Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 | /* * Generic binary BCH encoding/decoding library * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Copyright © 2011 Parrot S.A. * * Author: Ivan Djelic <ivan.djelic@parrot.com> * * Description: * * This library provides runtime configurable encoding/decoding of binary * Bose-Chaudhuri-Hocquenghem (BCH) codes. * * Call bch_init to get a pointer to a newly allocated bch_control structure for * the given m (Galois field order), t (error correction capability) and * (optional) primitive polynomial parameters. * * Call bch_encode to compute and store ecc parity bytes to a given buffer. * Call bch_decode to detect and locate errors in received data. * * On systems supporting hw BCH features, intermediate results may be provided * to bch_decode in order to skip certain steps. See bch_decode() documentation * for details. * * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of * parameters m and t; thus allowing extra compiler optimizations and providing * better (up to 2x) encoding performance. Using this option makes sense when * (m,t) are fixed and known in advance, e.g. when using BCH error correction * on a particular NAND flash device. * * Algorithmic details: * * Encoding is performed by processing 32 input bits in parallel, using 4 * remainder lookup tables. * * The final stage of decoding involves the following internal steps: * a. Syndrome computation * b. Error locator polynomial computation using Berlekamp-Massey algorithm * c. Error locator root finding (by far the most expensive step) * * In this implementation, step c is not performed using the usual Chien search. * Instead, an alternative approach described in [1] is used. It consists in * factoring the error locator polynomial using the Berlekamp Trace algorithm * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial * solving techniques [2] are used. The resulting algorithm, called BTZ, yields * much better performance than Chien search for usual (m,t) values (typically * m >= 13, t < 32, see [1]). * * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields * of characteristic 2, in: Western European Workshop on Research in Cryptology * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/bitops.h> #include <asm/byteorder.h> #include <linux/bch.h> #if defined(CONFIG_BCH_CONST_PARAMS) #define GF_M(_p) (CONFIG_BCH_CONST_M) #define GF_T(_p) (CONFIG_BCH_CONST_T) #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) #define BCH_MAX_M (CONFIG_BCH_CONST_M) #define BCH_MAX_T (CONFIG_BCH_CONST_T) #else #define GF_M(_p) ((_p)->m) #define GF_T(_p) ((_p)->t) #define GF_N(_p) ((_p)->n) #define BCH_MAX_M 15 /* 2KB */ #define BCH_MAX_T 64 /* 64 bit correction */ #endif #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) #define BCH_ECC_MAX_WORDS DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32) #ifndef dbg #define dbg(_fmt, args...) do {} while (0) #endif /* * represent a polynomial over GF(2^m) */ struct gf_poly { unsigned int deg; /* polynomial degree */ unsigned int c[]; /* polynomial terms */ }; /* given its degree, compute a polynomial size in bytes */ #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) /* polynomial of degree 1 */ struct gf_poly_deg1 { struct gf_poly poly; unsigned int c[2]; }; static u8 swap_bits_table[] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, }; static u8 swap_bits(struct bch_control *bch, u8 in) { if (!bch->swap_bits) return in; return swap_bits_table[in]; } /* * same as bch_encode(), but process input data one byte at a time */ static void bch_encode_unaligned(struct bch_control *bch, const unsigned char *data, unsigned int len, uint32_t *ecc) { int i; const uint32_t *p; const int l = BCH_ECC_WORDS(bch)-1; while (len--) { u8 tmp = swap_bits(bch, *data++); p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff); for (i = 0; i < l; i++) ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); ecc[l] = (ecc[l] << 8)^(*p); } } /* * convert ecc bytes to aligned, zero-padded 32-bit ecc words */ static void load_ecc8(struct bch_control *bch, uint32_t *dst, const uint8_t *src) { uint8_t pad[4] = {0, 0, 0, 0}; unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; for (i = 0; i < nwords; i++, src += 4) dst[i] = ((u32)swap_bits(bch, src[0]) << 24) | ((u32)swap_bits(bch, src[1]) << 16) | ((u32)swap_bits(bch, src[2]) << 8) | swap_bits(bch, src[3]); memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) | ((u32)swap_bits(bch, pad[1]) << 16) | ((u32)swap_bits(bch, pad[2]) << 8) | swap_bits(bch, pad[3]); } /* * convert 32-bit ecc words to ecc bytes */ static void store_ecc8(struct bch_control *bch, uint8_t *dst, const uint32_t *src) { uint8_t pad[4]; unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; for (i = 0; i < nwords; i++) { *dst++ = swap_bits(bch, src[i] >> 24); *dst++ = swap_bits(bch, src[i] >> 16); *dst++ = swap_bits(bch, src[i] >> 8); *dst++ = swap_bits(bch, src[i]); } pad[0] = swap_bits(bch, src[nwords] >> 24); pad[1] = swap_bits(bch, src[nwords] >> 16); pad[2] = swap_bits(bch, src[nwords] >> 8); pad[3] = swap_bits(bch, src[nwords]); memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); } /** * bch_encode - calculate BCH ecc parity of data * @bch: BCH control structure * @data: data to encode * @len: data length in bytes * @ecc: ecc parity data, must be initialized by caller * * The @ecc parity array is used both as input and output parameter, in order to * allow incremental computations. It should be of the size indicated by member * @ecc_bytes of @bch, and should be initialized to 0 before the first call. * * The exact number of computed ecc parity bits is given by member @ecc_bits of * @bch; it may be less than m*t for large values of t. */ void bch_encode(struct bch_control *bch, const uint8_t *data, unsigned int len, uint8_t *ecc) { const unsigned int l = BCH_ECC_WORDS(bch)-1; unsigned int i, mlen; unsigned long m; uint32_t w, r[BCH_ECC_MAX_WORDS]; const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r); const uint32_t * const tab0 = bch->mod8_tab; const uint32_t * const tab1 = tab0 + 256*(l+1); const uint32_t * const tab2 = tab1 + 256*(l+1); const uint32_t * const tab3 = tab2 + 256*(l+1); const uint32_t *pdata, *p0, *p1, *p2, *p3; if (WARN_ON(r_bytes > sizeof(r))) return; if (ecc) { /* load ecc parity bytes into internal 32-bit buffer */ load_ecc8(bch, bch->ecc_buf, ecc); } else { memset(bch->ecc_buf, 0, r_bytes); } /* process first unaligned data bytes */ m = ((unsigned long)data) & 3; if (m) { mlen = (len < (4-m)) ? len : 4-m; bch_encode_unaligned(bch, data, mlen, bch->ecc_buf); data += mlen; len -= mlen; } /* process 32-bit aligned data words */ pdata = (uint32_t *)data; mlen = len/4; data += 4*mlen; len -= 4*mlen; memcpy(r, bch->ecc_buf, r_bytes); /* * split each 32-bit word into 4 polynomials of weight 8 as follows: * * 31 ...24 23 ...16 15 ... 8 7 ... 0 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt * tttttttt mod g = r0 (precomputed) * zzzzzzzz 00000000 mod g = r1 (precomputed) * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 */ while (mlen--) { /* input data is read in big-endian format */ w = cpu_to_be32(*pdata++); if (bch->swap_bits) w = (u32)swap_bits(bch, w) | ((u32)swap_bits(bch, w >> 8) << 8) | ((u32)swap_bits(bch, w >> 16) << 16) | ((u32)swap_bits(bch, w >> 24) << 24); w ^= r[0]; p0 = tab0 + (l+1)*((w >> 0) & 0xff); p1 = tab1 + (l+1)*((w >> 8) & 0xff); p2 = tab2 + (l+1)*((w >> 16) & 0xff); p3 = tab3 + (l+1)*((w >> 24) & 0xff); for (i = 0; i < l; i++) r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; r[l] = p0[l]^p1[l]^p2[l]^p3[l]; } memcpy(bch->ecc_buf, r, r_bytes); /* process last unaligned bytes */ if (len) bch_encode_unaligned(bch, data, len, bch->ecc_buf); /* store ecc parity bytes into original parity buffer */ if (ecc) store_ecc8(bch, ecc, bch->ecc_buf); } EXPORT_SYMBOL_GPL(bch_encode); static inline int modulo(struct bch_control *bch, unsigned int v) { const unsigned int n = GF_N(bch); while (v >= n) { v -= n; v = (v & n) + (v >> GF_M(bch)); } return v; } /* * shorter and faster modulo function, only works when v < 2N. */ static inline int mod_s(struct bch_control *bch, unsigned