Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// SPDX-License-Identifier: GPL-2.0+
/*
 * AD7150 capacitive sensor driver supporting AD7150/1/6
 *
 * Copyright 2010-2011 Analog Devices Inc.
 * Copyright 2021 Jonathan Cameron <Jonathan.Cameron@huawei.com>
 */

#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>

#define AD7150_STATUS_REG		0
#define   AD7150_STATUS_OUT1		BIT(3)
#define   AD7150_STATUS_OUT2		BIT(5)
#define AD7150_CH1_DATA_HIGH_REG	1
#define AD7150_CH2_DATA_HIGH_REG	3
#define AD7150_CH1_AVG_HIGH_REG		5
#define AD7150_CH2_AVG_HIGH_REG		7
#define AD7150_CH1_SENSITIVITY_REG	9
#define AD7150_CH1_THR_HOLD_H_REG	9
#define AD7150_CH1_TIMEOUT_REG		10
#define   AD7150_CH_TIMEOUT_RECEDING	GENMASK(3, 0)
#define   AD7150_CH_TIMEOUT_APPROACHING	GENMASK(7, 4)
#define AD7150_CH1_SETUP_REG		11
#define AD7150_CH2_SENSITIVITY_REG	12
#define AD7150_CH2_THR_HOLD_H_REG	12
#define AD7150_CH2_TIMEOUT_REG		13
#define AD7150_CH2_SETUP_REG		14
#define AD7150_CFG_REG			15
#define   AD7150_CFG_FIX		BIT(7)
#define   AD7150_CFG_THRESHTYPE_MSK	GENMASK(6, 5)
#define   AD7150_CFG_TT_NEG		0x0
#define   AD7150_CFG_TT_POS		0x1
#define   AD7150_CFG_TT_IN_WINDOW	0x2
#define   AD7150_CFG_TT_OUT_WINDOW	0x3
#define AD7150_PD_TIMER_REG		16
#define AD7150_CH1_CAPDAC_REG		17
#define AD7150_CH2_CAPDAC_REG		18
#define AD7150_SN3_REG			19
#define AD7150_SN2_REG			20
#define AD7150_SN1_REG			21
#define AD7150_SN0_REG			22
#define AD7150_ID_REG			23

enum {
	AD7150,
	AD7151,
};

/**
 * struct ad7150_chip_info - instance specific chip data
 * @client: i2c client for this device
 * @threshold: thresholds for simple capacitance value events
 * @thresh_sensitivity: threshold for simple capacitance offset
 *	from 'average' value.
 * @thresh_timeout: a timeout, in samples from the moment an
 *	adaptive threshold event occurs to when the average
 *	value jumps to current value.  Note made up of two fields,
 *      3:0 are for timeout receding - applies if below lower threshold
 *      7:4 are for timeout approaching - applies if above upper threshold
 * @state_lock: ensure consistent state of this structure wrt the
 *	hardware.
 * @interrupts: one or two interrupt numbers depending on device type.
 * @int_enabled: is a given interrupt currently enabled.
 * @type: threshold type
 * @dir: threshold direction
 */
struct ad7150_chip_info {
	struct i2c_client *client;
	u16 threshold[2][2];
	u8 thresh_sensitivity[2][2];
	u8 thresh_timeout[2][2];
	struct mutex state_lock;
	int interrupts[2];
	bool int_enabled[2];
	enum iio_event_type type;
	enum iio_event_direction dir;
};

static const u8 ad7150_addresses[][6] = {
	{ AD7150_CH1_DATA_HIGH_REG, AD7150_CH1_AVG_HIGH_REG,
	  AD7150_CH1_SETUP_REG, AD7150_CH1_THR_HOLD_H_REG,
	  AD7150_CH1_SENSITIVITY_REG, AD7150_CH1_TIMEOUT_REG },
	{ AD7150_CH2_DATA_HIGH_REG, AD7150_CH2_AVG_HIGH_REG,
	  AD7150_CH2_SETUP_REG, AD7150_CH2_THR_HOLD_H_REG,
	  AD7150_CH2_SENSITIVITY_REG, AD7150_CH2_TIMEOUT_REG },
};

