Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
/* SPDX-License-Identifier: GPL-2.0
 *
 * IO cost model based controller.
 *
 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
 * Copyright (C) 2019 Andy Newell <newella@fb.com>
 * Copyright (C) 2019 Facebook
 *
 * One challenge of controlling IO resources is the lack of trivially
 * observable cost metric.  This is distinguished from CPU and memory where
 * wallclock time and the number of bytes can serve as accurate enough
 * approximations.
 *
 * Bandwidth and iops are the most commonly used metrics for IO devices but
 * depending on the type and specifics of the device, different IO patterns
 * easily lead to multiple orders of magnitude variations rendering them
 * useless for the purpose of IO capacity distribution.  While on-device
 * time, with a lot of clutches, could serve as a useful approximation for
 * non-queued rotational devices, this is no longer viable with modern
 * devices, even the rotational ones.
 *
 * While there is no cost metric we can trivially observe, it isn't a
 * complete mystery.  For example, on a rotational device, seek cost
 * dominates while a contiguous transfer contributes a smaller amount
 * proportional to the size.  If we can characterize at least the relative
 * costs of these different types of IOs, it should be possible to
 * implement a reasonable work-conserving proportional IO resource
 * distribution.
 *
 * 1. IO Cost Model
 *
 * IO cost model estimates the cost of an IO given its basic parameters and
 * history (e.g. the end sector of the last IO).  The cost is measured in
 * device time.  If a given IO is estimated to cost 10ms, the device should
 * be able to process ~100 of those IOs in a second.
 *
 * Currently, there's only one builtin cost model - linear.  Each IO is
 * classified as sequential or random and given a base cost accordingly.
 * On top of that, a size cost proportional to the length of the IO is
 * added.  While simple, this model captures the operational
 * characteristics of a wide varienty of devices well enough.  Default
 * parameters for several different classes of devices are provided and the
 * parameters can be configured from userspace via
 * /sys/fs/cgroup/io.cost.model.
 *
 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
 * device-specific coefficients.
 *
 * 2. Control Strategy
 *
 * The device virtual time (vtime) is used as the primary control metric.
 * The control strategy is composed of the following three parts.
 *
 * 2-1. Vtime Distribution
 *
 * When a cgroup becomes active in terms of IOs, its hierarchical share is
 * calculated.  Please consider the following hierarchy where the numbers
 * inside parentheses denote the configured weights.
 *
 *           root
 *         /       \
 *      A (w:100)  B (w:300)
 *      /       \
 *  A0 (w:100)  A1 (w:100)
 *
 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
 * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
 * 12.5% each.  The distribution mechanism only cares about these flattened
 * shares.  They're called hweights (hierarchical weights) and always add
 * upto 1 (WEIGHT_ONE).
 *
 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
 * against the device vtime - an IO which takes 10ms on the underlying
 * device is considered to take 80ms on A0.
 *
 * This constitutes the basis of IO capacity distribution.  Each cgroup's
 * vtime is running at a rate determined by its hweight.  A cgroup tracks
 * the vtime consumed by past IOs and can issue a new IO if doing so
 * wouldn't outrun the current device vtime.  Otherwise, the IO is
 * suspended until the vtime has progressed enough to cover it.
 *
 * 2-2. Vrate Adjustment
 *
 * It's unrealistic to expect the cost model to be perfect.  There are too
 * many devices and even on the same device the overall performance
 * fluctuates depending on numerous factors such as IO mixture and device
 * internal garbage collection.  The controller needs to adapt dynamically.
 *
 * This is achieved by adjusting the overall IO rate according to how busy
 * the device is.  If the device becomes overloaded, we're sending down too
 * many IOs and should generally slow down.  If there are waiting issuers
 * but the device isn't saturated, we're issuing too few and should
 * generally speed up.
 *
 * To slow down, we lower the vrate - the rate at which the device vtime
 * passes compared to the wall clock.  For example, if the vtime is running
 * at the vrate of 75%, all cgroups added up would only be able to issue
 * 750ms worth of IOs per second, and vice-versa for speeding up.
 *
 * Device business is determined using two criteria - rq wait and
 * completion latencies.
 *
 * When a device gets saturated, the on-device and then the request queues
 * fill up and a bio which is ready to be issued has to wait for a request
 * to become available.  When this delay becomes noticeable, it's a clear
 * indication that the device is saturated and we lower the vrate.  This
 * saturation signal is fairly conservative as it only triggers when both
 * hardware and software queues are filled up, and is used as the default
 * busy signal.
 *
 * As devices can have deep queues and be unfair in how the queued commands
 * are executed, soley depending on rq wait may not result in satisfactory
 * control quality.  For a better control quality, completion latency QoS
 * parameters can be configured so that the device is considered saturated
 * if N'th percentile completion latency rises above the set point.
 *
 * The completion latency requirements are a function of both the
 * underlying device characteristics and the desired IO latency quality of
 * service.  There is an inherent trade-off - the tighter the latency QoS,
 * the higher the bandwidth lossage.  Latency QoS is disabled by default
 * and can be set through /sys/fs/cgroup/io.cost.qos.
 *
 * 2-3. Work Conservation
 *
 * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
 * periodically while B is sending out enough parallel IOs to saturate the
 * device on its own.  Let's say A's usage amounts to 100ms worth of IO
 * cost per second, i.e., 10% of the device capacity.  The naive
 * distribution of half and half would lead to 60% utilization of the
 * device, a significant reduction in the total amount of work done
 * compared to free-for-all competition.  This is too high a cost to pay
 * for IO control.
 *
 * To conserve the total amount of work done, we keep track of how much
 * each active cgroup is actually using and yield part of its weight if
 * there are other cgroups which can make use of it.  In the above case,
 * A's weight will be lowered so that it hovers above the actual usage and
 * B would be able to use the rest.
 *
 * As we don't want to penalize a cgroup for donating its weight, the
 * surplus weight adjustment factors in a margin and has an immediate
 * snapback mechanism in case the cgroup needs more IO vtime for itself.
 *
 * Note that adjusting down surplus weights has the same effects as
 * accelerating vtime for other cgroups and work conservation can also be
 * implemented by adjusting vrate dynamically.  However, squaring who can
 * donate and should take back how much requires hweight propagations
 * anyway making it easier to implement and understand as a separate
 * mechanism.
 *
 * 3. Monitoring
 *
 * Instead of debugfs or other clumsy monitoring mechanisms, this
 * controller uses a drgn based monitoring script -
 * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
 * https://github.com/osandov/drgn.  The output looks like the following.
 *
 *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
 *                 active      weight      hweight% inflt% dbt  delay usages%
 *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
 *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
 *
 * - per	: Timer period
 * - cur_per	: Internal wall and device vtime clock
 * - vrate	: Device virtual time rate against wall clock
 * - weight	: Surplus-adjusted and configured weights
 * - hweight	: Surplus-adjusted and configured hierarchical weights
 * - inflt	: The percentage of in-flight IO cost at the end of last period
 * - del_ms	: Deferred issuer delay induction level and duration
 * - usages	: Usage history
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/time64.h>
#include <linux/parser.h>
#include <linux/sched/signal.h>
#include <linux/blk-cgroup.h>
#include <asm/local.h>
#include <asm/local64.h>
#include "blk-rq-qos.h"
#include "blk-stat.h"
#include "blk-wbt.h"

#ifdef CONFIG_TRACEPOINTS

/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
#define TRACE_IOCG_PATH_LEN 1024
static DEFINE_SPINLOCK(trace_iocg_path_lock);
static char trace_iocg_path[TRACE_IOCG_PATH_LEN];

#define TRACE_IOCG_PATH(type, iocg, ...)					\
	do {									\
		unsigned long flags;						\
		if (trace_iocost_##type##_enabled()) {				\
			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
			trace_iocost_##type(iocg, trace_iocg_path,		\
					      ##__VA_ARGS__);			\
			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
		}								\
	} while (0)

#else	/* CONFIG_TRACE_POINTS */
#define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
#endif	/* CONFIG_TRACE_POINTS */

enum {
	MILLION			= 1000000,

	/* timer period is calculated from latency requirements, bound it */
	MIN_PERIOD		= USEC_PER_MSEC,
	MAX_PERIOD		= USEC_PER_SEC,

	/*
	 * iocg->vtime is targeted at 50% behind the device vtime, which
	 * serves as its IO credit buffer.  Surplus weight adjustment is
	 * immediately canceled if the vtime margin runs below 10%.
	 */
	MARGIN_MIN_PCT		= 10,
	MARGIN_LOW_PCT		= 20,
	MARGIN_TARGET_PCT	= 50,

	INUSE_ADJ_STEP_PCT	= 25,

	/* Have some play in timer operations */
	TIMER_SLACK_PCT		= 1,

	/* 1/64k is granular enough and can easily be handled w/ u32 */
	WEIGHT_ONE		= 1 << 16,

	/*
	 * As vtime is used to calculate the cost of each IO, it needs to
	 * be fairly high precision.  For example, it should be able to
	 * represent the cost of a single page worth of discard with
	 * suffificient accuracy.  At the same time, it should be able to
	 * represent reasonably long enough durations to be useful and
	 * convenient during operation.
	 *
	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
	 * granularity and days of wrap-around time even at extreme vrates.
	 */
	VTIME_PER_SEC_SHIFT	= 37,
	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,

	/* bound vrate adjustments within two orders of magnitude */
	VRATE_MIN_PPM		= 10000,	/* 1% */
	VRATE_MAX_PPM		= 100000000,	/* 10000% */

	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
	VRATE_CLAMP_ADJ_PCT	= 4,

	/* if IOs end up waiting for requests, issue less */
	RQ_WAIT_BUSY_PCT	= 5,

	/* unbusy hysterisis */
	UNBUSY_THR_PCT		= 75,

	/*
	 * The effect of delay is indirect and non-linear and a huge amount of
	 * future debt can accumulate abruptly while unthrottled. Linearly scale
	 * up delay as debt is going up and then let it decay exponentially.
	 * This gives us quick ramp ups while delay is accumulating and long
	 * tails which can help reducing the frequency of debt explosions on
	 * unthrottle. The parameters are experimentally determined.
	 *
	 * The delay mechanism provides adequate protection and behavior in many
	 * cases. However, this is far from ideal and falls shorts on both
	 * fronts. The debtors are often throttled too harshly costing a
	 * significant level of fairness and possibly total work while the
	 * protection against their impacts on the system can be choppy and
	 * unreliable.
	 *
	 * The shortcoming primarily stems from the fact that, unlike for page
	 * cache, the kernel doesn't have well-defined back-pressure propagation
	 * mechanism and policies for anonymous memory. Fully addressing this
	 * issue will likely require substantial improvements in the area.
	 */
	MIN_DELAY_THR_PCT	= 500,
	MAX_DELAY_THR_PCT	= 25000,
	MIN_DELAY		= 250,
	MAX_DELAY		= 250 * USEC_PER_MSEC,

	/* halve debts if avg usage over 100ms is under 50% */
	DFGV_USAGE_PCT		= 50,
	DFGV_PERIOD		= 100 * USEC_PER_MSEC,

	/* don't let cmds which take a very long time pin lagging for too long */
	MAX_LAGGING_PERIODS	= 10,

	/* switch iff the conditions are met for longer than this */
	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,

	/*
	 * Count IO size in 4k pages.  The 12bit shift helps keeping
	 * size-proportional components of cost calculation in closer
	 * numbers of digits to per-IO cost components.
	 */
	IOC_PAGE_SHIFT		= 12,
	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,

	/* if apart further than 16M, consider randio for linear model */
	LCOEF_RANDIO_PAGES	= 4096,
};

enum ioc_running {
	IOC_IDLE,
	IOC_RUNNING,
	IOC_STOP,
};

/* io.cost.qos controls including per-dev enable of the whole controller */
enum {
	QOS_ENABLE,
	QOS_CTRL,
	NR_QOS_CTRL_PARAMS,
};

