Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mach-sa1100/cpu-sa1110.c * * Copyright (C) 2001 Russell King * * Note: there are two erratas that apply to the SA1110 here: * 7 - SDRAM auto-power-up failure (rev A0) * 13 - Corruption of internal register reads/writes following * SDRAM reads (rev A0, B0, B1) * * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. * * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type */ #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <asm/cputype.h> #include <asm/mach-types.h> #include <mach/generic.h> #include <mach/hardware.h> #undef DEBUG struct sdram_params { const char name[20]; u_char rows; /* bits */ u_char cas_latency; /* cycles */ u_char tck; /* clock cycle time (ns) */ u_char trcd; /* activate to r/w (ns) */ u_char trp; /* precharge to activate (ns) */ u_char twr; /* write recovery time (ns) */ u_short refresh; /* refresh time for array (us) */ }; struct sdram_info { u_int mdcnfg; u_int mdrefr; u_int mdcas[3]; }; static struct sdram_params sdram_tbl[] __initdata = { { /* Toshiba TC59SM716 CL2 */ .name = "TC59SM716-CL2", .rows = 12, .tck = 10, .trcd = 20, .trp = 20, .twr = 10, .refresh = 64000, .cas_latency = 2, }, { /* Toshiba TC59SM716 CL3 */ .name = "TC59SM716-CL3", .rows = 12, .tck = 8, .trcd = 20, .trp = 20, .twr = 8, .refresh = 64000, .cas_latency = 3, }, { /* Samsung K4S641632D TC75 */ .name = "K4S641632D", .rows = 14, .tck = 9, .trcd = 27, .trp = 20, .twr = 9, .refresh = 64000, .cas_latency = 3, }, { /* Samsung K4S281632B-1H */ .name = "K4S281632B-1H", .rows = 12, .tck = 10, .trp = 20, .twr = 10, .refresh = 64000, .cas_latency = 3, }, { /* Samsung KM416S4030CT */ .name = "KM416S4030CT", .rows = 13, .tck = 8, .trcd = 24, /* 3 CLKs */ .trp = 24, /* 3 CLKs */ .twr = 16, /* Trdl: 2 CLKs */ .refresh = 64000, .cas_latency = 3, }, { /* Winbond W982516AH75L CL3 */ .name = "W982516AH75L", .rows = 16, .tck = 8, .trcd = 20, .trp = 20, .twr = 8, .refresh = 64000, .cas_latency = 3, }, { /* Micron MT48LC8M16A2TG-75 */ .name = "MT48LC8M16A2TG-75", .rows = 12, .tck = 8, .trcd = 20, .trp = 20, .twr = 8, .refresh = 64000, .cas_latency = 3, }, }; static struct sdram_params sdram_params; /* * Given a period in ns and frequency in khz, calculate the number of * cycles of frequency in period. Note that we round up to the next * cycle, even if we are only slightly over. */ static inline u_int ns_to_cycles(u_int ns, u_int khz) { return (ns * khz + 999999) / 1000000; } /* * Create the MDCAS register bit pattern. */ static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) { u_int shift; rcd = 2 * rcd - 1; shift = delayed + 1 + rcd; mdcas[0] = (1 << rcd) - 1; mdcas[0] |= 0x55555555 << shift; mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); } static void sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, struct sdram_params *sdram) { u_int mem_khz, sd_khz, trp, twr; mem_khz = cpu_khz / 2; sd_khz = mem_khz; /* * If SDCLK would invalidate the SDRAM timings, * run SDCLK at half speed. * * CPU steppings prior to B2 must either run the memory at * half speed or use delayed read latching (errata 13). */ if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000)) sd_khz /= 2; sd->mdcnfg = MDCNFG & 0x007f007f; twr = ns_to_cycles(sdram->twr, mem_khz); /* trp should always be >1 */ trp = ns_to_cycles(sdram->trp, mem_khz) - 1; if (trp < 1) trp = 1; sd->mdcnfg |= trp << 8; sd->mdcnfg |= trp << 24; sd->mdcnfg |= sdram->cas_latency << 12; sd->mdcnfg |= sdram->cas_latency << 28; sd->mdcnfg |= twr << 14; sd->mdcnfg |= twr << 30; sd->mdrefr = MDREFR & 0xffbffff0; sd->mdrefr |= 7; if (sd_khz != mem_khz) sd->mdrefr |= MDREFR_K1DB2; /* initial number of '1's in MDCAS + 1 */ set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz)); #ifdef DEBUG printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]); #endif } /* * Set the SDRAM refresh rate. */ static inline void sdram_set_refresh(u_int dri) { MDREFR = (MDREFR & 0xffff000f) | (dri << 4); (void) MDREFR; } /* * Update the refresh period. We