static int ad7150_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val,
			   int *val2,
			   long mask)
{
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	int channel = chan->channel;
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = i2c_smbus_read_word_swapped(chip->client,
						  ad7150_addresses[channel][0]);
		if (ret < 0)
			return ret;
		*val = ret >> 4;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_AVERAGE_RAW:
		ret = i2c_smbus_read_word_swapped(chip->client,
						  ad7150_addresses[channel][1]);
		if (ret < 0)
			return ret;
		*val = ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		/*
		 * Base units for capacitance are nano farads and the value
		 * calculated from the datasheet formula is in picofarad
		 * so multiply by 1000
		 */
		*val = 1000;
		*val2 = 40944 >> 4; /* To match shift in _RAW */
		return IIO_VAL_FRACTIONAL;
	case IIO_CHAN_INFO_OFFSET:
		*val = -(12288 >> 4); /* To match shift in _RAW */
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SAMP_FREQ:
		/* Strangely same for both 1 and 2 chan parts */
		*val = 100;
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int ad7150_read_event_config(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir)
{
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	u8 threshtype;
	bool thrfixed;
	int ret;

	ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG_REG);
	if (ret < 0)
		return ret;

	threshtype = FIELD_GET(AD7150_CFG_THRESHTYPE_MSK, ret);

	/*check if threshold mode is fixed or adaptive*/
	thrfixed = FIELD_GET(AD7150_CFG_FIX, ret);

	switch (type) {
	case IIO_EV_TYPE_THRESH_ADAPTIVE:
		if (dir == IIO_EV_DIR_RISING)
			return !thrfixed && (threshtype == AD7150_CFG_TT_POS);
		return !thrfixed && (threshtype == AD7150_CFG_TT_NEG);
	case IIO_EV_TYPE_THRESH:
		if (dir == IIO_EV_DIR_RISING)
			return thrfixed && (threshtype == AD7150_CFG_TT_POS);
		return thrfixed && (threshtype == AD7150_CFG_TT_NEG);
	default:
		break;
	}
	return -EINVAL;
}

/* state_lock should be held to ensure consistent state */
static int ad7150_write_event_params(struct iio_dev *indio_dev,
				     unsigned int chan,
				     enum iio_event_type type,
				     enum iio_event_direction dir)
{
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	int rising = (dir == IIO_EV_DIR_RISING);

	/* Only update value live, if parameter is in use */
	if ((type != chip->type) || (dir != chip->dir))
		return 0;

	switch (type) {
		/* Note completely different from the adaptive versions */
	case IIO_EV_TYPE_THRESH: {
		u16 value = chip->threshold[rising][chan];
		return i2c_smbus_write_word_swapped(chip->client,
						    ad7150_addresses[chan][3],
						    value);
	}
	case IIO_EV_TYPE_THRESH_ADAPTIVE: {
		int ret;
		u8 sens, timeout;

		sens = chip->thresh_sensitivity[rising][chan];
		ret = i2c_smbus_write_byte_data(chip->client,
						ad7150_addresses[chan][4],
						sens);
		if (ret)
			return ret;

		/*
		 * Single timeout register contains timeouts for both
		 * directions.
		 */
		timeout = FIELD_PREP(AD7150_CH_TIMEOUT_APPROACHING,
				     chip->thresh_timeout[1][chan]);
		timeout |= FIELD_PREP(AD7150_CH_TIMEOUT_RECEDING,
				      chip->thresh_timeout[0][chan]);
		return i2c_smbus_write_byte_data(chip->client,
						 ad7150_addresses[chan][5],
						 timeout);
	}
	default:
		return -EINVAL;
	}
}

static int ad7150_write_event_config(struct iio_dev *indio_dev,
				     const struct iio_chan_spec *chan,
				     enum iio_event_type type,
				     enum iio_event_direction dir, int state)
{
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	int ret = 0;

	/*
	 * There is only a single shared control and no on chip
	 * interrupt disables for the two interrupt lines.
	 * So, enabling will switch the events configured to enable
	 * whatever was most recently requested and if necessary enable_irq()
	 * the interrupt and any disable will disable_irq() for that
	 * channels interrupt.
	 */
	if (!state) {
		if ((chip->int_enabled[chan->channel]) &&
		    (type == chip->type) && (dir == chip->dir)) {
			disable_irq(chip->interrupts[chan->channel]);
			chip->int_enabled[chan->channel] = false;
		}
		return 0;
	}

	mutex_lock(&chip->state_lock);
	if ((type != chip->type) || (dir != chip->dir)) {
		int rising = (dir == IIO_EV_DIR_RISING);
		u8 thresh_type, cfg, fixed;