int v) { const unsigned int n = GF_N(bch); return (v < n) ? v : v-n; } static inline int deg(unsigned int poly) { /* polynomial degree is the most-significant bit index */ return fls(poly)-1; } static inline int parity(unsigned int x) { /* * public domain code snippet, lifted from * http://www-graphics.stanford.edu/~seander/bithacks.html */ x ^= x >> 1; x ^= x >> 2; x = (x & 0x11111111U) * 0x11111111U; return (x >> 28) & 1; } /* Galois field basic operations: multiply, divide, inverse, etc. */ static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, unsigned int b) { return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ bch->a_log_tab[b])] : 0; } static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) { return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; } static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, unsigned int b) { return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ GF_N(bch)-bch->a_log_tab[b])] : 0; } static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) { return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; } static inline unsigned int a_pow(struct bch_control *bch, int i) { return bch->a_pow_tab[modulo(bch, i)]; } static inline int a_log(struct bch_control *bch, unsigned int x) { return bch->a_log_tab[x]; } static inline int a_ilog(struct bch_control *bch, unsigned int x) { return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); } /* * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t */ static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, unsigned int *syn) { int i, j, s; unsigned int m; uint32_t poly; const int t = GF_T(bch); s = bch->ecc_bits; /* make sure extra bits in last ecc word are cleared */ m = ((unsigned int)s) & 31; if (m) ecc[s/32] &= ~((1u << (32-m))-1); memset(syn, 0, 2*t*sizeof(*syn)); /* compute v(a^j) for j=1 .. 2t-1 */ do { poly = *ecc++; s -= 32; while (poly) { i = deg(poly); for (j = 0; j < 2*t; j += 2) syn[j] ^= a_pow(bch, (j+1)*(i+s)); poly ^= (1 << i); } } while (s > 0); /* v(a^(2j)) = v(a^j)^2 */ for (j = 0; j < t; j++) syn[2*j+1] = gf_sqr(bch, syn[j]); } static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) { memcpy(dst, src, GF_POLY_SZ(src->deg)); } static int compute_error_locator_polynomial(struct bch_control *bch, const unsigned int *syn) { const unsigned int t = GF_T(bch); const unsigned int n = GF_N(bch); unsigned int i, j, tmp, l, pd = 1, d = syn[0]; struct gf_poly *elp = bch->elp; struct gf_poly *pelp = bch->poly_2t[0]; struct gf_poly *elp_copy = bch->poly_2t[1]; int k, pp = -1; memset(pelp, 0, GF_POLY_SZ(2*t)); memset(elp, 0, GF_POLY_SZ(2*t)); pelp->deg = 0; pelp->c[0] = 1; elp->deg = 0; elp->c[0] = 1; /* use simplified binary Berlekamp-Massey algorithm */ for (i = 0; (i < t) && (elp->deg <= t); i++) { if (d) { k = 2*i-pp; gf_poly_copy(elp_copy, elp); /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ tmp = a_log(bch, d)+n-a_log(bch, pd); for (j = 0; j <= pelp->deg; j++) { if (pelp->c[j]) { l = a_log(bch, pelp->c[j]); elp->c[j+k] ^= a_pow(bch, tmp+l); } } /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ tmp = pelp->deg+k; if (tmp > elp->deg) { elp->deg = tmp; gf_poly_copy(pelp, elp_copy); pd = d; pp = 2*i; } } /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ if (i < t-1) { d = syn[2*i+2]; for (j = 1; j <= elp->deg; j++) d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); } } dbg("elp=%s\n", gf_poly_str(elp)); return (elp->deg > t) ? -1 : (int)elp->deg; } /* * solve a m x m linear system in GF(2) with an expected number of solutions, * and return the number of found solutions */ static int solve_linear_system(struct bch_control *bch, unsigned int *rows, unsigned int *sol, int nsol) { const int m = GF_M(bch); unsigned int tmp, mask; int rem, c, r, p, k, param[BCH_MAX_M]; k = 0; mask = 1 << m; /* Gaussian elimination */ for (c = 0; c < m; c++) { rem = 0; p = c-k; /* find suitable row for elimination */ for (r = p; r < m; r++) { if (rows[r] & mask) { if (r != p) { tmp = rows[r]; rows[r] = rows[p]; rows[p] = tmp; } rem = r+1; break; } } if (rem) { /* perform elimination