do this such that we always refresh * the SDRAMs within their permissible period. The refresh period is * always a multiple of the memory clock (fixed at cpu_clock / 2). * * FIXME: we don't currently take account of burst accesses here, * but neither do Intels DM nor Angel. */ static void sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) { u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; #ifdef DEBUG mdelay(250); printk(KERN_DEBUG "new dri value = %d\n", dri); #endif sdram_set_refresh(dri); } /* * Ok, set the CPU frequency. */ static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr) { struct sdram_params *sdram = &sdram_params; struct sdram_info sd; unsigned long flags; unsigned int unused; sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram); #if 0 /* * These values are wrong according to the SA1110 documentation * and errata, but they seem to work. Need to get a storage * scope on to the SDRAM signals to work out why. */ if (policy->max < 147500) { sd.mdrefr |= MDREFR_K1DB2; sd.mdcas[0] = 0xaaaaaa7f; } else { sd.mdrefr &= ~MDREFR_K1DB2; sd.mdcas[0] = 0xaaaaaa9f; } sd.mdcas[1] = 0xaaaaaaaa; sd.mdcas[2] = 0xaaaaaaaa; #endif /* * The clock could be going away for some time. Set the SDRAMs * to refresh rapidly (every 64 memory clock cycles). To get * through the whole array, we need to wait 262144 mclk cycles. * We wait 20ms to be safe. */ sdram_set_refresh(2); if (!irqs_disabled()) msleep(20); else mdelay(20); /* * Reprogram the DRAM timings with interrupts disabled, and * ensure that we are doing this within a complete cache line. * This means that we won't access SDRAM for the duration of * the programming. */ local_irq_save(flags); asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); udelay(10); __asm__ __volatile__("\n\ b 2f \n\ .align 5 \n\ 1: str %3, [%1, #0] @ MDCNFG \n\ str %4, [%1, #28] @ MDREFR \n\ str %5, [%1, #4] @ MDCAS0 \n\ str %6, [%1, #8] @ MDCAS1 \n\ str %7, [%1, #12] @ MDCAS2 \n\ str %8, [%2, #0] @ PPCR \n\ ldr %0, [%1, #0] \n\ b 3f \n\ 2: b 1b \n\ 3: nop \n\ nop" : "=&r" (unused) : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), "r" (sd.mdrefr), "r" (sd.mdcas[0]), "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); local_irq_restore(flags); /* * Now, return the SDRAM refresh back to normal. */ sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram); return 0; } static int __init sa1110_cpu_init(struct cpufreq_policy *policy) { cpufreq_generic_init(policy, sa11x0_freq_table, 0); return 0; } /* sa1110_driver needs __refdata because it must remain after init registers * it with cpufreq_register_driver() */ static struct cpufreq_driver sa1110_driver __refdata = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING, .verify = cpufreq_generic_frequency_table_verify, .target_index = sa1110_target, .get = sa11x0_getspeed, .init = sa1110_cpu_init, .name = "sa1110", }; static struct sdram_params *sa1110_find_sdram(const char *name) { struct sdram_params *sdram; for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); sdram++) if (strcmp(name, sdram->name) == 0) return sdram; return NULL; } static char sdram_name[16]; static int __init sa1110_clk_init(void) { struct sdram_params *sdram; const char *name = sdram_name; if (!cpu_is_sa1110()) return -ENODEV; if (!name[0]) { if (machine_is_assabet()) name = "TC59SM716-CL3"; if (machine_is_pt_system3()) name = "K4S641632D"; if (machine_is_h3100()) name = "KM416S4030CT"; if (machine_is_jornada720() || machine_is_h3600()) name = "K4S281632B-1H"; if (machine_is_nanoengine()) name = "MT48LC8M16A2TG-75"; } sdram = sa1110_find_sdram(name); if (sdram) { printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" " twr: %d refresh: %d cas_latency: %d\n", sdram->tck, sdram->trcd, sdram->trp, sdram->twr, sdram->refresh, sdram->cas_latency); memcpy(&sdram_params, sdram, sizeof(sdram_params)); return cpufreq_register_driver(&sa1110_driver); } return 0; } module_param_string(sdram, sdram_name, sizeof(sdram_name), 0); arch_initcall(sa1110_clk_init); |