/* io.cost.qos params */
enum {
	QOS_RPPM,
	QOS_RLAT,
	QOS_WPPM,
	QOS_WLAT,
	QOS_MIN,
	QOS_MAX,
	NR_QOS_PARAMS,
};

/* io.cost.model controls */
enum {
	COST_CTRL,
	COST_MODEL,
	NR_COST_CTRL_PARAMS,
};

/* builtin linear cost model coefficients */
enum {
	I_LCOEF_RBPS,
	I_LCOEF_RSEQIOPS,
	I_LCOEF_RRANDIOPS,
	I_LCOEF_WBPS,
	I_LCOEF_WSEQIOPS,
	I_LCOEF_WRANDIOPS,
	NR_I_LCOEFS,
};

enum {
	LCOEF_RPAGE,
	LCOEF_RSEQIO,
	LCOEF_RRANDIO,
	LCOEF_WPAGE,
	LCOEF_WSEQIO,
	LCOEF_WRANDIO,
	NR_LCOEFS,
};

enum {
	AUTOP_INVALID,
	AUTOP_HDD,
	AUTOP_SSD_QD1,
	AUTOP_SSD_DFL,
	AUTOP_SSD_FAST,
};

struct ioc_params {
	u32				qos[NR_QOS_PARAMS];
	u64				i_lcoefs[NR_I_LCOEFS];
	u64				lcoefs[NR_LCOEFS];
	u32				too_fast_vrate_pct;
	u32				too_slow_vrate_pct;
};

struct ioc_margins {
	s64				min;
	s64				low;
	s64				target;
};

struct ioc_missed {
	local_t				nr_met;
	local_t				nr_missed;
	u32				last_met;
	u32				last_missed;
};

struct ioc_pcpu_stat {
	struct ioc_missed		missed[2];

	local64_t			rq_wait_ns;
	u64				last_rq_wait_ns;
};

/* per device */
struct ioc {
	struct rq_qos			rqos;

	bool				enabled;

	struct ioc_params		params;
	struct ioc_margins		margins;
	u32				period_us;
	u32				timer_slack_ns;
	u64				vrate_min;
	u64				vrate_max;

	spinlock_t			lock;
	struct timer_list		timer;
	struct list_head		active_iocgs;	/* active cgroups */
	struct ioc_pcpu_stat __percpu	*pcpu_stat;

	enum ioc_running		running;
	atomic64_t			vtime_rate;
	u64				vtime_base_rate;
	s64				vtime_err;

	seqcount_spinlock_t		period_seqcount;
	u64				period_at;	/* wallclock starttime */
	u64				period_at_vtime; /* vtime starttime */

	atomic64_t			cur_period;	/* inc'd each period */
	int				busy_level;	/* saturation history */

	bool				weights_updated;
	atomic_t			hweight_gen;	/* for lazy hweights */

	/* debt forgivness */
	u64				dfgv_period_at;
	u64				dfgv_period_rem;
	u64				dfgv_usage_us_sum;

	u64				autop_too_fast_at;
	u64				autop_too_slow_at;
	int				autop_idx;
	bool				user_qos_params:1;
	bool				user_cost_model:1;
};

struct iocg_pcpu_stat {
	local64_t			abs_vusage;
};

struct iocg_stat {
	u64				usage_us;
	u64				wait_us;
	u64				indebt_us;
	u64				indelay_us;
};

/* per device-cgroup pair */
struct ioc_gq {
	struct blkg_policy_data		pd;
	struct ioc			*ioc;

	/*
	 * A iocg can get its weight from two sources - an explicit
	 * per-device-cgroup configuration or the default weight of the
	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
	 * configuration.  `weight` is the effective considering both
	 * sources.
	 *
	 * When an idle cgroup becomes active its `active` goes from 0 to
	 * `weight`.  `inuse` is the surplus adjusted active weight.
	 * `active` and `inuse` are used to calculate `hweight_active` and
	 * `hweight_inuse`.
	 *
	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
	 * surplus adjustments.
	 *
	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
	 * to determine and track adjustments.
	 */
	u32				cfg_weight;
	u32				weight;
	u32				active;
	u32				inuse;

	u32				last_inuse;
	s64				saved_margin;

	sector_t			cursor;		/* to detect randio */

	/*
	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
	 * issued.  If lagging behind device vtime, the delta represents
	 * the currently available IO budget.  If running ahead, the
	 * overage.
	 *
	 * `vtime_done` is the same but progressed on completion rather
	 * than issue.  The delta behind `vtime` represents the cost of
	 * currently in-flight IOs.
	 */
	atomic64_t			vtime;
	atomic64_t			done_vtime;
	u64				abs_vdebt;

	/* current delay in effect and when it started */
	u64				delay;
	u64				delay_at;

	/*
	 * The period this iocg was last active in.  Used for deactivation
	 * and invalidating `vtime`.
	 */
	atomic64_t			active_period;
	struct list_head		active_list;

	/* see __propagate_weights() and current_hweight() for details */
	u64				child_active_sum;
	u64				child_inuse_sum;
	u64				child_adjusted_sum;
	int				hweight_gen;
	u32				hweight_active;
	u32				hweight_inuse;
	u32				hweight_donating;
	u32				hweight_after_donation;

	struct list_head		walk_list;
	struct list_head		surplus_list;

	struct wait_queue_head		waitq;
	struct hrtimer			waitq_timer;

	/* timestamp at the latest activation */
	u64				activated_at;

	/* statistics */
	struct iocg_pcpu_stat __percpu	*pcpu_stat;
	struct iocg_stat		local_stat;
	struct iocg_stat		desc_stat;
	struct iocg_stat		last_stat;
	u64				last_stat_abs_vusage;
	u64				usage_delta_us;
	u64				wait_since;
	u64				indebt_since;
	u64				indelay_since;

	/* this iocg's depth in the hierarchy and ancestors including self */
	int				level;
	struct ioc_gq			*ancestors[];
};

/* per cgroup */
struct ioc_cgrp {
	struct blkcg_policy_data	cpd;
	unsigned int			dfl_weight;
};

struct ioc_now {
	u64				now_ns;
	u64				now;
	u64				vnow;
	u64				vrate;
};

struct iocg_wait {
	struct wait_queue_entry		wait;
	struct bio			*bio;
	u64				abs_cost;
	bool				committed;
};

struct iocg_wake_ctx {
	struct ioc_gq			*iocg;
	u32				hw_inuse;
	s64				vbudget;
};

static const struct ioc_params autop[] = {
	[AUTOP_HDD] = {
		.qos				= {
			[QOS_RLAT]		=        250000, /* 250ms */
			[QOS_WLAT]		=        250000,
			[QOS_MIN]		= VRATE_MIN_PPM,
			[QOS_MAX]		= VRATE_MAX_PPM,
		},
		.i_lcoefs			= {
			[I_LCOEF_RBPS]		=     174019176,
			[I_LCOEF_RSEQIOPS]	=         41708,
			[I_LCOEF_RRANDIOPS]	=           370,
			[I_LCOEF_WBPS]		=     178075866,
			[I_LCOEF_WSEQIOPS]	=         42705,
			[I_LCOEF_WRANDIOPS]	=           378,
		},
	},
	[AUTOP_SSD_QD1] = {
		.qos				= {
			[QOS_RLAT]		=         25000, /* 25ms */
			[QOS_WLAT]		=         25000,
			[QOS_MIN]		= VRATE_MIN_PPM,
			[QOS_MAX]		= VRATE_MAX_PPM,
		},
		.i_lcoefs			= {
			[I_LCOEF_RBPS]		=     245855193,
			[I_LCOEF_RSEQIOPS]	=         61575,
			[I_LCOEF_RRANDIOPS]	=          6946,
			[I_LCOEF_WBPS]		=     141365009,
			[I_LCOEF_WSEQIOPS]	=         33716,
			[I_LCOEF_WRANDIOPS]	=         26796,
		},
	},
	[AUTOP_SSD_DFL] = {
		.qos				= {
			[QOS_RLAT]		=         25000, /* 25ms */
			[QOS_WLAT]		=         25000,
			[QOS_MIN]		= VRATE_MIN_PPM,
			[QOS_MAX]		= VRATE_MAX_PPM,
		},
		.i_lcoefs			= {
			[I_LCOEF_RBPS]		=     488636629,
			[I_LCOEF_RSEQIOPS]	=          8932,
			[I_LCOEF_RRANDIOPS]	=          8518,
			[I_LCOEF_WBPS]		=     427891549,
			[I_LCOEF_WSEQIOPS]	=         28755,
			[I_LCOEF_WRANDIOPS]	=         21940,
		},
		.too_fast_vrate_pct		=           500,
	},
	[AUTOP_SSD_FAST] = {
		.qos				= {
			[QOS_RLAT]		=          5000, /* 5ms */
			[QOS_WLAT]		=          5000,
			[QOS_MIN]		= VRATE_MIN_PPM,
			[QOS_MAX]		= VRATE_MAX_PPM,
		},
		.i_lcoefs			= {
			[I_LCOEF_RBPS]		=    3102524156LLU,
			[I_LCOEF_RSEQIOPS]	=        724816,
			[I_LCOEF_RRANDIOPS]	=        778122,
			[I_LCOEF_WBPS]		=    1742780862LLU,
			[I_LCOEF_WSEQIOPS]	=        425702,
			[I_LCOEF_WRANDIOPS]	=	 443193,
		},
		.too_slow_vrate_pct		=            10,
	},
};

/*
 * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
 * vtime credit shortage and down on device saturation.
 */
static u32 vrate_adj_pct[] =
	{ 0, 0, 0, 0,
	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };

static struct blkcg_policy blkcg_policy_iocost;

/* accessors and helpers */
static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
{
	return container_of(rqos, struct ioc, rqos);
}

static struct ioc *q_to_ioc(struct request_queue *q)
{
	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
}

static const char *q_name(struct request_queue *q)
{
	if (blk_queue_registered(q))
		return kobject_name(q->kobj.parent);
	else
		return "<unknown>";
}

static const char __maybe_unused *ioc_name(struct ioc *ioc)
{
	return q_name(ioc->rqos.q);
}

static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
}

static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
{
	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
}

static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
{
	return pd_to_blkg(&iocg->pd);
}

static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
{
	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
			    struct ioc_cgrp, cpd);
}

/*
 * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
 * weight, the more expensive each IO.  Must round up.
 */
static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
{
	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
}

/*
 * The inverse of abs_cost_to_cost().  Must round up.
 */
static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
{
	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
}

static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
			    u64 abs_cost, u64 cost)
{
	struct iocg_pcpu_stat *gcs;

	bio->bi_iocost_cost = cost;
	atomic64_add(cost, &iocg->vtime);

	gcs = get_cpu_ptr(iocg->pcpu_stat);
	local64_add(abs_cost, &gcs->abs_vusage);
	put_cpu_ptr(gcs);
}

static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
{
	if (lock_ioc) {
		spin_lock_irqsave(&iocg->ioc->lock, *flags);
		spin_lock(&iocg->waitq.lock);
	} else {
		spin_lock_irqsave(&iocg->waitq.lock, *flags);
	}
}

static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
{
	if (unlock_ioc) {
		spin_unlock(&iocg->waitq.lock);
		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
	} else {
		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
	}
}

#define CREATE_TRACE_POINTS
#include <trace/events/iocost.h>

static void ioc_refresh_margins(struct ioc *ioc)
{
	struct ioc_margins *margins = &ioc->margins;
	u32 period_us = ioc->period_us;
	u64 vrate = ioc->vtime_base_rate;

	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
}

/* latency Qos params changed, update period_us and all the dependent params */
static void ioc_refresh_period_us(struct ioc *ioc)
{
	u32 ppm, lat, multi, period_us;

	lockdep_assert_held(&ioc->lock);

	/* pick the higher latency target */
	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
		ppm = ioc->params.qos[QOS_RPPM];
		lat = ioc->params.qos[QOS_RLAT];
	} else {
		ppm = ioc->params.qos[QOS_WPPM];
		lat = ioc->params.qos[QOS_WLAT];
	}