		/*
		 * Need to temporarily disable both interrupts if
		 * enabled - this is to avoid races around changing
		 * config and thresholds.
		 * Note enable/disable_irq() are reference counted so
		 * no need to check if already enabled.
		 */
		disable_irq(chip->interrupts[0]);
		disable_irq(chip->interrupts[1]);

		ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG_REG);
		if (ret < 0)
			goto error_ret;

		cfg = ret & ~(AD7150_CFG_THRESHTYPE_MSK | AD7150_CFG_FIX);

		if (type == IIO_EV_TYPE_THRESH_ADAPTIVE)
			fixed = 0;
		else
			fixed = 1;

		if (rising)
			thresh_type = AD7150_CFG_TT_POS;
		else
			thresh_type = AD7150_CFG_TT_NEG;

		cfg |= FIELD_PREP(AD7150_CFG_FIX, fixed) |
			FIELD_PREP(AD7150_CFG_THRESHTYPE_MSK, thresh_type);

		ret = i2c_smbus_write_byte_data(chip->client, AD7150_CFG_REG,
						cfg);
		if (ret < 0)
			goto error_ret;

		/*
		 * There is a potential race condition here, but not easy
		 * to close given we can't disable the interrupt at the
		 * chip side of things. Rely on the status bit.
		 */
		chip->type = type;
		chip->dir = dir;

		/* update control attributes */
		ret = ad7150_write_event_params(indio_dev, chan->channel, type,
						dir);
		if (ret)
			goto error_ret;
		/* reenable any irq's we disabled whilst changing mode */
		enable_irq(chip->interrupts[0]);
		enable_irq(chip->interrupts[1]);
	}
	if (!chip->int_enabled[chan->channel]) {
		enable_irq(chip->interrupts[chan->channel]);
		chip->int_enabled[chan->channel] = true;
	}

error_ret:
	mutex_unlock(&chip->state_lock);

	return ret;
}

static int ad7150_read_event_value(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	int rising = (dir == IIO_EV_DIR_RISING);

	/* Complex register sharing going on here */
	switch (info) {
	case IIO_EV_INFO_VALUE:
		switch (type) {
		case IIO_EV_TYPE_THRESH_ADAPTIVE:
			*val = chip->thresh_sensitivity[rising][chan->channel];
			return IIO_VAL_INT;
		case IIO_EV_TYPE_THRESH:
			*val = chip->threshold[rising][chan->channel];
			return IIO_VAL_INT;
		default:
			return -EINVAL;
		}
	case IIO_EV_INFO_TIMEOUT:
		*val = 0;
		*val2 = chip->thresh_timeout[rising][chan->channel] * 10000;
		return IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}
}

static int ad7150_write_event_value(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	int ret;
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	int rising = (dir == IIO_EV_DIR_RISING);

	mutex_lock(&chip->state_lock);
	switch (info) {
	case IIO_EV_INFO_VALUE:
		switch (type) {
		case IIO_EV_TYPE_THRESH_ADAPTIVE:
			chip->thresh_sensitivity[rising][chan->channel] = val;
			break;
		case IIO_EV_TYPE_THRESH:
			chip->threshold[rising][chan->channel] = val;
			break;
		default:
			ret = -EINVAL;
			goto error_ret;
		}
		break;
	case IIO_EV_INFO_TIMEOUT: {
		/*
		 * Raw timeout is in cycles of 10 msecs as long as both
		 * channels are enabled.
		 * In terms of INT_PLUS_MICRO, that is in units of 10,000
		 */
		int timeout = val2 / 10000;

		if (val != 0 || timeout < 0 || timeout > 15 || val2 % 10000) {
			ret = -EINVAL;
			goto error_ret;
		}

		chip->thresh_timeout[rising][chan->channel] = timeout;
		break;
	}
	default:
		ret = -EINVAL;
		goto error_ret;
	}

