Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | // SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "prime numbers: " fmt #include <linux/module.h> #include <linux/mutex.h> #include <linux/prime_numbers.h> #include <linux/slab.h> #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) struct primes { struct rcu_head rcu; unsigned long last, sz; unsigned long primes[]; }; #if BITS_PER_LONG == 64 static const struct primes small_primes = { .last = 61, .sz = 64, .primes = { BIT(2) | BIT(3) | BIT(5) | BIT(7) | BIT(11) | BIT(13) | BIT(17) | BIT(19) | BIT(23) | BIT(29) | BIT(31) | BIT(37) | BIT(41) | BIT(43) | BIT(47) | BIT(53) | BIT(59) | BIT(61) } }; #elif BITS_PER_LONG == 32 static const struct primes small_primes = { .last = 31, .sz = 32, .primes = { BIT(2) | BIT(3) | BIT(5) | BIT(7) | BIT(11) | BIT(13) | BIT(17) | BIT(19) | BIT(23) | BIT(29) | BIT(31) } }; #else #error "unhandled BITS_PER_LONG" #endif static DEFINE_MUTEX(lock); static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); static unsigned long selftest_max; static bool slow_is_prime_number(unsigned long x) { unsigned long y = int_sqrt(x); while (y > 1) { if ((x % y) == 0) break; y--; } return y == 1; } static unsigned long slow_next_prime_number(unsigned long x) { while (x < ULONG_MAX && !slow_is_prime_number(++x)) ; return x; } static unsigned long clear_multiples(unsigned long x, unsigned long *p, unsigned long start, unsigned long end) { unsigned long m; m = 2 * x; if (m < start) m = roundup(start, x); while (m < end) { __clear_bit(m, p); m += x; } return x; } static bool expand_to_next_prime(unsigned long x) { const struct primes *p; struct primes *new; unsigned long sz, y; /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, * there is always at least one prime p between n and 2n - 2. * Equivalently, if n > 1, then there is always at least one prime p * such that n < p < 2n. * * http://mathworld.wolfram.com/BertrandsPostulate.html * https://en.wikipedia.org/wiki/Bertrand's_postulate */ sz = 2 * x; if (sz < x) return false; sz = round_up(sz, BITS_PER_LONG); new = kmalloc(sizeof(*new) + bitmap_size(sz), GFP_KERNEL | __GFP_NOWARN); if (!new) return false; mutex_lock(&lock); p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); if (x < p->last) { kfree(new); goto unlock; } /* Where memory permits, track the primes using the * Sieve of Eratosthenes. The sieve is to remove all multiples of known * primes from the set, what remains in the set is therefore prime. */ bitmap_fill(new->primes, sz); bitmap_copy(new->primes, p->primes, p->sz); for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) new->last = clear_multiples(y, new->primes, p->sz, sz); new->sz = sz; BUG_ON(new->last <= x); rcu_assign_pointer(primes, new); if (p != &small_primes) kfree_rcu((struct primes *)p, rcu); unlock: mutex_unlock(&lock); return true; } static void free_primes(void) { const struct primes *p; mutex_lock(&lock); p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); if (p != &small_primes) { rcu_assign_pointer(primes, &small_primes); kfree_rcu((struct primes *)p, rcu); } mutex_unlock(&lock); } /** * next_prime_number - return the next prime number * @x: the starting point for searching to test * * A prime number is an integer greater than 1 that is only divisible by * itself and 1. The set of prime numbers is computed using the Sieve of * Eratoshenes (on finding a prime, all multiples of that prime are removed * from the set) enabling a fast lookup of the next prime number larger than * @x. If the sieve fails (memory limitation), the search falls back to using * slow trial-divison, up to the value of ULONG_MAX (which is reported as the * final prime as a sentinel). * * Returns: the next prime number larger than @x */ unsigned long next_prime_number(unsigned long x) { const struct primes *p; rcu_read_lock(); p = rcu_dereference(primes); while (x >= p->last) { rcu_read_unlock(); if (!expand_to_next_prime(x)) return slow_next_prime_number(x); rcu_read_lock(); p = rcu_dereference(primes); } x = find_next_bit(p->primes, p->last, x + 1); rcu_read_unlock(); return x; } EXPORT_SYMBOL(next_prime_number); /** * is_prime_number - test whether the given number is prime * @x: the number to test * * A prime number is an integer greater than 1 that is only divisible by * itself and 1. Internally a cache of prime numbers is kept (to speed up * searching for sequential primes, see next_prime_number()), but if the number * falls outside of that cache, its primality is tested using trial-divison. * * Returns: true if @x is prime, false for composite numbers. */ bool is_prime_number(unsigned long x) { const struct primes *p; bool result; rcu_read_lock(); p = rcu_dereference(primes); while (x >= p->sz) { rcu_read_unlock(); if (!expand_to_next_prime(x)) return slow_is_prime_number(x); rcu_read_lock(); p = rcu_dereference(primes); } result = test_bit(x, p->primes); rcu_read_unlock(); return result; } EXPORT_SYMBOL(is_prime_number); static void dump_primes(void) { const struct primes *p; char *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); rcu_read_lock(); p = rcu_dereference(primes); if (buf) bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n", p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); rcu_read_unlock(); kfree(buf); } static int selftest(unsigned long max) { unsigned long x, last; if (!max) return 0; for (last = 0, x = 2; x < max; x++) { bool slow = slow_is_prime_number(x); bool fast = is_prime_number(x); if (slow != fast) { pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n", x, slow ? "yes" : "no", fast ? "yes" : "no"); goto err; } if (!slow) continue; if (next_prime_number(last) != x) { pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n", last, x, next_prime_number(last)); goto err; } last = x; } pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last); return 0; err: dump_primes(); return -EINVAL; } static int __init primes_init(void) { return selftest(selftest_max); } static void __exit primes_exit(void) { free_primes(); } module_init(primes_init); module_exit(primes_exit); module_param_named(selftest, selftest_max, ulong, 0400); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL"); |