	/*
	 * We want the period to be long enough to contain a healthy number
	 * of IOs while short enough for granular control.  Define it as a
	 * multiple of the latency target.  Ideally, the multiplier should
	 * be scaled according to the percentile so that it would nominally
	 * contain a certain number of requests.  Let's be simpler and
	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
	 */
	if (ppm)
		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
	else
		multi = 2;
	period_us = multi * lat;
	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);

	/* calculate dependent params */
	ioc->period_us = period_us;
	ioc->timer_slack_ns = div64_u64(
		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
		100);
	ioc_refresh_margins(ioc);
}

static int ioc_autop_idx(struct ioc *ioc)
{
	int idx = ioc->autop_idx;
	const struct ioc_params *p = &autop[idx];
	u32 vrate_pct;
	u64 now_ns;

	/* rotational? */
	if (!blk_queue_nonrot(ioc->rqos.q))
		return AUTOP_HDD;

	/* handle SATA SSDs w/ broken NCQ */
	if (blk_queue_depth(ioc->rqos.q) == 1)
		return AUTOP_SSD_QD1;

	/* use one of the normal ssd sets */
	if (idx < AUTOP_SSD_DFL)
		return AUTOP_SSD_DFL;

	/* if user is overriding anything, maintain what was there */
	if (ioc->user_qos_params || ioc->user_cost_model)
		return idx;

	/* step up/down based on the vrate */
	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
	now_ns = ktime_get_ns();

	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
		if (!ioc->autop_too_fast_at)
			ioc->autop_too_fast_at = now_ns;
		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
			return idx + 1;
	} else {
		ioc->autop_too_fast_at = 0;
	}

	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
		if (!ioc->autop_too_slow_at)
			ioc->autop_too_slow_at = now_ns;
		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
			return idx - 1;
	} else {
		ioc->autop_too_slow_at = 0;
	}

	return idx;
}

/*
 * Take the followings as input
 *
 *  @bps	maximum sequential throughput
 *  @seqiops	maximum sequential 4k iops
 *  @randiops	maximum random 4k iops
 *
 * and calculate the linear model cost coefficients.
 *
 *  *@page	per-page cost		1s / (@bps / 4096)
 *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
 *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
 */
static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
			u64 *page, u64 *seqio, u64 *randio)
{
	u64 v;

	*page = *seqio = *randio = 0;

	if (bps)
		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));

	if (seqiops) {
		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
		if (v > *page)
			*seqio = v - *page;
	}

	if (randiops) {
		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
		if (v > *page)
			*randio = v - *page;
	}
}

static void ioc_refresh_lcoefs(struct ioc *ioc)
{
	u64 *u = ioc->params.i_lcoefs;
	u64 *c = ioc->params.lcoefs;

	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
}

static bool ioc_refresh_params(struct ioc *ioc, bool force)
{
	const struct ioc_params *p;
	int idx;

	lockdep_assert_held(&ioc->lock);

	idx = ioc_autop_idx(ioc);
	p = &autop[idx];

	if (idx == ioc->autop_idx && !force)
		return false;

	if (idx != ioc->autop_idx)
		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);

	ioc->autop_idx = idx;
	ioc->autop_too_fast_at = 0;
	ioc->autop_too_slow_at = 0;

	if (!ioc->user_qos_params)
		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
	if (!ioc->user_cost_model)
		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));

	ioc_refresh_period_us(ioc);
	ioc_refresh_lcoefs(ioc);

	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
					    VTIME_PER_USEC, MILLION);
	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
				   VTIME_PER_USEC, MILLION);

	return true;
}

/*
 * When an iocg accumulates too much vtime or gets deactivated, we throw away
 * some vtime, which lowers the overall device utilization. As the exact amount
 * which is being thrown away is known, we can compensate by accelerating the
 * vrate accordingly so that the extra vtime generated in the current period
 * matches what got lost.
 */
static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
{
	s64 pleft = ioc->period_at + ioc->period_us - now->now;
	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
	s64 vcomp, vcomp_min, vcomp_max;

	lockdep_assert_held(&ioc->lock);

	/* we need some time left in this period */
	if (pleft <= 0)
		goto done;

	/*
	 * Calculate how much vrate should be adjusted to offset the error.
	 * Limit the amount of adjustment and deduct the adjusted amount from
	 * the error.
	 */
	vcomp = -div64_s64(ioc->vtime_err, pleft);
	vcomp_min = -(ioc->vtime_base_rate >> 1);
	vcomp_max = ioc->vtime_base_rate;
	vcomp = clamp(vcomp, vcomp_min, vcomp_max);

	ioc->vtime_err += vcomp * pleft;

	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
done:
	/* bound how much error can accumulate */
	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
}

static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
				  int nr_lagging, int nr_shortages,
				  int prev_busy_level, u32 *missed_ppm)
{
	u64 vrate = ioc->vtime_base_rate;
	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;

	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
		if (ioc->busy_level != prev_busy_level || nr_lagging)
			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
						   missed_ppm, rq_wait_pct,
						   nr_lagging, nr_shortages);

		return;
	}

	/*
	 * If vrate is out of bounds, apply clamp gradually as the
	 * bounds can change abruptly.  Otherwise, apply busy_level
	 * based adjustment.
	 */
	if (vrate < vrate_min) {
		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
		vrate = min(vrate, vrate_min);
	} else if (vrate > vrate_max) {
		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
		vrate = max(vrate, vrate_max);
	} else {
		int idx = min_t(int, abs(ioc->busy_level),
				ARRAY_SIZE(vrate_adj_pct) - 1);
		u32 adj_pct = vrate_adj_pct[idx];

		if (ioc->busy_level > 0)
			adj_pct = 100 - adj_pct;
		else
			adj_pct = 100 + adj_pct;

		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
			      vrate_min, vrate_max);
	}

	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
				   nr_lagging, nr_shortages);

	ioc->vtime_base_rate = vrate;
	ioc_refresh_margins(ioc);
}

/* take a snapshot of the current [v]time and vrate */
static void ioc_now(struct ioc *ioc, struct ioc_now *now)
{
	unsigned seq;

	now->now_ns = ktime_get();
	now->now = ktime_to_us(now->now_ns);
	now->vrate = atomic64_read(&ioc->vtime_rate);

	/*
	 * The current vtime is
	 *
	 *   vtime at period start + (wallclock time since the start) * vrate
	 *
	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
	 * needed, they're seqcount protected.
	 */
	do {
		seq = read_seqcount_begin(&ioc->period_seqcount);
		now->vnow = ioc->period_at_vtime +
			(now->now - ioc->period_at) * now->vrate;
	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
}

static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
{
	WARN_ON_ONCE(ioc->running != IOC_RUNNING);

	write_seqcount_begin(&ioc->period_seqcount);
	ioc->period_at = now->now;
	ioc->period_at_vtime = now->vnow;
	write_seqcount_end(&ioc->period_seqcount);

	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
	add_timer(&ioc->timer);
}

/*
 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
 * weight sums and propagate upwards accordingly. If @save, the current margin
 * is saved to be used as reference for later inuse in-period adjustments.
 */
static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
				bool save, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	int lvl;

	lockdep_assert_held(&ioc->lock);

	/*
	 * For an active leaf node, its inuse shouldn't be zero or exceed
	 * @active. An active internal node's inuse is solely determined by the
	 * inuse to active ratio of its children regardless of @inuse.
	 */
	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
					   iocg->child_active_sum);
	} else {
		inuse = clamp_t(u32, inuse, 1, active);
	}

	iocg->last_inuse = iocg->inuse;
	if (save)
		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);

	if (active == iocg->active && inuse == iocg->inuse)
		return;

	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
		struct ioc_gq *parent = iocg->ancestors[lvl];
		struct ioc_gq *child = iocg->ancestors[lvl + 1];
		u32 parent_active = 0, parent_inuse = 0;

		/* update the level sums */
		parent->child_active_sum += (s32)(active - child->active);
		parent->child_inuse_sum += (s32)(inuse - child->inuse);
		/* apply the updates */
		child->active = active;
		child->inuse = inuse;

		/*
		 * The delta between inuse and active sums indicates that
		 * much of weight is being given away.  Parent's inuse
		 * and active should reflect the ratio.
		 */
		if (parent->child_active_sum) {
			parent_active = parent->weight;
			parent_inuse = DIV64_U64_ROUND_UP(
				parent_active * parent->child_inuse_sum,
				parent->child_active_sum);
		}

		/* do we need to keep walking up? */
		if (parent_active == parent->active &&
		    parent_inuse == parent->inuse)
			break;

		active = parent_active;
		inuse = parent_inuse;
	}

	ioc->weights_updated = true;
}

static void commit_weights(struct ioc *ioc)
{
	lockdep_assert_held(&ioc->lock);

	if (ioc->weights_updated) {
		/* paired with rmb in current_hweight(), see there */
		smp_wmb();
		atomic_inc(&ioc->hweight_gen);
		ioc->weights_updated = false;
	}
}

static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
			      bool save, struct ioc_now *now)
{
	__propagate_weights(iocg, active, inuse, save, now);
	commit_weights(iocg->ioc);
}

static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
{
	struct ioc *ioc = iocg->ioc;
	int lvl;
	u32 hwa, hwi;
	int ioc_gen;

	/* hot path - if uptodate, use cached */
	ioc_gen = atomic_read(&ioc->hweight_gen);
	if (ioc_gen == iocg->hweight_gen)
		goto out;

	/*
	 * Paired with wmb in commit_weights(). If we saw the updated
	 * hweight_gen, all the weight updates from __propagate_weights() are
	 * visible too.
	 *
	 * We can race with weight updates during calculation and get it
	 * wrong.  However, hweight_gen would have changed and a future
	 * reader will recalculate and we're guaranteed to discard the
	 * wrong result soon.
	 */
	smp_rmb();

	hwa = hwi = WEIGHT_ONE;
	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
		struct ioc_gq *parent = iocg->ancestors[lvl];
		struct ioc_gq *child = iocg->ancestors[lvl + 1];
		u64 active_sum = READ_ONCE(parent->child_active_sum);
		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
		u32 active = READ_ONCE(child->active);
		u32 inuse = READ_ONCE(child->inuse);

		/* we can race with deactivations and either may read as zero */
		if (!active_sum || !inuse_sum)
			continue;

		active_sum = max_t(u64, active, active_sum);
		hwa = div64_u64((u64)hwa * active, active_sum);

		inuse_sum = max_t(u64, inuse, inuse_sum);
		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
	}

	iocg->hweight_active = max_t(u32, hwa, 1);
	iocg->hweight_inuse = max_t(u32, hwi, 1);
	iocg->hweight_gen = ioc_gen;
out:
	if (hw_activep)
		*hw_activep = iocg->hweight_active;
	if (hw_inusep)
		*hw_inusep = iocg->hweight_inuse;
}

/*
 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
 * other weights stay unchanged.
 */
static u32 current_hweight_max(struct ioc_gq *iocg)
{
	u32 hwm = WEIGHT_ONE;
	u32 inuse = iocg->active;
	u64 child_inuse_sum;
	int lvl;

	lockdep_assert_held(&iocg->ioc->lock);

	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
		struct ioc_gq *parent = iocg->ancestors[lvl];
		struct ioc_gq *child = iocg->ancestors[lvl + 1];

		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
					   parent->child_active_sum);
	}

	return max_t(u32, hwm, 1);
}

static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
	u32 weight;

	lockdep_assert_held(&ioc->lock);

	weight = iocg->cfg_weight ?: iocc->dfl_weight;
	if (weight != iocg->weight && iocg->active)
		propagate_weights(iocg, weight, iocg->inuse, true, now);
	iocg->weight = weight;
}

static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	u64 last_period, cur_period;
	u64 vtime, vtarget;
	int i;