	/* write back if active */
	ret = ad7150_write_event_params(indio_dev, chan->channel, type, dir);

error_ret:
	mutex_unlock(&chip->state_lock);
	return ret;
}

static const struct iio_event_spec ad7150_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
			BIT(IIO_EV_INFO_ENABLE),
	}, {
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
			BIT(IIO_EV_INFO_ENABLE),
	}, {
		.type = IIO_EV_TYPE_THRESH_ADAPTIVE,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
			BIT(IIO_EV_INFO_ENABLE) |
			BIT(IIO_EV_INFO_TIMEOUT),
	}, {
		.type = IIO_EV_TYPE_THRESH_ADAPTIVE,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
			BIT(IIO_EV_INFO_ENABLE) |
			BIT(IIO_EV_INFO_TIMEOUT),
	},
};

#define AD7150_CAPACITANCE_CHAN(_chan)	{			\
		.type = IIO_CAPACITANCE,			\
		.indexed = 1,					\
		.channel = _chan,				\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |	\
		BIT(IIO_CHAN_INFO_AVERAGE_RAW),			\
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
			BIT(IIO_CHAN_INFO_OFFSET),		\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
		.event_spec = ad7150_events,			\
		.num_event_specs = ARRAY_SIZE(ad7150_events),	\
	}

#define AD7150_CAPACITANCE_CHAN_NO_IRQ(_chan)	{		\
		.type = IIO_CAPACITANCE,			\
		.indexed = 1,					\
		.channel = _chan,				\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |	\
		BIT(IIO_CHAN_INFO_AVERAGE_RAW),			\
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
			BIT(IIO_CHAN_INFO_OFFSET),		\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
	}

static const struct iio_chan_spec ad7150_channels[] = {
	AD7150_CAPACITANCE_CHAN(0),
	AD7150_CAPACITANCE_CHAN(1),
};

static const struct iio_chan_spec ad7150_channels_no_irq[] = {
	AD7150_CAPACITANCE_CHAN_NO_IRQ(0),
	AD7150_CAPACITANCE_CHAN_NO_IRQ(1),
};

static const struct iio_chan_spec ad7151_channels[] = {
	AD7150_CAPACITANCE_CHAN(0),
};

static const struct iio_chan_spec ad7151_channels_no_irq[] = {
	AD7150_CAPACITANCE_CHAN_NO_IRQ(0),
};

static irqreturn_t __ad7150_event_handler(void *private, u8 status_mask,
					  int channel)
{
	struct iio_dev *indio_dev = private;
	struct ad7150_chip_info *chip = iio_priv(indio_dev);
	s64 timestamp = iio_get_time_ns(indio_dev);
	int int_status;

	int_status = i2c_smbus_read_byte_data(chip->client, AD7150_STATUS_REG);
	if (int_status < 0)
		return IRQ_HANDLED;

	if (!(int_status & status_mask))
		return IRQ_HANDLED;

	iio_push_event(indio_dev,
		       IIO_UNMOD_EVENT_CODE(IIO_CAPACITANCE, channel,
					    chip->type, chip->dir),
		       timestamp);

	return IRQ_HANDLED;
}

static irqreturn_t ad7150_event_handler_ch1(int irq, void *private)
{
	return __ad7150_event_handler(private, AD7150_STATUS_OUT1, 0);
}

static irqreturn_t ad7150_event_handler_ch2(int irq, void *private)
{
	return __ad7150_event_handler(private, AD7150_STATUS_OUT2, 1);
}

static IIO_CONST_ATTR(in_capacitance_thresh_adaptive_timeout_available,
		      "[0 0.01 0.15]");

static struct attribute *ad7150_event_attributes[] = {
	&iio_const_attr_in_capacitance_thresh_adaptive_timeout_available
	.dev_attr.attr,
	NULL,
};

static const struct attribute_group ad7150_event_attribute_group = {
	.attrs = ad7150_event_attributes,
	.name = "events",
};

static const struct iio_info ad7150_info = {
	.event_attrs = &ad7150_event_attribute_group,
	.read_raw = &ad7150_read_raw,
	.read_event_config = &ad7150_read_event_config,
	.write_event_config = &ad7150_write_event_config,
	.read_event_value = &ad7150_read_event_value,
	.write_event_value = &ad7150_write_event_value,
};