on remaining rows */ tmp = rows[p]; for (r = rem; r < m; r++) { if (rows[r] & mask) rows[r] ^= tmp; } } else { /* elimination not needed, store defective row index */ param[k++] = c; } mask >>= 1; } /* rewrite system, inserting fake parameter rows */ if (k > 0) { p = k; for (r = m-1; r >= 0; r--) { if ((r > m-1-k) && rows[r]) /* system has no solution */ return 0; rows[r] = (p && (r == param[p-1])) ? p--, 1u << (m-r) : rows[r-p]; } } if (nsol != (1 << k)) /* unexpected number of solutions */ return 0; for (p = 0; p < nsol; p++) { /* set parameters for p-th solution */ for (c = 0; c < k; c++) rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); /* compute unique solution */ tmp = 0; for (r = m-1; r >= 0; r--) { mask = rows[r] & (tmp|1); tmp |= parity(mask) << (m-r); } sol[p] = tmp >> 1; } return nsol; } /* * this function builds and solves a linear system for finding roots of a degree * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). */ static int find_affine4_roots(struct bch_control *bch, unsigned int a, unsigned int b, unsigned int c, unsigned int *roots) { int i, j, k; const int m = GF_M(bch); unsigned int mask = 0xff, t, rows[16] = {0,}; j = a_log(bch, b); k = a_log(bch, a); rows[0] = c; /* build linear system to solve X^4+aX^2+bX+c = 0 */ for (i = 0; i < m; i++) { rows[i+1] = bch->a_pow_tab[4*i]^ (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); j++; k += 2; } /* * transpose 16x16 matrix before passing it to linear solver * warning: this code assumes m < 16 */ for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { for (k = 0; k < 16; k = (k+j+1) & ~j) { t = ((rows[k] >> j)^rows[k+j]) & mask; rows[k] ^= (t << j); rows[k+j] ^= t; } } return solve_linear_system(bch, rows, roots, 4); } /* * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) */ static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, unsigned int *roots) { int n = 0; if (poly->c[0]) /* poly[X] = bX+c with c!=0, root=c/b */ roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ bch->a_log_tab[poly->c[1]]); return n; } /* * compute roots of a degree 2 polynomial over GF(2^m) */ static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, unsigned int *roots) { int n = 0, i, l0, l1, l2; unsigned int u, v, r; if (poly->c[0] && poly->c[1]) { l0 = bch->a_log_tab[poly->c[0]]; l1 = bch->a_log_tab[poly->c[1]]; l2 = bch->a_log_tab[poly->c[2]]; /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); /* * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) * i.e. r and r+1 are roots iff Tr(u)=0 */ r = 0; v = u; while (v) { i = deg(v); r ^= bch->xi_tab[i]; v ^= (1 << i); } /* verify root */ if ((gf_sqr(bch, r)^r) == u) { /* reverse z=a/bX transformation and compute log(1/r) */ roots[n++] = modulo(bch, 2*GF_N(bch)-l1- bch->a_log_tab[r]+l2); roots[n++] = modulo(bch, 2*GF_N(bch)-l1- bch->a_log_tab[r^1]+l2); } } return n; } /* * compute roots of a degree 3 polynomial over GF(2^m) */ static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, unsigned int *roots) { int i, n = 0; unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; if (poly->c[0]) { /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ e3 = poly->c[3]; c2 = gf_div(bch, poly->c[0], e3); b2 = gf_div(bch, poly->c[1], e3); a2 = gf_div(bch, poly->c[2], e3); /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ c = gf_mul(bch, a2, c2); /* c = a2c2 */ b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ /* find the 4 roots of this affine polynomial */ if (find_affine4_roots(bch, a, b, c, tmp) == 4) { /* remove a2 from final list of roots */ for (i = 0; i < 4; i++) { if (tmp[i] != a2) roots[n++] = a_ilog(bch, tmp[i]); } } } return n; } /* * compute roots of a degree 4 polynomial over GF(2^m) */ static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, unsigned int *roots) { int i, l, n = 0; unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; if (poly->c[0] == 0) return 0; /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ e4 = poly->c[4]; d = gf_div(bch, poly->c[0], e4); c = gf_div(bch, poly->c[1], e4); b = gf_div(bch, poly->c[2], e4); a = gf_div(bch, poly->c[3], e4); /* use Y=1/X transformation to get an affine polynomial */ if (a) { /* first, eliminate cX by using z=X+e with ae^2+c=0 */ if (c) { /* compute e such that e^2 = c/a */ f = gf_div(bch, c, a); l = a_log(bch, f); l += (l & 1) ? GF_N(bch) : 0; e = a_pow(bch, l/2); /* * use transformation z=X+e: * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d * z^4 + az^3 + b'z^2 + d' */ d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; b = gf_mul(bch, a, e)^b; } /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ if (d == 0) /* assume all roots have multiplicity 1 */ return 0; c2 = gf_inv(bch, d); b2 = gf_div(bch, a, d); a2 = gf_div(bch, b, d); } else { /* polynomial is already affine */ c2 = d; b2 = c; a2 = b; } /* find the 4 roots of this affine polynomial */ if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { for (i = 0; i < 4; i++) { /* post-process roots (reverse transformations) */ f = a ? gf_inv(bch, roots[i]) : roots[i]; roots[i] = a_ilog(bch, f^e); } n = 4; } return n; } /* * build monic, log-based representation of a polynomial */ static void gf_poly_logrep(struct bch_control *bch, const struct gf_poly *a, int *rep) { int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); /* represent 0 values with -1; warning, rep[d] is not set to 1 */ for (i = 0; i < d; i++) rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; } /* * compute polynomial Euclidean division remainder in GF(2^m)[X] */ static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, const struct gf_poly *b, int *rep) { int la, p, m; unsigned int i, j, *c = a->c; const unsigned int d = b->deg; if (a->deg < d) return; /* reuse or compute log representation of denominator */ if (!rep) { rep = bch->cache; gf_poly_logrep(bch, b, rep); } for (j = a->deg; j >= d; j--) { if (c[j]) { la = a_log(bch, c[j]); p = j-d; for (i = 0; i < d; i++, p++) { m = rep[i]; if (m >= 0) c[p] ^= bch->a_pow_tab[mod_s(bch, m+la)]; } } } a->deg = d-1; while (!c[a->deg] && a->deg) a->deg--; } /* * compute polynomial Euclidean division quotient in GF(2^m)[X] */ static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, const struct gf_poly *b, struct gf_poly *q) { if (a->deg >= b->deg) { q->deg = a->deg-b->deg; /* compute a mod b (modifies a) */ gf_poly_mod(bch, a, b, NULL); /* quotient is stored in upper part of polynomial a */ memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); } else { q->deg = 0; q->c[0] = 0; } } /* * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] */ static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, struct gf_poly *b) { struct gf_poly *tmp; dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); if (a->deg < b->deg) { tmp = b; b = a; a = tmp; } while (b->deg > 0) { gf_poly_mod(bch, a, b, NULL); tmp = b; b = a; a = tmp; } dbg("%s\n", gf_poly_str(a)); return a; } /* * Given a polynomial f and an integer k, compute Tr(a^kX) mod f * This is used in Berlekamp Trace algorithm for splitting polynomials */ static void compute_trace_bk_mod(struct bch_control *bch, int k, const struct gf_poly *f, struct gf_poly *z, struct gf_poly *out) { const int m = GF_M(bch); int i, j; /* z contains z^2j mod f */ z->deg = 1; z->c[0] = 0; z->c[1] = bch->a_pow_tab[k]; out->deg = 0; memset(out, 0, GF_POLY_SZ(f->deg)); /* compute f log representation only once */ gf_poly_logrep(bch, f, bch->cache); for (i = 0; i < m; i++) { /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ for (j = z->deg; j >= 0; j--) { out->c[j] ^= z->c[j]; z->c[2*j] = gf_sqr(bch, z->c[j]); z->c[2*j+1] = 0; } if (z->deg > out->deg) out->deg = z->deg; if (i < m-1) { z->deg *= 2; /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ gf_poly_mod(bch, z, f, bch->cache); } } while (!out->c[out->deg] && out->deg) out->deg--; dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); } /* * factor a polynomial using Berlekamp Trace algorithm (BTA) */ static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, struct gf_poly **g, struct gf_poly **h) { struct gf_poly *f2 = bch->poly_2t[0]; struct gf_poly *q = bch->poly_2t[1]; struct gf_poly *tk = bch->poly_2t[2]; struct gf_poly *z = bch->poly_2t[3]; struct gf_poly *gcd; dbg("factoring %s...