	/*
	 * If seem to be already active, just update the stamp to tell the
	 * timer that we're still active.  We don't mind occassional races.
	 */
	if (!list_empty(&iocg->active_list)) {
		ioc_now(ioc, now);
		cur_period = atomic64_read(&ioc->cur_period);
		if (atomic64_read(&iocg->active_period) != cur_period)
			atomic64_set(&iocg->active_period, cur_period);
		return true;
	}

	/* racy check on internal node IOs, treat as root level IOs */
	if (iocg->child_active_sum)
		return false;

	spin_lock_irq(&ioc->lock);

	ioc_now(ioc, now);

	/* update period */
	cur_period = atomic64_read(&ioc->cur_period);
	last_period = atomic64_read(&iocg->active_period);
	atomic64_set(&iocg->active_period, cur_period);

	/* already activated or breaking leaf-only constraint? */
	if (!list_empty(&iocg->active_list))
		goto succeed_unlock;
	for (i = iocg->level - 1; i > 0; i--)
		if (!list_empty(&iocg->ancestors[i]->active_list))
			goto fail_unlock;

	if (iocg->child_active_sum)
		goto fail_unlock;

	/*
	 * Always start with the target budget. On deactivation, we throw away
	 * anything above it.
	 */
	vtarget = now->vnow - ioc->margins.target;
	vtime = atomic64_read(&iocg->vtime);

	atomic64_add(vtarget - vtime, &iocg->vtime);
	atomic64_add(vtarget - vtime, &iocg->done_vtime);
	vtime = vtarget;

	/*
	 * Activate, propagate weight and start period timer if not
	 * running.  Reset hweight_gen to avoid accidental match from
	 * wrapping.
	 */
	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
	list_add(&iocg->active_list, &ioc->active_iocgs);

	propagate_weights(iocg, iocg->weight,
			  iocg->last_inuse ?: iocg->weight, true, now);

	TRACE_IOCG_PATH(iocg_activate, iocg, now,
			last_period, cur_period, vtime);

	iocg->activated_at = now->now;

	if (ioc->running == IOC_IDLE) {
		ioc->running = IOC_RUNNING;
		ioc->dfgv_period_at = now->now;
		ioc->dfgv_period_rem = 0;
		ioc_start_period(ioc, now);
	}

succeed_unlock:
	spin_unlock_irq(&ioc->lock);
	return true;

fail_unlock:
	spin_unlock_irq(&ioc->lock);
	return false;
}

static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
	u64 tdelta, delay, new_delay;
	s64 vover, vover_pct;
	u32 hwa;

	lockdep_assert_held(&iocg->waitq.lock);

	/* calculate the current delay in effect - 1/2 every second */
	tdelta = now->now - iocg->delay_at;
	if (iocg->delay)
		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
	else
		delay = 0;

	/* calculate the new delay from the debt amount */
	current_hweight(iocg, &hwa, NULL);
	vover = atomic64_read(&iocg->vtime) +
		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
	vover_pct = div64_s64(100 * vover,
			      ioc->period_us * ioc->vtime_base_rate);

	if (vover_pct <= MIN_DELAY_THR_PCT)
		new_delay = 0;
	else if (vover_pct >= MAX_DELAY_THR_PCT)
		new_delay = MAX_DELAY;
	else
		new_delay = MIN_DELAY +
			div_u64((MAX_DELAY - MIN_DELAY) *
				(vover_pct - MIN_DELAY_THR_PCT),
				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);

	/* pick the higher one and apply */
	if (new_delay > delay) {
		iocg->delay = new_delay;
		iocg->delay_at = now->now;
		delay = new_delay;
	}

	if (delay >= MIN_DELAY) {
		if (!iocg->indelay_since)
			iocg->indelay_since = now->now;
		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
		return true;
	} else {
		if (iocg->indelay_since) {
			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
			iocg->indelay_since = 0;
		}
		iocg->delay = 0;
		blkcg_clear_delay(blkg);
		return false;
	}
}

static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
			    struct ioc_now *now)
{
	struct iocg_pcpu_stat *gcs;

	lockdep_assert_held(&iocg->ioc->lock);
	lockdep_assert_held(&iocg->waitq.lock);
	WARN_ON_ONCE(list_empty(&iocg->active_list));

	/*
	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
	 * inuse donating all of it share to others until its debt is paid off.
	 */
	if (!iocg->abs_vdebt && abs_cost) {
		iocg->indebt_since = now->now;
		propagate_weights(iocg, iocg->active, 0, false, now);
	}

	iocg->abs_vdebt += abs_cost;

	gcs = get_cpu_ptr(iocg->pcpu_stat);
	local64_add(abs_cost, &gcs->abs_vusage);
	put_cpu_ptr(gcs);
}

static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
			  struct ioc_now *now)
{
	lockdep_assert_held(&iocg->ioc->lock);
	lockdep_assert_held(&iocg->waitq.lock);

	/* make sure that nobody messed with @iocg */
	WARN_ON_ONCE(list_empty(&iocg->active_list));
	WARN_ON_ONCE(iocg->inuse > 1);

	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);

	/* if debt is paid in full, restore inuse */
	if (!iocg->abs_vdebt) {
		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
		iocg->indebt_since = 0;

		propagate_weights(iocg, iocg->active, iocg->last_inuse,
				  false, now);
	}
}

static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
			int flags, void *key)
{
	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);

	ctx->vbudget -= cost;

	if (ctx->vbudget < 0)
		return -1;

	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
	wait->committed = true;

	/*
	 * autoremove_wake_function() removes the wait entry only when it
	 * actually changed the task state. We want the wait always removed.
	 * Remove explicitly and use default_wake_function(). Note that the
	 * order of operations is important as finish_wait() tests whether
	 * @wq_entry is removed without grabbing the lock.
	 */
	default_wake_function(wq_entry, mode, flags, key);
	list_del_init_careful(&wq_entry->entry);
	return 0;
}

/*
 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
 * addition to iocg->waitq.lock.
 */
static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
			    struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	struct iocg_wake_ctx ctx = { .iocg = iocg };
	u64 vshortage, expires, oexpires;
	s64 vbudget;
	u32 hwa;

	lockdep_assert_held(&iocg->waitq.lock);

	current_hweight(iocg, &hwa, NULL);
	vbudget = now->vnow - atomic64_read(&iocg->vtime);

	/* pay off debt */
	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);

		lockdep_assert_held(&ioc->lock);

		atomic64_add(vpay, &iocg->vtime);
		atomic64_add(vpay, &iocg->done_vtime);
		iocg_pay_debt(iocg, abs_vpay, now);
		vbudget -= vpay;
	}

	if (iocg->abs_vdebt || iocg->delay)
		iocg_kick_delay(iocg, now);

	/*
	 * Debt can still be outstanding if we haven't paid all yet or the
	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
	 * under debt. Make sure @vbudget reflects the outstanding amount and is
	 * not positive.
	 */
	if (iocg->abs_vdebt) {
		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
		vbudget = min_t(s64, 0, vbudget - vdebt);
	}

	/*
	 * Wake up the ones which are due and see how much vtime we'll need for
	 * the next one. As paying off debt restores hw_inuse, it must be read
	 * after the above debt payment.
	 */
	ctx.vbudget = vbudget;
	current_hweight(iocg, NULL, &ctx.hw_inuse);

	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);

	if (!waitqueue_active(&iocg->waitq)) {
		if (iocg->wait_since) {
			iocg->local_stat.wait_us += now->now - iocg->wait_since;
			iocg->wait_since = 0;
		}
		return;
	}

	if (!iocg->wait_since)
		iocg->wait_since = now->now;

	if (WARN_ON_ONCE(ctx.vbudget >= 0))
		return;

	/* determine next wakeup, add a timer margin to guarantee chunking */
	vshortage = -ctx.vbudget;
	expires = now->now_ns +
		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
		NSEC_PER_USEC;
	expires += ioc->timer_slack_ns;

	/* if already active and close enough, don't bother */
	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
	if (hrtimer_is_queued(&iocg->waitq_timer) &&
	    abs(oexpires - expires) <= ioc->timer_slack_ns)
		return;

	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
}

static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
{
	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
	struct ioc_now now;
	unsigned long flags;

	ioc_now(iocg->ioc, &now);

	iocg_lock(iocg, pay_debt, &flags);
	iocg_kick_waitq(iocg, pay_debt, &now);
	iocg_unlock(iocg, pay_debt, &flags);

	return HRTIMER_NORESTART;
}

static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
{
	u32 nr_met[2] = { };
	u32 nr_missed[2] = { };
	u64 rq_wait_ns = 0;
	int cpu, rw;

	for_each_online_cpu(cpu) {
		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
		u64 this_rq_wait_ns;

		for (rw = READ; rw <= WRITE; rw++) {
			u32 this_met = local_read(&stat->missed[rw].nr_met);
			u32 this_missed = local_read(&stat->missed[rw].nr_missed);

			nr_met[rw] += this_met - stat->missed[rw].last_met;
			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
			stat->missed[rw].last_met = this_met;
			stat->missed[rw].last_missed = this_missed;
		}

		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
		stat->last_rq_wait_ns = this_rq_wait_ns;
	}

	for (rw = READ; rw <= WRITE; rw++) {
		if (nr_met[rw] + nr_missed[rw])
			missed_ppm_ar[rw] =
				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
						   nr_met[rw] + nr_missed[rw]);
		else
			missed_ppm_ar[rw] = 0;
	}

	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
				   ioc->period_us * NSEC_PER_USEC);
}

/* was iocg idle this period? */
static bool iocg_is_idle(struct ioc_gq *iocg)
{
	struct ioc *ioc = iocg->ioc;

	/* did something get issued this period? */
	if (atomic64_read(&iocg->active_period) ==
	    atomic64_read(&ioc->cur_period))
		return false;

	/* is something in flight? */
	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
		return false;

	return true;
}

/*
 * Call this function on the target leaf @iocg's to build pre-order traversal
 * list of all the ancestors in @inner_walk. The inner nodes are linked through
 * ->walk_list and the caller is responsible for dissolving the list after use.
 */
static void iocg_build_inner_walk(struct ioc_gq *iocg,
				  struct list_head *inner_walk)
{
	int lvl;

	WARN_ON_ONCE(!list_empty(&iocg->walk_list));

	/* find the first ancestor which hasn't been visited yet */
	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
			break;
	}

	/* walk down and visit the inner nodes to get pre-order traversal */
	while (++lvl <= iocg->level - 1) {
		struct ioc_gq *inner = iocg->ancestors[lvl];

		/* record traversal order */
		list_add_tail(&inner->walk_list, inner_walk);
	}
}

/* collect per-cpu counters and propagate the deltas to the parent */
static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	struct iocg_stat new_stat;
	u64 abs_vusage = 0;
	u64 vusage_delta;
	int cpu;

	lockdep_assert_held(&iocg->ioc->lock);

	/* collect per-cpu counters */
	for_each_possible_cpu(cpu) {
		abs_vusage += local64_read(
				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
	}
	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
	iocg->last_stat_abs_vusage = abs_vusage;

	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
	iocg->local_stat.usage_us += iocg->usage_delta_us;

	/* propagate upwards */
	new_stat.usage_us =
		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
	new_stat.wait_us =
		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
	new_stat.indebt_us =
		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
	new_stat.indelay_us =
		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;

	/* propagate the deltas to the parent */
	if (iocg->level > 0) {
		struct iocg_stat *parent_stat =
			&iocg->ancestors[iocg->level - 1]->desc_stat;

		parent_stat->usage_us +=
			new_stat.usage_us - iocg->last_stat.usage_us;
		parent_stat->wait_us +=
			new_stat.wait_us - iocg->last_stat.wait_us;
		parent_stat->indebt_us +=
			new_stat.indebt_us - iocg->last_stat.indebt_us;
		parent_stat->indelay_us +=
			new_stat.indelay_us - iocg->last_stat.indelay_us;
	}

	iocg->last_stat = new_stat;
}

/* get stat counters ready for reading on all active iocgs */
static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
{
	LIST_HEAD(inner_walk);
	struct ioc_gq *iocg, *tiocg;