static const struct iio_info ad7150_info_no_irq = {
	.read_raw = &ad7150_read_raw,
};

static void ad7150_reg_disable(void *data)
{
	struct regulator *reg = data;

	regulator_disable(reg);
}

static int ad7150_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct ad7150_chip_info *chip;
	struct iio_dev *indio_dev;
	struct regulator *reg;
	int ret;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip));
	if (!indio_dev)
		return -ENOMEM;

	chip = iio_priv(indio_dev);
	mutex_init(&chip->state_lock);
	chip->client = client;

	indio_dev->name = id->name;

	indio_dev->modes = INDIO_DIRECT_MODE;

	reg = devm_regulator_get(&client->dev, "vdd");
	if (IS_ERR(reg))
		return PTR_ERR(reg);

	ret = regulator_enable(reg);
	if (ret)
		return ret;

	ret = devm_add_action_or_reset(&client->dev, ad7150_reg_disable, reg);
	if (ret)
		return ret;

	chip->interrupts[0] = fwnode_irq_get(dev_fwnode(&client->dev), 0);
	if (chip->interrupts[0] < 0)
		return chip->interrupts[0];
	if (id->driver_data == AD7150) {
		chip->interrupts[1] = fwnode_irq_get(dev_fwnode(&client->dev), 1);
		if (chip->interrupts[1] < 0)
			return chip->interrupts[1];
	}
	if (chip->interrupts[0] &&
	    (id->driver_data == AD7151 || chip->interrupts[1])) {
		irq_set_status_flags(chip->interrupts[0], IRQ_NOAUTOEN);
		ret = devm_request_threaded_irq(&client->dev,
						chip->interrupts[0],
						NULL,
						&ad7150_event_handler_ch1,
						IRQF_TRIGGER_RISING |
						IRQF_ONESHOT,
						"ad7150_irq1",
						indio_dev);
		if (ret)
			return ret;

		indio_dev->info = &ad7150_info;
		switch (id->driver_data) {
		case AD7150:
			indio_dev->channels = ad7150_channels;
			indio_dev->num_channels = ARRAY_SIZE(ad7150_channels);
			irq_set_status_flags(chip->interrupts[1], IRQ_NOAUTOEN);
			ret = devm_request_threaded_irq(&client->dev,
							chip->interrupts[1],
							NULL,
							&ad7150_event_handler_ch2,
							IRQF_TRIGGER_RISING |
							IRQF_ONESHOT,
							"ad7150_irq2",
							indio_dev);
			if (ret)
				return ret;
			break;
		case AD7151:
			indio_dev->channels = ad7151_channels;
			indio_dev->num_channels = ARRAY_SIZE(ad7151_channels);
			break;
		default:
			return -EINVAL;
		}

	} else {
		indio_dev->info = &ad7150_info_no_irq;
		switch (id->driver_data) {
		case AD7150:
			indio_dev->channels = ad7150_channels_no_irq;
			indio_dev->num_channels =
				ARRAY_SIZE(ad7150_channels_no_irq);
			break;
		case AD7151:
			indio_dev->channels = ad7151_channels_no_irq;
			indio_dev->num_channels =
				ARRAY_SIZE(ad7151_channels_no_irq);
			break;
		default:
			return -EINVAL;
		}
	}

	return devm_iio_device_register(indio_dev->dev.parent, indio_dev);
}

static const struct i2c_device_id ad7150_id[] = {
	{ "ad7150", AD7150 },
	{ "ad7151", AD7151 },
	{ "ad7156", AD7150 },
	{}
};

MODULE_DEVICE_TABLE(i2c, ad7150_id);

static const struct of_device_id ad7150_of_match[] = {
	{ "adi,ad7150" },
	{ "adi,ad7151" },
	{ "adi,ad7156" },
	{}
};
static struct i2c_driver ad7150_driver = {
	.driver = {
		.name = "ad7150",
		.of_match_table = ad7150_of_match,
	},
	.probe = ad7150_probe,
	.id_table = ad7150_id,
};
module_i2c_driver(ad7150_driver);

MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>");
MODULE_DESCRIPTION("Analog Devices AD7150/1/6 capacitive sensor driver");
MODULE_LICENSE("GPL v2");