsa_slave_to_port(dev); u8 tag_dev, tag_port; enum dsa_cmd cmd; u8 *dsa_header; if (skb->offload_fwd_mark) { struct dsa_switch_tree *dst = dp->ds->dst; cmd = DSA_CMD_FORWARD; /* When offloading forwarding for a bridge, inject FORWARD * packets on behalf of a virtual switch device with an index * past the physical switches. */ tag_dev = dst->last_switch + 1 + dp->bridge_num; tag_port = 0; } else { cmd = DSA_CMD_FROM_CPU; tag_dev = dp->ds->index; tag_port = dp->index; } if (skb->protocol == htons(ETH_P_8021Q)) { if (extra) { skb_push(skb, extra); dsa_alloc_etype_header(skb, extra); } /* Construct tagged DSA tag from 802.1Q tag. */ dsa_header = dsa_etype_header_pos_tx(skb) + extra; dsa_header[0] = (cmd << 6) | 0x20 | tag_dev; dsa_header[1] = tag_port << 3; /* Move CFI field from byte 2 to byte 1. */ if (dsa_header[2] & 0x10) { dsa_header[1] |= 0x01; dsa_header[2] &= ~0x10; } } else { struct net_device *br = dp->bridge_dev; u16 vid; vid = br ? MV88E6XXX_VID_BRIDGED : MV88E6XXX_VID_STANDALONE; skb_push(skb, DSA_HLEN + extra); dsa_alloc_etype_header(skb, DSA_HLEN + extra); /* Construct DSA header from untagged frame. */ dsa_header = dsa_etype_header_pos_tx(skb) + extra; dsa_header[0] = (cmd << 6) | tag_dev; dsa_header[1] = tag_port << 3; dsa_header[2] = vid >> 8; dsa_header[3] = vid & 0xff; } return skb; } static struct sk_buff *dsa_rcv_ll(struct sk_buff *skb, struct net_device *dev, u8 extra) { bool trap = false, trunk = false; int source_device, source_port; enum dsa_code code; enum dsa_cmd cmd; u8 *dsa_header; /* The ethertype field is part of the DSA header. */ dsa_header = dsa_etype_header_pos_rx(skb); cmd = dsa_header[0] >> 6; switch (cmd) { case DSA_CMD_FORWARD: trunk = !!(dsa_header[1] & 4); break; case DSA_CMD_TO_CPU: code = (dsa_header[1] & 0x6) | ((dsa_header[2] >> 4) & 1); switch (code) { case DSA_CODE_FRAME2REG: /* Remote management is not implemented yet, * drop. */ return NULL; case DSA_CODE_ARP_MIRROR: case DSA_CODE_POLICY_MIRROR: /* Mark mirrored packets to notify any upper * device (like a bridge) that forwarding has * already been done by hardware. */ break; case DSA_CODE_MGMT_TRAP: case DSA_CODE_IGMP_MLD_TRAP: case DSA_CODE_POLICY_TRAP: /* Traps have, by definition, not been * forwarded by hardware, so don't mark them. */ trap = true; break; default: /* Reserved code, this could be anything. Drop * seems like the safest option. */ return NULL; } break; default: return NULL; } source_device = dsa_header[0] & 0x1f; source_port = (dsa_header[1] >> 3) & 0x1f; if (trunk) { struct dsa_port *cpu_dp = dev->dsa_ptr; /* The exact source port is not available in the tag, * so we inject the frame directly on the upper * team/bond. */ skb->dev = dsa_lag_dev(cpu_dp->dst, source_port); } else { skb->dev = dsa_master_find_slave(dev, source_device, source_port); } if (!skb->dev) return NULL; /* When using LAG offload, skb->dev is not a DSA slave interface, * so we cannot call dsa_default_offload_fwd_mark and we need to * special-case it. */ if (trunk) skb->offload_fwd_mark = true; else if (!trap) dsa_default_offload_fwd_mark(skb); /* If the 'tagged' bit is set; convert the DSA tag to a 802.1Q * tag, and delete the ethertype (extra) if applicable. If the * 'tagged' bit is cleared; delete the DSA tag, and ethertype * if applicable. */ if (dsa_header[0] & 0x20) { u8 new_header[4]; /* Insert 802.1Q ethertype and copy the VLAN-related * fields, but clear the bit that will hold CFI (since * DSA uses that bit location for another purpose). */ new_header[0] = (ETH_P_8021Q >> 8) & 0xff; new_header[1] = ETH_P_8021Q & 0xff; new_header[2] = dsa_header[2] & ~0x10; new_header[3] = dsa_header[3]; /* Move CFI bit from its place in the DSA header to * its 802.1Q-designated place. */ if (dsa_header[1] & 0x01) new_header[2] |= 0x10; /* Update packet checksum if skb is CHECKSUM_COMPLETE. */ if (skb->ip_summed == CHECKSUM_COMPLETE) { __wsum c = skb->csum; c = csum_add(c, csum_partial(new_header + 2, 2, 0)); c = csum_sub(c, csum_partial(dsa_header + 2, 2, 0)); skb->csum = c; } memcpy(dsa_header, new_header, DSA_HLEN); if (extra) dsa_strip_etype_header(skb, extra); } else { skb_pull_rcsum(skb, DSA_HLEN); dsa_strip_etype_header(skb, DSA_HLEN + extra); } return skb; } #if IS_ENABLED(CONFIG_NET_DSA_TAG_DSA) static struct sk_buff *dsa_xmit(struct sk_buff *skb, struct net_device *dev) { return dsa_xmit_ll(skb, dev, 0); } static struct sk_buff *dsa_rcv(struct sk_buff *skb, struct net_device *dev) { if (unlikely(!pskb_may_pull(skb, DSA_HLEN))) return NULL; return dsa_rcv_ll(skb, dev, 0); } static const struct dsa_device_ops dsa_netdev_ops = { .name = "dsa", .proto = DSA_TAG_PROTO_DSA, .xmit = dsa_xmit, .rcv = dsa_rcv, .needed_headroom = DSA_HLEN, }; DSA_TAG_DRIVER(dsa_netdev_ops); MODULE_ALIAS_DSA_TAG_DRIVER(DSA_TAG_PROTO_DSA); #endif /* CONFIG_NET_DSA_TAG_DSA */ #if IS_ENABLED(CONFIG_NET_DSA_TAG_EDSA) #define EDSA_HLEN 8 static struct sk_buff *edsa_xmit(struct sk_buff *skb, struct net_device *dev) { u8 *edsa_header; skb = dsa_xmit_ll(skb, dev, EDSA_HLEN - DSA_HLEN); if (!skb) return NULL; edsa_header = dsa_etype_header_pos_tx(skb); edsa_header[0] = (ETH_P_EDSA >> 8) & 0xff; edsa_header[1] = ETH_P_EDSA & 0xff; edsa_header[2] = 0x00; edsa_header[3] = 0x00; return skb; } static struct sk_buff *edsa_rcv(struct sk_buff *skb, struct net_device *dev) { if (unlikely(!pskb_may_pull(skb, EDSA_HLEN))) return NULL; skb_pull_rcsum(skb, EDSA_HLEN - DSA_HLEN); return dsa_rcv_ll(skb, dev, EDSA_HLEN - DSA_HLEN); } static const struct dsa_device_ops edsa_netdev_ops = { .name = "edsa", .proto = DSA_TAG_PROTO_EDSA, .xmit = edsa_xmit, .rcv = edsa_rcv, .needed_headroom = EDSA_HLEN, }; DSA_TAG_DRIVER(edsa_netdev_ops); MODULE_ALIAS_DSA_TAG_DRIVER(DSA_TAG_PROTO_EDSA); #endif /* CONFIG_NET_DSA_TAG_EDSA */ static struct dsa_tag_driver *dsa_tag_drivers[] = { #if IS_ENABLED(CONFIG_NET_DSA_TAG_DSA) &DSA_TAG_DRIVER_NAME(dsa_netdev_ops), #endif #if IS_ENABLED(CONFIG_NET_DSA_TAG_EDSA) &DSA_TAG_DRIVER_NAME(edsa_netdev_ops), #endif }; module_dsa_tag_drivers(dsa_tag_drivers); MODULE_LICENSE("GPL"); |