	/* flush leaves and build inner node walk list */
	list_for_each_entry(iocg, target_iocgs, active_list) {
		iocg_flush_stat_one(iocg, now);
		iocg_build_inner_walk(iocg, &inner_walk);
	}

	/* keep flushing upwards by walking the inner list backwards */
	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
		iocg_flush_stat_one(iocg, now);
		list_del_init(&iocg->walk_list);
	}
}

/*
 * Determine what @iocg's hweight_inuse should be after donating unused
 * capacity. @hwm is the upper bound and used to signal no donation. This
 * function also throws away @iocg's excess budget.
 */
static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
				  u32 usage, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	u64 vtime = atomic64_read(&iocg->vtime);
	s64 excess, delta, target, new_hwi;

	/* debt handling owns inuse for debtors */
	if (iocg->abs_vdebt)
		return 1;

	/* see whether minimum margin requirement is met */
	if (waitqueue_active(&iocg->waitq) ||
	    time_after64(vtime, now->vnow - ioc->margins.min))
		return hwm;

	/* throw away excess above target */
	excess = now->vnow - vtime - ioc->margins.target;
	if (excess > 0) {
		atomic64_add(excess, &iocg->vtime);
		atomic64_add(excess, &iocg->done_vtime);
		vtime += excess;
		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
	}

	/*
	 * Let's say the distance between iocg's and device's vtimes as a
	 * fraction of period duration is delta. Assuming that the iocg will
	 * consume the usage determined above, we want to determine new_hwi so
	 * that delta equals MARGIN_TARGET at the end of the next period.
	 *
	 * We need to execute usage worth of IOs while spending the sum of the
	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
	 * (delta):
	 *
	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
	 *
	 * Therefore, the new_hwi is:
	 *
	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
	 */
	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
			  now->vnow - ioc->period_at_vtime);
	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);

	return clamp_t(s64, new_hwi, 1, hwm);
}

/*
 * For work-conservation, an iocg which isn't using all of its share should
 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
 *
 * #1 is mathematically simpler but has the drawback of requiring synchronous
 * global hweight_inuse updates when idle iocg's get activated or inuse weights
 * change due to donation snapbacks as it has the possibility of grossly
 * overshooting what's allowed by the model and vrate.
 *
 * #2 is inherently safe with local operations. The donating iocg can easily
 * snap back to higher weights when needed without worrying about impacts on
 * other nodes as the impacts will be inherently correct. This also makes idle
 * iocg activations safe. The only effect activations have is decreasing
 * hweight_inuse of others, the right solution to which is for those iocgs to
 * snap back to higher weights.
 *
 * So, we go with #2. The challenge is calculating how each donating iocg's
 * inuse should be adjusted to achieve the target donation amounts. This is done
 * using Andy's method described in the following pdf.
 *
 *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
 *
 * Given the weights and target after-donation hweight_inuse values, Andy's
 * method determines how the proportional distribution should look like at each
 * sibling level to maintain the relative relationship between all non-donating
 * pairs. To roughly summarize, it divides the tree into donating and
 * non-donating parts, calculates global donation rate which is used to
 * determine the target hweight_inuse for each node, and then derives per-level
 * proportions.
 *
 * The following pdf shows that global distribution calculated this way can be
 * achieved by scaling inuse weights of donating leaves and propagating the
 * adjustments upwards proportionally.
 *
 *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
 *
 * Combining the above two, we can determine how each leaf iocg's inuse should
 * be adjusted to achieve the target donation.
 *
 *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
 *
 * The inline comments use symbols from the last pdf.
 *
 *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
 *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
 *   t is the sum of the absolute budgets of donating nodes in the subtree.
 *   w is the weight of the node. w = w_f + w_t
 *   w_f is the non-donating portion of w. w_f = w * f / b
 *   w_b is the donating portion of w. w_t = w * t / b
 *   s is the sum of all sibling weights. s = Sum(w) for siblings
 *   s_f and s_t are the non-donating and donating portions of s.
 *
 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
 * w_pt is the donating portion of the parent's weight and w'_pt the same value
 * after adjustments. Subscript r denotes the root node's values.
 */
static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
{
	LIST_HEAD(over_hwa);
	LIST_HEAD(inner_walk);
	struct ioc_gq *iocg, *tiocg, *root_iocg;
	u32 after_sum, over_sum, over_target, gamma;

	/*
	 * It's pretty unlikely but possible for the total sum of
	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
	 * confuse the following calculations. If such condition is detected,
	 * scale down everyone over its full share equally to keep the sum below
	 * WEIGHT_ONE.
	 */
	after_sum = 0;
	over_sum = 0;
	list_for_each_entry(iocg, surpluses, surplus_list) {
		u32 hwa;

		current_hweight(iocg, &hwa, NULL);
		after_sum += iocg->hweight_after_donation;

		if (iocg->hweight_after_donation > hwa) {
			over_sum += iocg->hweight_after_donation;
			list_add(&iocg->walk_list, &over_hwa);
		}
	}

	if (after_sum >= WEIGHT_ONE) {
		/*
		 * The delta should be deducted from the over_sum, calculate
		 * target over_sum value.
		 */
		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
		WARN_ON_ONCE(over_sum <= over_delta);
		over_target = over_sum - over_delta;
	} else {
		over_target = 0;
	}

	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
		if (over_target)
			iocg->hweight_after_donation =
				div_u64((u64)iocg->hweight_after_donation *
					over_target, over_sum);
		list_del_init(&iocg->walk_list);
	}

	/*
	 * Build pre-order inner node walk list and prepare for donation
	 * adjustment calculations.
	 */
	list_for_each_entry(iocg, surpluses, surplus_list) {
		iocg_build_inner_walk(iocg, &inner_walk);
	}

	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
	WARN_ON_ONCE(root_iocg->level > 0);

	list_for_each_entry(iocg, &inner_walk, walk_list) {
		iocg->child_adjusted_sum = 0;
		iocg->hweight_donating = 0;
		iocg->hweight_after_donation = 0;
	}

	/*
	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
	 * up the hierarchy.
	 */
	list_for_each_entry(iocg, surpluses, surplus_list) {
		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];

		parent->hweight_donating += iocg->hweight_donating;
		parent->hweight_after_donation += iocg->hweight_after_donation;
	}

	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
		if (iocg->level > 0) {
			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];

			parent->hweight_donating += iocg->hweight_donating;
			parent->hweight_after_donation += iocg->hweight_after_donation;
		}
	}

	/*
	 * Calculate inner hwa's (b) and make sure the donation values are
	 * within the accepted ranges as we're doing low res calculations with
	 * roundups.
	 */
	list_for_each_entry(iocg, &inner_walk, walk_list) {
		if (iocg->level) {
			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];

			iocg->hweight_active = DIV64_U64_ROUND_UP(
				(u64)parent->hweight_active * iocg->active,
				parent->child_active_sum);

		}

		iocg->hweight_donating = min(iocg->hweight_donating,
					     iocg->hweight_active);
		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
						   iocg->hweight_donating - 1);
		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
				 iocg->hweight_donating <= 1 ||
				 iocg->hweight_after_donation == 0)) {
			pr_warn("iocg: invalid donation weights in ");
			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
			pr_cont(": active=%u donating=%u after=%u\n",
				iocg->hweight_active, iocg->hweight_donating,
				iocg->hweight_after_donation);
		}
	}

	/*
	 * Calculate the global donation rate (gamma) - the rate to adjust
	 * non-donating budgets by.
	 *
	 * No need to use 64bit multiplication here as the first operand is
	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
	 *
	 * We know that there are beneficiary nodes and the sum of the donating
	 * hweights can't be whole; however, due to the round-ups during hweight
	 * calculations, root_iocg->hweight_donating might still end up equal to
	 * or greater than whole. Limit the range when calculating the divider.
	 *
	 * gamma = (1 - t_r') / (1 - t_r)
	 */
	gamma = DIV_ROUND_UP(
		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));

	/*
	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
	 * nodes.
	 */
	list_for_each_entry(iocg, &inner_walk, walk_list) {
		struct ioc_gq *parent;
		u32 inuse, wpt, wptp;
		u64 st, sf;

		if (iocg->level == 0) {
			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
				WEIGHT_ONE - iocg->hweight_after_donation);
			continue;
		}

		parent = iocg->ancestors[iocg->level - 1];

		/* b' = gamma * b_f + b_t' */
		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
			WEIGHT_ONE) + iocg->hweight_after_donation;

		/* w' = s' * b' / b'_p */
		inuse = DIV64_U64_ROUND_UP(
			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
			parent->hweight_inuse);

		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
		st = DIV64_U64_ROUND_UP(
			iocg->child_active_sum * iocg->hweight_donating,
			iocg->hweight_active);
		sf = iocg->child_active_sum - st;
		wpt = DIV64_U64_ROUND_UP(
			(u64)iocg->active * iocg->hweight_donating,
			iocg->hweight_active);
		wptp = DIV64_U64_ROUND_UP(
			(u64)inuse * iocg->hweight_after_donation,
			iocg->hweight_inuse);

		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
	}

	/*
	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
	 * we can finally determine leaf adjustments.
	 */
	list_for_each_entry(iocg, surpluses, surplus_list) {
		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
		u32 inuse;

		/*
		 * In-debt iocgs participated in the donation calculation with
		 * the minimum target hweight_inuse. Configuring inuse
		 * accordingly would work fine but debt handling expects
		 * @iocg->inuse stay at the minimum and we don't wanna
		 * interfere.
		 */
		if (iocg->abs_vdebt) {
			WARN_ON_ONCE(iocg->inuse > 1);
			continue;
		}

		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
		inuse = DIV64_U64_ROUND_UP(
			parent->child_adjusted_sum * iocg->hweight_after_donation,
			parent->hweight_inuse);

		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
				iocg->inuse, inuse,
				iocg->hweight_inuse,
				iocg->hweight_after_donation);

		__propagate_weights(iocg, iocg->active, inuse, true, now);
	}

	/* walk list should be dissolved after use */
	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
		list_del_init(&iocg->walk_list);
}

/*
 * A low weight iocg can amass a large amount of debt, for example, when
 * anonymous memory gets reclaimed aggressively. If the system has a lot of
 * memory paired with a slow IO device, the debt can span multiple seconds or
 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
 * up blocked paying its debt while the IO device is idle.
 *
 * The following protects against such cases. If the device has been
 * sufficiently idle for a while, the debts are halved and delays are
 * recalculated.
 */
static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
			      struct ioc_now *now)
{
	struct ioc_gq *iocg;
	u64 dur, usage_pct, nr_cycles;

	/* if no debtor, reset the cycle */
	if (!nr_debtors) {
		ioc->dfgv_period_at = now->now;
		ioc->dfgv_period_rem = 0;
		ioc->dfgv_usage_us_sum = 0;
		return;
	}

	/*
	 * Debtors can pass through a lot of writes choking the device and we
	 * don't want to be forgiving debts while the device is struggling from
	 * write bursts. If we're missing latency targets, consider the device
	 * fully utilized.
	 */
	if (ioc->busy_level > 0)
		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);

	ioc->dfgv_usage_us_sum += usage_us_sum;
	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
		return;

	/*
	 * At least DFGV_PERIOD has passed since the last period. Calculate the
	 * average usage and reset the period counters.
	 */
	dur = now->now - ioc->dfgv_period_at;
	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);

	ioc->dfgv_period_at = now->now;
	ioc->dfgv_usage_us_sum = 0;

	/* if was too busy, reset everything */
	if (usage_pct > DFGV_USAGE_PCT) {
		ioc->dfgv_period_rem = 0;
		return;
	}

	/*
	 * Usage is lower than threshold. Let's forgive some debts. Debt
	 * forgiveness runs off of the usual ioc timer but its period usually
	 * doesn't match ioc's. Compensate the difference by performing the
	 * reduction as many times as would fit in the duration since the last
	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
	 * reductions is doubled.
	 */
	nr_cycles = dur + ioc->dfgv_period_rem;
	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);

	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
		u64 __maybe_unused old_debt, __maybe_unused old_delay;

		if (!iocg->abs_vdebt && !iocg->delay)
			continue;

		spin_lock(&iocg->waitq.lock);

		old_debt = iocg->abs_vdebt;
		old_delay = iocg->delay;

		if (iocg->abs_vdebt)
			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
		if (iocg->delay)
			iocg->delay = iocg->delay >> nr_cycles ?: 1;

		iocg_kick_waitq(iocg, true, now);

		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
				old_debt, iocg->abs_vdebt,
				old_delay, iocg->delay);

		spin_unlock(&iocg->waitq.lock);
	}
}

/*
 * Check the active iocgs' state to avoid oversleeping and deactive
 * idle iocgs.
 *
 * Since waiters determine the sleep durations based on the vrate
 * they saw at the time of sleep, if vrate has increased, some
 * waiters could be sleeping for too long. Wake up tardy waiters
 * which should have woken up in the last period and expire idle
 * iocgs.
 */
static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
{
	int nr_debtors = 0;
	struct ioc_gq *iocg, *tiocg;

	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
		    !iocg->delay && !iocg_is_idle(iocg))
			continue;

		spin_lock(&iocg->waitq.lock);

		/* flush wait and indebt stat deltas */
		if (iocg->wait_since) {
			iocg->local_stat.wait_us += now->now - iocg->wait_since;
			iocg->wait_since = now->now;
		}
		if (iocg->indebt_since) {
			iocg->local_stat.indebt_us +=
				now->now - iocg->indebt_since;
			iocg->indebt_since = now->now;
		}
		if (iocg->indelay_since) {
			iocg->local_stat.indelay_us +=
				now->now - iocg->indelay_since;
			iocg->indelay_since = now->now;
		}

		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
		    iocg->delay) {
			/* might be oversleeping vtime / hweight changes, kick */
			iocg_kick_waitq(iocg, true, now);
			if (iocg->abs_vdebt || iocg->delay)
				nr_debtors++;
		} else if (iocg_is_idle(iocg)) {
			/* no waiter and idle, deactivate */
			u64 vtime = atomic64_read(&iocg->vtime);
			s64 excess;

			/*
			 * @iocg has been inactive for a full duration and will
			 * have a high budget. Account anything above target as
			 * error and throw away. On reactivation, it'll start
			 * with the target budget.
			 */
			excess = now->vnow - vtime - ioc->margins.target;
			if (excess > 0) {
				u32 old_hwi;

				current_hweight(iocg, NULL, &old_hwi);
				ioc->vtime_err -= div64_u64(excess * old_hwi,
							    WEIGHT_ONE);
			}

			TRACE_IOCG_PATH(iocg_idle, iocg, now,
					atomic64_read(&iocg->active_period),
					atomic64_read(&ioc->cur_period), vtime);
			__propagate_weights(iocg, 0, 0, false, now);
			list_del_init(&iocg->active_list);
		}

		spin_unlock(&iocg->waitq.lock);
	}

	commit_weights(ioc);
	return nr_debtors;
}

static void ioc_timer_fn(struct timer_list *timer)
{
	struct ioc *ioc = container_of(timer, struct ioc, timer);
	struct ioc_gq *iocg, *tiocg;
	struct ioc_now now;
	LIST_HEAD(surpluses);
	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
	u64 usage_us_sum = 0;
	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
	u32 missed_ppm[2], rq_wait_pct;
	u64 period_vtime;
	int prev_busy_level;

	/* how were the latencies during the period? */
	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);

	/* take care of active iocgs */
	spin_lock_irq(&ioc->lock);

	ioc_now(ioc, &now);

	period_vtime = now.vnow - ioc->period_at_vtime;
	if (WARN_ON_ONCE(!period_vtime)) {
		spin_unlock_irq(&ioc->lock);
		return;
	}

	nr_debtors = ioc_check_iocgs(ioc, &now);

	/*
	 * Wait and indebt stat are flushed above and the donation calculation
	 * below needs updated usage stat. Let's bring stat up-to-date.
	 */
	iocg_flush_stat(&ioc->active_iocgs, &now);

	/* calc usage and see whether some weights need to be moved around */
	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
		u64 vdone, vtime, usage_us;
		u32 hw_active, hw_inuse;

		/*
		 * Collect unused and wind vtime closer to vnow to prevent
		 * iocgs from accumulating a large amount of budget.
		 */
		vdone = atomic64_read(&iocg->done_vtime);
		vtime = atomic64_read(&iocg->vtime);
		current_hweight(iocg, &hw_active, &hw_inuse);

		/*
		 * Latency QoS detection doesn't account for IOs which are
		 * in-flight for longer than a period.  Detect them by
		 * comparing vdone against period start.  If lagging behind
		 * IOs from past periods, don't increase vrate.
		 */
		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
		    time_after64(vtime, vdone) &&
		    time_after64(vtime, now.vnow -
				 MAX_LAGGING_PERIODS * period_vtime) &&
		    time_before64(vdone, now.vnow - period_vtime))
			nr_lagging++;

		/*
		 * Determine absolute usage factoring in in-flight IOs to avoid
		 * high-latency completions appearing as idle.
		 */
		usage_us = iocg->usage_delta_us;
		usage_us_sum += usage_us;

		/* see whether there's surplus vtime */
		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
		if (hw_inuse < hw_active ||
		    (!waitqueue_active(&iocg->waitq) &&
		     time_before64(vtime, now.vnow - ioc->margins.low))) {
			u32 hwa, old_hwi, hwm, new_hwi, usage;
			u64 usage_dur;

			if (vdone != vtime) {
				u64 inflight_us = DIV64_U64_ROUND_UP(
					cost_to_abs_cost(vtime - vdone, hw_inuse),
					ioc->vtime_base_rate);

				usage_us = max(usage_us, inflight_us);
			}

			/* convert to hweight based usage ratio */
			if (time_after64(iocg->activated_at, ioc->period_at))
				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
			else
				usage_dur = max_t(u64, now.now - ioc->period_at, 1);

			usage = clamp_t(u32,
				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
						   usage_dur),
				1, WEIGHT_ONE);

			/*
			 * Already donating or accumulated enough to start.
			 * Determine the donation amount.
			 */
			current_hweight(iocg, &hwa, &old_hwi);
			hwm = current_hweight_max(iocg);
			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
							 usage, &now);
			if (new_hwi < hwm) {
				iocg->hweight_donating = hwa;
				iocg->hweight_after_donation = new_hwi;
				list_add(&iocg->surplus_list, &surpluses);
			} else {
				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
						iocg->inuse, iocg->active,
						iocg->hweight_inuse, new_hwi);

				__propagate_weights(iocg, iocg->active,
						    iocg->active, true, &now);
				nr_shortages++;
			}
		} else {
			/* genuinely short on vtime */
			nr_shortages++;
		}
	}

	if (!list_empty(&surpluses) && nr_shortages)
		transfer_surpluses(&surpluses, &now);

	commit_weights(ioc);

	/* surplus list should be dissolved after use */
	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
		list_del_init(&iocg->surplus_list);

	/*
	 * If q is getting clogged or we're missing too much, we're issuing
	 * too much IO and should lower vtime rate.  If we're not missing
	 * and experiencing shortages but not surpluses, we're too stingy
	 * and should increase vtime rate.
	 */
	prev_busy_level = ioc->busy_level;
	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
	    missed_ppm[READ] > ppm_rthr ||
	    missed_ppm[WRITE] > ppm_wthr) {
		/* clearly missing QoS targets, slow down vrate */
		ioc->busy_level = max(ioc->busy_level, 0);
		ioc->busy_level++;
	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
		/* QoS targets are being met with >25% margin */
		if (nr_shortages) {
			/*
			 * We're throttling while the device has spare
			 * capacity.  If vrate was being slowed down, stop.
			 */
			ioc->busy_level = min(ioc->busy_level, 0);

			/*
			 * If there are IOs spanning multiple periods, wait
			 * them out before pushing the device harder.
			 */
			if (!nr_lagging)
				ioc->busy_level--;
		} else {
			/*
			 * Nobody is being throttled and the users aren't
			 * issuing enough IOs to saturate the device.  We
			 * simply don't know how close the device is to
			 * saturation.  Coast.
			 */
			ioc->busy_level = 0;
		}
	} else {
		/* inside the hysterisis margin, we're good */
		ioc->busy_level = 0;
	}

	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);

	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
			      prev_busy_level, missed_ppm);

	ioc_refresh_params(ioc, false);

	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);

	/*
	 * This period is done.  Move onto the next one.  If nothing's
	 * going on with the device, stop the timer.
	 */
	atomic64_inc(&ioc->cur_period);

	if (ioc->running != IOC_STOP) {
		if (!list_empty(&ioc->active_iocgs)) {
			ioc_start_period(ioc, &now);
		} else {
			ioc->busy_level = 0;
			ioc->vtime_err = 0;
			ioc->running = IOC_IDLE;
		}

		ioc_refresh_vrate(ioc, &now);
	}

	spin_unlock_irq(&ioc->lock);
}

static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
				      u64 abs_cost, struct ioc_now *now)
{
	struct ioc *ioc = iocg->ioc;
	struct ioc_margins *margins = &ioc->margins;
	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
	u32 hwi, adj_step;
	s64 margin;
	u64 cost, new_inuse;

	current_hweight(iocg, NULL, &hwi);
	old_hwi = hwi;
	cost = abs_cost_to_cost(abs_cost, hwi);
	margin = now->vnow - vtime - cost;

	/* debt handling owns inuse for debtors */
	if (iocg->abs_vdebt)
		return cost;

	/*
	 * We only increase inuse during period and do so if the margin has
	 * deteriorated since the previous adjustment.
	 */
	if (margin >= iocg->saved_margin || margin >= margins->low ||
	    iocg->inuse == iocg->active)
		return cost;

	spin_lock_irq(&ioc->lock);

	/* we own inuse only when @iocg is in the normal active state */
	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
		spin_unlock_irq(&ioc->lock);
		return cost;
	}

	/*
	 * Bump up inuse till @abs_cost fits in the existing budget.
	 * adj_step must be determined after acquiring ioc->lock - we might
	 * have raced and lost to another thread for activation and could
	 * be reading 0 iocg->active before ioc->lock which will lead to
	 * infinite loop.
	 */
	new_inuse = iocg->inuse;
	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
	do {
		new_inuse = new_inuse + adj_step;
		propagate_weights(iocg, iocg->active, new_inuse, true, now);
		current_hweight(iocg, NULL, &hwi);
		cost = abs_cost_to_cost(abs_cost, hwi);
	} while (time_after64(vtime + cost, now->vnow) &&
		 iocg->inuse != iocg->active);

	spin_unlock_irq(&ioc->lock);

	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
			old_inuse, iocg->inuse, old_hwi, hwi);

	return cost;
}

static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
				    bool is_merge, u64 *costp)
{
	struct ioc *ioc = iocg->ioc;
	u64 coef_seqio, coef_randio, coef_page;
	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
	u64 seek_pages = 0;
	u64 cost = 0;

	switch (bio_op(bio)) {
	case REQ_OP_READ:
		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
		break;
	case REQ_OP_WRITE:
		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
		break;
	default:
		goto out;
	}

	if (iocg->cursor) {
		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
	}

	if (!is_merge) {
		if (seek_pages > LCOEF_RANDIO_PAGES) {
			cost += coef_randio;
		} else {
			cost += coef_seqio;
		}
	}
	cost += pages * coef_page;
out:
	*costp = cost;
}

static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
{
	u64 cost;