\n", gf_poly_str(f)); *g = f; *h = NULL; /* tk = Tr(a^k.X) mod f */ compute_trace_bk_mod(bch, k, f, z, tk); if (tk->deg > 0) { /* compute g = gcd(f, tk) (destructive operation) */ gf_poly_copy(f2, f); gcd = gf_poly_gcd(bch, f2, tk); if (gcd->deg < f->deg) { /* compute h=f/gcd(f,tk); this will modify f and q */ gf_poly_div(bch, f, gcd, q); /* store g and h in-place (clobbering f) */ *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; gf_poly_copy(*g, gcd); gf_poly_copy(*h, q); } } } /* * find roots of a polynomial, using BTZ algorithm; see the beginning of this * file for details */ static int find_poly_roots(struct bch_control *bch, unsigned int k, struct gf_poly *poly, unsigned int *roots) { int cnt; struct gf_poly *f1, *f2; switch (poly->deg) { /* handle low degree polynomials with ad hoc techniques */ case 1: cnt = find_poly_deg1_roots(bch, poly, roots); break; case 2: cnt = find_poly_deg2_roots(bch, poly, roots); break; case 3: cnt = find_poly_deg3_roots(bch, poly, roots); break; case 4: cnt = find_poly_deg4_roots(bch, poly, roots); break; default: /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ cnt = 0; if (poly->deg && (k <= GF_M(bch))) { factor_polynomial(bch, k, poly, &f1, &f2); if (f1) cnt += find_poly_roots(bch, k+1, f1, roots); if (f2) cnt += find_poly_roots(bch, k+1, f2, roots+cnt); } break; } return cnt; } #if defined(USE_CHIEN_SEARCH) /* * exhaustive root search (Chien) implementation - not used, included only for * reference/comparison tests */ static int chien_search(struct bch_control *bch, unsigned int len, struct gf_poly *p, unsigned int *roots) { int m; unsigned int i, j, syn, syn0, count = 0; const unsigned int k = 8*len+bch->ecc_bits; /* use a log-based representation of polynomial */ gf_poly_logrep(bch, p, bch->cache); bch->cache[p->deg] = 0; syn0 = gf_div(bch, p->c[0], p->c[p->deg]); for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { /* compute elp(a^i) */ for (j = 1, syn = syn0; j <= p->deg; j++) { m = bch->cache[j]; if (m >= 0) syn ^= a_pow(bch, m+j*i); } if (syn == 0) { roots[count++] = GF_N(bch)-i; if (count == p->deg) break; } } return (count == p->deg) ? count : 0; } #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) #endif /* USE_CHIEN_SEARCH */ /** * bch_decode - decode received codeword and find bit error locations * @bch: BCH control structure * @data: received data, ignored if @calc_ecc is provided * @len: data length in bytes, must always be provided * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data * @syn: hw computed syndrome data (if NULL, syndrome is calculated) * @errloc: output array of error locations * * Returns: * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if * invalid parameters were provided * * Depending on the available hw BCH support and the need to compute @calc_ecc * separately (using bch_encode()), this function should be called with one of * the following parameter configurations - * * by providing @data and @recv_ecc only: * bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) * * by providing @recv_ecc and @calc_ecc: * bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) * * by providing ecc = recv_ecc XOR calc_ecc: * bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc) * * by providing syndrome results @syn: * bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc) * * Once bch_decode() has successfully returned with a positive value, error * locations returned in array @errloc should be interpreted as follows - * * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for * data correction) * * if (errloc[n] < 8*len), then n-th error is located in data and can be * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); * * Note that this function does not perform any data correction by itself, it * merely indicates error locations. */ int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len, const uint8_t *recv_ecc, const uint8_t *calc_ecc, const unsigned int *syn, unsigned int *errloc) { const unsigned int ecc_words = BCH_ECC_WORDS(bch); unsigned int nbits; int i, err, nroots; uint32_t sum; /* sanity check: make sure data length can be handled */ if (8*len > (bch->n-bch->ecc_bits)) return -EINVAL; /* if caller does not provide syndromes, compute them */ if (!syn) { if (!calc_ecc) { /* compute received data ecc into an internal buffer */ if (!data || !recv_ecc) return -EINVAL; bch_encode(bch, data, len, NULL); } else { /* load provided calculated ecc */ load_ecc8(bch, bch->ecc_buf, calc_ecc); } /* load received ecc or assume it was XORed in calc_ecc */ if (recv_ecc) { load_ecc8(bch, bch->ecc_buf2, recv_ecc); /* XOR received and calculated ecc */ for (i = 0, sum = 0; i < (int)ecc_words; i++) { bch->ecc_buf[i] ^= bch->ecc_buf2[i]; sum |= bch->ecc_buf[i]; } if (!sum) /* no error found */ return 0; } compute_syndromes(bch, bch->ecc_buf, bch->syn); syn = bch->syn; } err = compute_error_locator_polynomial(bch, syn); if (err > 0) { nroots = find_poly_roots(bch, 1, bch->elp, errloc); if (err != nroots) err = -1; } if (err > 0) { /* post-process raw error locations for easier correction */ nbits = (len*8)+bch->ecc_bits; for (i = 0; i < err; i++) { if (errloc[i] >= nbits) { err = -1; break; } errloc[i] = nbits-1-errloc[i]; if (!bch->swap_bits) errloc[i] = (errloc[i] & ~7) | (7-(errloc[i] & 7)); } } return (err >= 0) ? err : -EBADMSG; } EXPORT_SYMBOL_GPL(bch_decode); /* * generate Galois field lookup tables */ static int build_gf_tables(struct bch_control *bch, unsigned int poly) { unsigned int i, x = 1; const unsigned int k = 1 << deg(poly); /* primitive polynomial must be of degree m */ if (k != (1u << GF_M(bch))) return -1; for (i = 0; i < GF_N(bch); i++) { bch->a_pow_tab[i] = x; bch->a_log_tab[x] = i; if (i && (x == 1)) /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ return -1; x <<= 1; if (x & k) x ^= poly; } bch->a_pow_tab[GF_N(bch)] = 1; bch->a_log_tab[0] = 0; return 0; } /* * compute generator polynomial remainder tables for fast encoding */ static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) { int i, j, b, d; uint32_t data, hi, lo, *tab; const int l = BCH_ECC_WORDS(bch); const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); for (i = 0; i < 256; i++) { /* p(X)=i is a small polynomial of weight <= 8 */ for (b = 0; b < 4; b++) { /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ tab = bch->mod8_tab + (b*256+i)*l; data = i << (8*b); while (data) { d = deg(data); /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ data ^= g[0] >> (31-d); for (j = 0; j < ecclen; j++) { hi = (d < 31) ? g[j] << (d+1) : 0; lo = (j+1 < plen) ? g[j+1] >> (31-d) : 0; tab[j] ^= hi|lo; } } } } } /* * build a base for factoring degree 2 polynomials */ static int build_deg2_base(struct bch_control *bch) { const int m = GF_M(bch); int i, j, r; unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M]; /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ for (i = 0; i < m; i++) { for (j = 0, sum = 0; j < m; j++) sum ^= a_pow(bch, i*(1 << j)); if (sum) { ak = bch->a_pow_tab[i]; break; } } /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ remaining = m; memset(xi, 0, sizeof(xi)); for (x = 0; (x <= GF_N(bch)) && remaining; x++) { y = gf_sqr(bch, x)^x; for (i = 0; i < 2; i++) { r = a_log(bch, y); if (y && (r < m) && !xi[r]) { bch->xi_tab[r] = x; xi[r] = 1; remaining--; dbg("x%d = %x\n", r, x); break; } y ^= ak; } } /* should not happen but check anyway */ return remaining ? -1 : 0; } static void *bch_alloc(size_t size, int *err) { void *ptr; ptr = kmalloc(size, GFP_KERNEL); if (ptr == NULL) *err = 1; return ptr; } /* * compute generator polynomial for given (m,t) parameters. */ static uint32_t *compute_generator_polynomial(struct bch_control *bch) { const unsigned int m = GF_M(bch); const unsigned int t = GF_T(bch); int n, err = 0; unsigned int i, j, nbits, r, word, *roots; struct gf_poly *g; uint32_t *genpoly; g = bch_alloc(GF_POLY_SZ(m*t), &err); roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); if (err) { kfree(genpoly); genpoly = NULL; goto finish; } /* enumerate all roots of g(X) */ memset(roots , 0, (bch->n+1)*sizeof(*roots)); for (i = 0; i < t; i++) { for (j = 0, r = 2*i+1; j < m; j++) { roots[r] = 1; r = mod_s(bch, 2*r); } } /* build generator polynomial g(X) */ g->deg = 0; g->c[0] = 1; for (i = 0; i < GF_N(bch); i++) { if (roots[i]) { /* multiply g(X) by (X+root) */ r = bch->a_pow_tab[i]; g->c[g->deg+1] = 1; for (j = g->deg; j > 0; j--) g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; g->c[0] = gf_mul(bch, g->c[0], r); g->deg++; } } /* store left-justified binary representation of g(X) */ n = g->deg+1; i = 0; while (n > 0) { nbits = (n > 32) ? 