	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
	return cost;
}

static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
					 u64 *costp)
{
	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;

	switch (req_op(rq)) {
	case REQ_OP_READ:
		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
		break;
	case REQ_OP_WRITE:
		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
		break;
	default:
		*costp = 0;
	}
}

static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
{
	u64 cost;

	calc_size_vtime_cost_builtin(rq, ioc, &cost);
	return cost;
}

static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
{
	struct blkcg_gq *blkg = bio->bi_blkg;
	struct ioc *ioc = rqos_to_ioc(rqos);
	struct ioc_gq *iocg = blkg_to_iocg(blkg);
	struct ioc_now now;
	struct iocg_wait wait;
	u64 abs_cost, cost, vtime;
	bool use_debt, ioc_locked;
	unsigned long flags;

	/* bypass IOs if disabled, still initializing, or for root cgroup */
	if (!ioc->enabled || !iocg || !iocg->level)
		return;

	/* calculate the absolute vtime cost */
	abs_cost = calc_vtime_cost(bio, iocg, false);
	if (!abs_cost)
		return;

	if (!iocg_activate(iocg, &now))
		return;

	iocg->cursor = bio_end_sector(bio);
	vtime = atomic64_read(&iocg->vtime);
	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);

	/*
	 * If no one's waiting and within budget, issue right away.  The
	 * tests are racy but the races aren't systemic - we only miss once
	 * in a while which is fine.
	 */
	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
	    time_before_eq64(vtime + cost, now.vnow)) {
		iocg_commit_bio(iocg, bio, abs_cost, cost);
		return;
	}

	/*
	 * We're over budget. This can be handled in two ways. IOs which may
	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
	 * whether debt handling is needed and acquire locks accordingly.
	 */
	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
retry_lock:
	iocg_lock(iocg, ioc_locked, &flags);

	/*
	 * @iocg must stay activated for debt and waitq handling. Deactivation
	 * is synchronized against both ioc->lock and waitq.lock and we won't
	 * get deactivated as long as we're waiting or has debt, so we're good
	 * if we're activated here. In the unlikely cases that we aren't, just
	 * issue the IO.
	 */
	if (unlikely(list_empty(&iocg->active_list))) {
		iocg_unlock(iocg, ioc_locked, &flags);
		iocg_commit_bio(iocg, bio, abs_cost, cost);
		return;
	}

	/*
	 * We're over budget. If @bio has to be issued regardless, remember
	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
	 * off the debt before waking more IOs.
	 *
	 * This way, the debt is continuously paid off each period with the
	 * actual budget available to the cgroup. If we just wound vtime, we
	 * would incorrectly use the current hw_inuse for the entire amount
	 * which, for example, can lead to the cgroup staying blocked for a
	 * long time even with substantially raised hw_inuse.
	 *
	 * An iocg with vdebt should stay online so that the timer can keep
	 * deducting its vdebt and [de]activate use_delay mechanism
	 * accordingly. We don't want to race against the timer trying to
	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
	 * penalizing the cgroup and its descendants.
	 */
	if (use_debt) {
		iocg_incur_debt(iocg, abs_cost, &now);
		if (iocg_kick_delay(iocg, &now))
			blkcg_schedule_throttle(rqos->q,
					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
		iocg_unlock(iocg, ioc_locked, &flags);
		return;
	}

	/* guarantee that iocgs w/ waiters have maximum inuse */
	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
		if (!ioc_locked) {
			iocg_unlock(iocg, false, &flags);
			ioc_locked = true;
			goto retry_lock;
		}
		propagate_weights(iocg, iocg->active, iocg->active, true,
				  &now);
	}

	/*
	 * Append self to the waitq and schedule the wakeup timer if we're
	 * the first waiter.  The timer duration is calculated based on the
	 * current vrate.  vtime and hweight changes can make it too short
	 * or too long.  Each wait entry records the absolute cost it's
	 * waiting for to allow re-evaluation using a custom wait entry.
	 *
	 * If too short, the timer simply reschedules itself.  If too long,
	 * the period timer will notice and trigger wakeups.
	 *
	 * All waiters are on iocg->waitq and the wait states are
	 * synchronized using waitq.lock.
	 */
	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
	wait.wait.private = current;
	wait.bio = bio;
	wait.abs_cost = abs_cost;
	wait.committed = false;	/* will be set true by waker */

	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
	iocg_kick_waitq(iocg, ioc_locked, &now);

	iocg_unlock(iocg, ioc_locked, &flags);

	while (true) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		if (wait.committed)
			break;
		io_schedule();
	}

	/* waker already committed us, proceed */
	finish_wait(&iocg->waitq, &wait.wait);
}

static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
			   struct bio *bio)
{
	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
	struct ioc *ioc = rqos_to_ioc(rqos);
	sector_t bio_end = bio_end_sector(bio);
	struct ioc_now now;
	u64 vtime, abs_cost, cost;
	unsigned long flags;

	/* bypass if disabled, still initializing, or for root cgroup */
	if (!ioc->enabled || !iocg || !iocg->level)
		return;

	abs_cost = calc_vtime_cost(bio, iocg, true);
	if (!abs_cost)
		return;

	ioc_now(ioc, &now);

	vtime = atomic64_read(&iocg->vtime);
	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);

	/* update cursor if backmerging into the request at the cursor */
	if (blk_rq_pos(rq) < bio_end &&
	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
		iocg->cursor = bio_end;

	/*
	 * Charge if there's enough vtime budget and the existing request has
	 * cost assigned.
	 */
	if (rq->bio && rq->bio->bi_iocost_cost &&
	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
		iocg_commit_bio(iocg, bio, abs_cost, cost);
		return;
	}

	/*
	 * Otherwise, account it as debt if @iocg is online, which it should
	 * be for the vast majority of cases. See debt handling in
	 * ioc_rqos_throttle() for details.
	 */
	spin_lock_irqsave(&ioc->lock, flags);
	spin_lock(&iocg->waitq.lock);

	if (likely(!list_empty(&iocg->active_list))) {
		iocg_incur_debt(iocg, abs_cost, &now);
		if (iocg_kick_delay(iocg, &now))
			blkcg_schedule_throttle(rqos->q,
					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
	} else {
		iocg_commit_bio(iocg, bio, abs_cost, cost);
	}

	spin_unlock(&iocg->waitq.lock);
	spin_unlock_irqrestore(&ioc->lock, flags);
}

static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
{
	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);

	if (iocg && bio->bi_iocost_cost)
		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
}

static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
{
	struct ioc *ioc = rqos_to_ioc(rqos);
	struct ioc_pcpu_stat *ccs;
	u64 on_q_ns, rq_wait_ns, size_nsec;
	int pidx, rw;

	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
		return;

	switch (req_op(rq) & REQ_OP_MASK) {
	case REQ_OP_READ:
		pidx = QOS_RLAT;
		rw = READ;
		break;
	case REQ_OP_WRITE:
		pidx = QOS_WLAT;
		rw = WRITE;
		break;
	default:
		return;
	}

	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);

	ccs = get_cpu_ptr(ioc->pcpu_stat);

	if (on_q_ns <= size_nsec ||
	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
		local_inc(&ccs->missed[rw].nr_met);
	else
		local_inc(&ccs->missed[rw].nr_missed);

	local64_add(rq_wait_ns, &ccs->rq_wait_ns);

	put_cpu_ptr(ccs);
}

static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
{
	struct ioc *ioc = rqos_to_ioc(rqos);

	spin_lock_irq(&ioc->lock);
	ioc_refresh_params(ioc, false);
	spin_unlock_irq(&ioc->lock);
}

static void ioc_rqos_exit(struct rq_qos *rqos)
{
	struct ioc *ioc = rqos_to_ioc(rqos);

	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);

	spin_lock_irq(&ioc->lock);
	ioc->running = IOC_STOP;
	spin_unlock_irq(&ioc->lock);

	del_timer_sync(&ioc->timer);
	free_percpu(ioc->pcpu_stat);
	kfree(ioc);
}

static struct rq_qos_ops ioc_rqos_ops = {
	.throttle = ioc_rqos_throttle,
	.merge = ioc_rqos_merge,
	.done_bio = ioc_rqos_done_bio,
	.done = ioc_rqos_done,
	.queue_depth_changed = ioc_rqos_queue_depth_changed,
	.exit = ioc_rqos_exit,
};

static int blk_iocost_init(struct request_queue *q)
{
	struct ioc *ioc;
	struct rq_qos *rqos;
	int i, cpu, ret;

	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc)
		return -ENOMEM;

	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
	if (!ioc->pcpu_stat) {
		kfree(ioc);
		return -ENOMEM;
	}

	for_each_possible_cpu(cpu) {
		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);

		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
			local_set(&ccs->missed[i].nr_met, 0);
			local_set(&ccs->missed[i].nr_missed, 0);
		}
		local64_set(&ccs->rq_wait_ns, 0);
	}

	rqos = &ioc->rqos;
	rqos->id = RQ_QOS_COST;
	rqos->ops = &ioc_rqos_ops;
	rqos->q = q;

	spin_lock_init(&ioc->lock);
	timer_setup(&ioc->timer, ioc_timer_fn, 0);
	INIT_LIST_HEAD(&ioc->active_iocgs);

	ioc->running = IOC_IDLE;
	ioc->vtime_base_rate = VTIME_PER_USEC;
	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
	ioc->period_at = ktime_to_us(ktime_get());
	atomic64_set(&ioc->cur_period, 0);
	atomic_set(&ioc->hweight_gen, 0);

	spin_lock_irq(&ioc->lock);
	ioc->autop_idx = AUTOP_INVALID;
	ioc_refresh_params(ioc, true);
	spin_unlock_irq(&ioc->lock);

	/*
	 * rqos must be added before activation to allow iocg_pd_init() to
	 * lookup the ioc from q. This means that the rqos methods may get
	 * called before policy activation completion, can't assume that the
	 * target bio has an iocg associated and need to test for NULL iocg.
	 */
	rq_qos_add(q, rqos);
	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
	if (ret) {
		rq_qos_del(q, rqos);
		free_percpu(ioc->pcpu_stat);
		kfree(ioc);
		return ret;
	}
	return 0;
}

static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
{
	struct ioc_cgrp *iocc;

	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
	if (!iocc)
		return NULL;

	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
	return &iocc->cpd;
}

static void ioc_cpd_free(struct blkcg_policy_data *cpd)
{
	kfree(container_of(cpd, struct ioc_cgrp, cpd));
}

static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
					     struct blkcg *blkcg)
{
	int levels = blkcg->css.cgroup->level + 1;
	struct ioc_gq *iocg;

	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
	if (!iocg)
		return NULL;

	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
	if (!iocg->pcpu_stat) {
		kfree(iocg);
		return NULL;
	}

	return &iocg->pd;
}

static void ioc_pd_init(struct blkg_policy_data *pd)
{
	struct ioc_gq *iocg = pd_to_iocg(pd);
	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
	struct ioc *ioc = q_to_ioc(blkg->q);
	struct ioc_now now;
	struct blkcg_gq *tblkg;
	unsigned long flags;

	ioc_now(ioc, &now);

	iocg->ioc = ioc;
	atomic64_set(&iocg->vtime, now.vnow);
	atomic64_set(&iocg->done_vtime, now.vnow);
	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
	INIT_LIST_HEAD(&iocg->active_list);
	INIT_LIST_HEAD(&iocg->walk_list);
	INIT_LIST_HEAD(&iocg->surplus_list);
	iocg->hweight_active = WEIGHT_ONE;
	iocg->hweight_inuse = WEIGHT_ONE;

	init_waitqueue_head(&iocg->waitq);
	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	iocg->waitq_timer.function = iocg_waitq_timer_fn;

	iocg->level = blkg->blkcg->css.cgroup->level;

	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
		iocg->ancestors[tiocg->level] = tiocg;
	}

	spin_lock_irqsave(&ioc->lock, flags);
	weight_updated(iocg, &now);
	spin_unlock_irqrestore(&ioc->lock, flags);
}

static void ioc_pd_free(struct blkg_policy_data *pd)
{
	struct ioc_gq *iocg = pd_to_iocg(pd);
	struct ioc *ioc = iocg->ioc;
	unsigned long flags;

	if (ioc) {
		spin_lock_irqsave(&ioc->lock, flags);

		if (!list_empty(&iocg->active_list)) {
			struct ioc_now now;

			ioc_now(ioc, &now);
			propagate_weights(iocg, 0, 0, false, &now);
			list_del_init(&iocg->active_list);
		}

		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));

		spin_unlock_irqrestore(&ioc->lock, flags);

		hrtimer_cancel(&iocg->waitq_timer);
	}
	free_percpu(iocg->pcpu_stat);
	kfree(iocg);
}

static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
{
	struct ioc_gq *iocg = pd_to_iocg(pd);
	struct ioc *ioc = iocg->ioc;
	size_t pos = 0;

	if (!ioc->enabled)
		return 0;

	if (iocg->level == 0) {
		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
			ioc->vtime_base_rate * 10000,
			VTIME_PER_USEC);
		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
				  vp10k / 100, vp10k % 100);
	}

	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
			 iocg->last_stat.usage_us);

	if (blkcg_debug_stats)
		pos += scnprintf(buf + pos, size - pos,
				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
				 iocg->last_stat.wait_us,
				 iocg->last_stat.indebt_us,
				 iocg->last_stat.indelay_us);

	return pos;
}

static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
			     int off)
{
	const char *dname = blkg_dev_name(pd->blkg);
	struct ioc_gq *iocg = pd_to_iocg(pd);

	if (dname && iocg->cfg_weight)
		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
	return 0;
}


static int ioc_weight_show(struct seq_file *sf, void *v)
{
	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);

	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
	return 0;
}

static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
	struct blkg_conf_ctx ctx;
	struct ioc_now now;
	struct ioc_gq *iocg;
	u32 v;
	int ret;

	if (!strchr(buf, ':')) {
		struct blkcg_gq *blkg;

		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
			return -EINVAL;

		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
			return -EINVAL;

		spin_lock_irq(&blkcg->lock);
		iocc->dfl_weight = v * WEIGHT_ONE;
		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
			struct ioc_gq *iocg = blkg_to_iocg(blkg);

			if (iocg) {
				spin_lock(&iocg->ioc->lock);
				ioc_now(iocg->ioc, &now);
				weight_updated(iocg, &now);
				spin_unlock(&iocg->ioc->lock);
			}
		}
		spin_unlock_irq(&blkcg->lock);

		return nbytes;
	}

	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
	if (ret)
		return ret;

	iocg = blkg_to_iocg(ctx.blkg);

	if (!strncmp(ctx.body, "default", 7)) {
		v = 0;
	} else {
		if (!sscanf(ctx.body, "%u", &v))
			goto einval;
		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
			goto einval;
	}

	spin_lock(&iocg->ioc->lock);
	iocg->cfg_weight = v * WEIGHT_ONE;
	ioc_now(iocg->ioc, &now);
	weight_updated(iocg, &now);
	spin_unlock(&iocg->ioc->lock);

	blkg_conf_finish(&ctx);
	return nbytes;

einval:
	blkg_conf_finish(&ctx);
	return -EINVAL;
}

static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
			  int off)
{
	const char *dname = blkg_dev_name(pd->blkg);
	struct ioc *ioc = pd_to_iocg(pd)->ioc;

	if (!dname)
		return 0;

	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
		   ioc->params.qos[QOS_RPPM] / 10000,
		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
		   ioc->params.qos[QOS_RLAT],
		   ioc->params.qos[QOS_WPPM] / 10000,
		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
		   ioc->params.qos[QOS_WLAT],
		   ioc->params.qos[QOS_MIN] / 10000,
		   ioc->params.qos[QOS_MIN] % 10000 / 100,
		   ioc->params.qos[QOS_MAX] / 10000,
		   ioc->params.qos[QOS_MAX] % 10000 / 100);
	return 0;
}

static int ioc_qos_show(struct seq_file *sf, void *v)
{
	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));

	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
	return 0;
}

static const match_table_t qos_ctrl_tokens = {
	{ QOS_ENABLE,		"enable=%u"	},
	{ QOS_CTRL,		"ctrl=%s"	},
	{ NR_QOS_CTRL_PARAMS,	NULL		},
};

static const match_table_t qos_tokens = {
	{ QOS_RPPM,		"rpct=%s"	},
	{ QOS_RLAT,		"rlat=%u"	},
	{ QOS_WPPM,		"wpct=%s"	},
	{ QOS_WLAT,		"wlat=%u"	},
	{ QOS_MIN,		"min=%s"	},
	{ QOS_MAX,		"max=%s"	},
	{ NR_QOS_PARAMS,	NULL		},
};

static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
			     size_t nbytes, loff_t off)
{
	struct block_device *bdev;
	struct ioc *ioc;
	u32 qos[NR_QOS_PARAMS];
	bool enable, user;
	char *p;
	int ret;

	bdev = blkcg_conf_open_bdev(&input);
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);

	ioc = q_to_ioc(bdev->bd_disk->queue);
	if (!ioc) {
		ret = blk_iocost_init(bdev->bd_disk->queue);
		if (ret)
			goto err;
		ioc = q_to_ioc(bdev->bd_disk->queue);
	}

	spin_lock_irq(&ioc->lock);
	memcpy(qos, ioc->params.qos, sizeof(qos));
	enable = ioc->enabled;
	user = ioc->user_qos_params;
	spin_unlock_irq(&ioc->lock);

	while ((p = strsep(&input, " \t\n"))) {
		substring_t args[MAX_OPT_ARGS];
		char buf[32];
		int tok;
		s64 v;

		if (!*p)
			continue;

		switch (match_token(p, qos_ctrl_tokens, args)) {
		case QOS_ENABLE:
			match_u64(&args[0], &v);
			enable = v;
			continue;
		case QOS_CTRL:
			match_strlcpy(buf, &args[0], sizeof(buf));
			if (!strcmp(buf, "auto"))
				user = false;
			else if (!strcmp(buf, "user"))
				user = true;
			else
				goto einval;
			continue;
		}

		tok = match_token(p, qos_tokens, args);
		switch (tok) {
		case QOS_RPPM:
		case QOS_WPPM:
			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
			    sizeof(buf))
				goto einval;
			if (cgroup_parse_float(buf, 2, &v))
				goto einval;
			if (v < 0 || v > 10000)
				goto einval;
			qos[tok] = v * 100;
			break;
		case QOS_RLAT:
		case QOS_WLAT:
			if (match_u64(&args[0], &v))
				goto einval;
			qos[tok] = v;
			break;
		case QOS_MIN:
		case QOS_MAX:
			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
			    sizeof(buf))
				goto einval;
			if (cgroup_parse_float(buf, 2, &v))
				goto einval;
			if (v < 0)
				goto einval;
			qos[tok] = clamp_t(s64, v * 100,
					   VRATE_MIN_PPM, VRATE_MAX_PPM);
			break;
		default:
			goto einval;
		}
		user = true;
	}

	if (qos[QOS_MIN] > qos[QOS_MAX])
		goto einval;

	spin_lock_irq(&ioc->lock);

	if (enable) {
		blk_stat_enable_accounting(ioc->rqos.q);
		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
		ioc->enabled = true;
	} else {
		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
		ioc->enabled = false;
	}

	if (user) {
		memcpy(ioc->params.qos, qos, sizeof(qos));
		ioc->user_qos_params = true;
	} else {
		ioc->user_qos_params = false;
	}

	ioc_refresh_params(ioc, true);
	spin_unlock_irq(&ioc->lock);

	blkdev_put_no_open(bdev);
	return nbytes;
einval:
	ret = -EINVAL;
err:
	blkdev_put_no_open(bdev);
	return ret;
}

static u64 ioc_cost_model_prfill(struct seq_file *sf,
				 struct blkg_policy_data *pd, int off)
{
	const char *dname = blkg_dev_name(pd->blkg);
	struct ioc *ioc = pd_to_iocg(pd)->ioc;
	u64 *u = ioc->params.i_lcoefs;

	if (!dname)
		return 0;

	seq_printf(sf, "%s ctrl=%s model=linear "
		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
		   dname, ioc->user_cost_model ? "user" : "auto",
		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
	return 0;
}

static int ioc_cost_model_show(struct seq_file *sf, void *v)
{
	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));

	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
	return 0;
}

static const match_table_t cost_ctrl_tokens = {
	{ COST_CTRL,		"ctrl=%s"	},
	{ COST_MODEL,		"model=%s"	},
	{ NR_COST_CTRL_PARAMS,	NULL		},
};

static const match_table_t i_lcoef_tokens = {
	{ I_LCOEF_RBPS,		"rbps=%u"	},
	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
	{ I_LCOEF_WBPS,		"wbps=%u"	},
	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
	{ NR_I_LCOEFS,		NULL		},
};

static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
				    size_t nbytes, loff_t off)
{
	struct block_device *bdev;
	struct ioc *ioc;
	u64 u[NR_I_LCOEFS];
	bool user;
	char *p;
	int ret;

	bdev = blkcg_conf_open_bdev(&input);
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);

	ioc = q_to_ioc(bdev->bd_disk->queue);
	if (!ioc) {
		ret = blk_iocost_init(bdev->bd_disk->queue);
		if (ret)
			goto err;
		ioc = q_to_ioc(bdev->bd_disk->queue);
	}

	spin_lock_irq(&ioc->lock);
	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
	user = ioc->user_cost_model;
	spin_unlock_irq(&ioc->lock);

	while ((p = strsep(&input, " \t\n"))) {
		substring_t args[MAX_OPT_ARGS];
		char buf[32];
		int tok;
		u64 v;

		if (!*p)
			continue;

		switch (match_token(p, cost_ctrl_tokens, args)) {
		case COST_CTRL:
			match_strlcpy(buf, &args[0], sizeof(buf));
			if (!strcmp(buf, "auto"))
				user = false;
			else if (!strcmp(buf, "user"))
				user = true;
			else
				goto einval;
			continue;
		case COST_MODEL:
			match_strlcpy(buf, &args[0], sizeof(buf));
			if (strcmp(buf, "linear"))
				goto einval;
			continue;
		}

		tok = match_token(p, i_lcoef_tokens, args);
		if (tok == NR_I_LCOEFS)
			goto einval;
		if (match_u64(&args[0], &v))
			goto einval;
		u[tok] = v;
		user = true;
	}

	spin_lock_irq(&ioc->lock);
	if (user) {
		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
		ioc->user_cost_model = true;
	} else {
		ioc->user_cost_model = false;
	}
	ioc_refresh_params(ioc, true);
	spin_unlock_irq(&ioc->lock);

	blkdev_put_no_open(bdev);
	return nbytes;

einval:
	ret = -EINVAL;
err:
	blkdev_put_no_open(bdev);
	return ret;
}

static struct cftype ioc_files[] = {
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = ioc_weight_show,
		.write = ioc_weight_write,
	},
	{
		.name = "cost.qos",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.seq_show = ioc_qos_show,
		.write = ioc_qos_write,
	},
	{
		.name = "cost.model",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.seq_show = ioc_cost_model_show,
		.write = ioc_cost_model_write,
	},
	{}
};

static struct blkcg_policy blkcg_policy_iocost = {
	.dfl_cftypes	= ioc_files,
	.cpd_alloc_fn	= ioc_cpd_alloc,
	.cpd_free_fn	= ioc_cpd_free,
	.pd_alloc_fn	= ioc_pd_alloc,
	.pd_init_fn	= ioc_pd_init,
	.pd_free_fn	= ioc_pd_free,
	.pd_stat_fn	= ioc_pd_stat,
};

static int __init ioc_init(void)
{
	return blkcg_policy_register(&blkcg_policy_iocost);
}

static void __exit ioc_exit(void)
{
	blkcg_policy_unregister(&blkcg_policy_iocost);
}

module_init(ioc_init);
module_exit(ioc_exit);