32 : n; for (j = 0, word = 0; j < nbits; j++) { if (g->c[n-1-j]) word |= 1u << (31-j); } genpoly[i++] = word; n -= nbits; } bch->ecc_bits = g->deg; finish: kfree(g); kfree(roots); return genpoly; } /** * bch_init - initialize a BCH encoder/decoder * @m: Galois field order, should be in the range 5-15 * @t: maximum error correction capability, in bits * @prim_poly: user-provided primitive polynomial (or 0 to use default) * @swap_bits: swap bits within data and syndrome bytes * * Returns: * a newly allocated BCH control structure if successful, NULL otherwise * * This initialization can take some time, as lookup tables are built for fast * encoding/decoding; make sure not to call this function from a time critical * path. Usually, bch_init() should be called on module/driver init and * bch_free() should be called to release memory on exit. * * You may provide your own primitive polynomial of degree @m in argument * @prim_poly, or let bch_init() use its default polynomial. * * Once bch_init() has successfully returned a pointer to a newly allocated * BCH control structure, ecc length in bytes is given by member @ecc_bytes of * the structure. */ struct bch_control *bch_init(int m, int t, unsigned int prim_poly, bool swap_bits) { int err = 0; unsigned int i, words; uint32_t *genpoly; struct bch_control *bch = NULL; const int min_m = 5; /* default primitive polynomials */ static const unsigned int prim_poly_tab[] = { 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 0x402b, 0x8003, }; #if defined(CONFIG_BCH_CONST_PARAMS) if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { printk(KERN_ERR "bch encoder/decoder was configured to support " "parameters m=%d, t=%d only!\n", CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); goto fail; } #endif if ((m < min_m) || (m > BCH_MAX_M)) /* * values of m greater than 15 are not currently supported; * supporting m > 15 would require changing table base type * (uint16_t) and a small patch in matrix transposition */ goto fail; if (t > BCH_MAX_T) /* * we can support larger than 64 bits if necessary, at the * cost of higher stack usage. */ goto fail; /* sanity checks */ if ((t < 1) || (m*t >= ((1 << m)-1))) /* invalid t value */ goto fail; /* select a primitive polynomial for generating GF(2^m) */ if (prim_poly == 0) prim_poly = prim_poly_tab[m-min_m]; bch = kzalloc(sizeof(*bch), GFP_KERNEL); if (bch == NULL) goto fail; bch->m = m; bch->t = t; bch->n = (1 << m)-1; words = DIV_ROUND_UP(m*t, 32); bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); bch->swap_bits = swap_bits; for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); if (err) goto fail; err = build_gf_tables(bch, prim_poly); if (err) goto fail; /* use generator polynomial for computing encoding tables */ genpoly = compute_generator_polynomial(bch); if (genpoly == NULL) goto fail; build_mod8_tables(bch, genpoly); kfree(genpoly); err = build_deg2_base(bch); if (err) goto fail; return bch; fail: bch_free(bch); return NULL; } EXPORT_SYMBOL_GPL(bch_init); /** * bch_free - free the BCH control structure * @bch: BCH control structure to release */ void bch_free(struct bch_control *bch) { unsigned int i; if (bch) { kfree(bch->a_pow_tab); kfree(bch->a_log_tab); kfree(bch->mod8_tab); kfree(bch->ecc_buf); kfree(bch->ecc_buf2); kfree(bch->xi_tab); kfree(bch->syn); kfree(bch->cache); kfree(bch->elp); for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) kfree(bch->poly_2t[i]); kfree(bch); } } EXPORT_SYMBOL_GPL(bch_free); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |