Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
 *                        Steven J. Hill <sjhill@realitydiluted.com>
 *		          Thomas Gleixner <tglx@linutronix.de>
 *
 * Info:
 *	Contains standard defines and IDs for NAND flash devices
 *
 * Changelog:
 *	See git changelog.
 */
#ifndef __LINUX_MTD_RAWNAND_H
#define __LINUX_MTD_RAWNAND_H

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/flashchip.h>
#include <linux/mtd/bbm.h>
#include <linux/mtd/jedec.h>
#include <linux/mtd/onfi.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/types.h>

struct nand_chip;
struct gpio_desc;

/* The maximum number of NAND chips in an array */
#define NAND_MAX_CHIPS		8

/*
 * Constants for hardware specific CLE/ALE/NCE function
 *
 * These are bits which can be or'ed to set/clear multiple
 * bits in one go.
 */
/* Select the chip by setting nCE to low */
#define NAND_NCE		0x01
/* Select the command latch by setting CLE to high */
#define NAND_CLE		0x02
/* Select the address latch by setting ALE to high */
#define NAND_ALE		0x04

#define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)
#define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)
#define NAND_CTRL_CHANGE	0x80

/*
 * Standard NAND flash commands
 */
#define NAND_CMD_READ0		0
#define NAND_CMD_READ1		1
#define NAND_CMD_RNDOUT		5
#define NAND_CMD_PAGEPROG	0x10
#define NAND_CMD_READOOB	0x50
#define NAND_CMD_ERASE1		0x60
#define NAND_CMD_STATUS		0x70
#define NAND_CMD_SEQIN		0x80
#define NAND_CMD_RNDIN		0x85
#define NAND_CMD_READID		0x90
#define NAND_CMD_ERASE2		0xd0
#define NAND_CMD_PARAM		0xec
#define NAND_CMD_GET_FEATURES	0xee
#define NAND_CMD_SET_FEATURES	0xef
#define NAND_CMD_RESET		0xff

/* Extended commands for large page devices */
#define NAND_CMD_READSTART	0x30
#define NAND_CMD_RNDOUTSTART	0xE0
#define NAND_CMD_CACHEDPROG	0x15

#define NAND_CMD_NONE		-1

/* Status bits */
#define NAND_STATUS_FAIL	0x01
#define NAND_STATUS_FAIL_N1	0x02
#define NAND_STATUS_TRUE_READY	0x20
#define NAND_STATUS_READY	0x40
#define NAND_STATUS_WP		0x80

#define NAND_DATA_IFACE_CHECK_ONLY	-1

/*
 * Constants for Hardware ECC
 */
/* Reset Hardware ECC for read */
#define NAND_ECC_READ		0
/* Reset Hardware ECC for write */
#define NAND_ECC_WRITE		1
/* Enable Hardware ECC before syndrome is read back from flash */
#define NAND_ECC_READSYN	2

/*
 * Enable generic NAND 'page erased' check. This check is only done when
 * ecc.correct() returns -EBADMSG.
 * Set this flag if your implementation does not fix bitflips in erased
 * pages and you want to rely on the default implementation.
 */
#define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)

/*
 * Option constants for bizarre disfunctionality and real
 * features.
 */

/* Buswidth is 16 bit */
#define NAND_BUSWIDTH_16	BIT(1)

/*
 * When using software implementation of Hamming, we can specify which byte
 * ordering should be used.
 */
#define NAND_ECC_SOFT_HAMMING_SM_ORDER	BIT(2)

/* Chip has cache program function */
#define NAND_CACHEPRG		BIT(3)
/* Options valid for Samsung large page devices */
#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG

/*
 * Chip requires ready check on read (for auto-incremented sequential read).
 * True only for small page devices; large page devices do not support
 * autoincrement.
 */
#define NAND_NEED_READRDY	BIT(8)

/* Chip does not allow subpage writes */
#define NAND_NO_SUBPAGE_WRITE	BIT(9)

/* Device is one of 'new' xD cards that expose fake nand command set */
#define NAND_BROKEN_XD		BIT(10)

/* Device behaves just like nand, but is readonly */
#define NAND_ROM		BIT(11)

/* Device supports subpage reads */
#define NAND_SUBPAGE_READ	BIT(12)
/* Macros to identify the above */
#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))

/*
 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 * patterns.
 */
#define NAND_NEED_SCRAMBLING	BIT(13)

/* Device needs 3rd row address cycle */
#define NAND_ROW_ADDR_3		BIT(14)

/* Non chip related options */
/* This option skips the bbt scan during initialization. */
#define NAND_SKIP_BBTSCAN	BIT(16)
/* Chip may not exist, so silence any errors in scan */
#define NAND_SCAN_SILENT_NODEV	BIT(18)

/*
 * Autodetect nand buswidth with readid/onfi.
 * This suppose the driver will configure the hardware in 8 bits mode
 * when calling nand_scan_ident, and update its configuration
 * before calling nand_scan_tail.
 */
#define NAND_BUSWIDTH_AUTO      BIT(19)

/*
 * This option could be defined by controller drivers to protect against
 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 */
#define NAND_USES_DMA		BIT(20)

/*
 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
 * on the default ->cmdfunc() implementation, you may want to let the core
 * handle the tCCS delay which is required when a column change (RNDIN or
 * RNDOUT) is requested.
 * If your controller already takes care of this delay, you don't need to set
 * this flag.
 */
#define NAND_WAIT_TCCS		BIT(21)

/*
 * Whether the NAND chip is a boot medium. Drivers might use this information
 * to select ECC algorithms supported by the boot ROM or similar restrictions.
 */
#define NAND_IS_BOOT_MEDIUM	BIT(22)

/*
 * Do not try to tweak the timings at runtime. This is needed when the
 * controller initializes the timings on itself or when it relies on
 * configuration done by the bootloader.
 */
#define NAND_KEEP_TIMINGS	BIT(23)

/*
 * There are different places where the manufacturer stores the factory bad
 * block markers.
 *
 * Position within the block: Each of these pages needs to be checked for a
 * bad block marking pattern.
 */
#define NAND_BBM_FIRSTPAGE	BIT(24)
#define NAND_BBM_SECONDPAGE	BIT(25)
#define NAND_BBM_LASTPAGE	BIT(26)

/*
 * Some controllers with pipelined ECC engines override the BBM marker with
 * data or ECC bytes, thus making bad block detection through bad block marker
 * impossible. Let's flag those chips so the core knows it shouldn't check the
 * BBM and consider all blocks good.
 */
#define NAND_NO_BBM_QUIRK	BIT(27)

/* Cell info constants */
#define NAND_CI_CHIPNR_MSK	0x03
#define NAND_CI_CELLTYPE_MSK	0x0C
#define NAND_CI_CELLTYPE_SHIFT	2

/* Position within the OOB data of the page */
#define NAND_BBM_POS_SMALL		5
#define NAND_BBM_POS_LARGE		0

/**
 * struct nand_parameters - NAND generic parameters from the parameter page
 * @model: Model name
 * @supports_set_get_features: The NAND chip supports setting/getting features
 * @set_feature_list: Bitmap of features that can be set
 * @get_feature_list: Bitmap of features that can be get
 * @onfi: ONFI specific parameters
 */
struct nand_parameters {
	/* Generic parameters */
	const char *model;
	bool supports_set_get_features;
	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);

	/* ONFI parameters */
	struct onfi_params *onfi;
};

/* The maximum expected count of bytes in the NAND ID sequence */
#define NAND_MAX_ID_LEN 8

/**
 * struct nand_id - NAND id structure
 * @data: buffer containing the id bytes.
 * @len: ID length.
 */
struct nand_id {
	u8 data[NAND_MAX_ID_LEN];
	int len;
};

/**
 * struct nand_ecc_step_info - ECC step information of ECC engine
 * @stepsize: data bytes per ECC step
 * @strengths: array of supported strengths
 * @nstrengths: number of supported strengths
 */
struct nand_ecc_step_info {
	int stepsize;
	const int *strengths;
	int nstrengths;
};

/**
 * struct nand_ecc_caps - capability of ECC engine
 * @stepinfos: array of ECC step information
 * @nstepinfos: number of ECC step information
 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
 */
struct nand_ecc_caps {
	const struct nand_ecc_step_info *stepinfos;
	int nstepinfos;
	int (*calc_ecc_bytes)(int step_size, int strength);
};

/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
static const int __name##_strengths[] = { __VA_ARGS__ };	\
static const struct nand_ecc_step_info __name##_stepinfo = {	\
	.stepsize = __step,					\
	.strengths = __name##_strengths,			\
	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
};								\
static const struct nand_ecc_caps __name = {			\
	.stepinfos = &__name##_stepinfo,			\
	.nstepinfos = 1,					\
	.calc_ecc_bytes = __calc,				\
}

/**
 * struct nand_ecc_ctrl - Control structure for ECC
 * @engine_type: ECC engine type
 * @placement:	OOB bytes placement
 * @algo:	ECC algorithm
 * @steps:	number of ECC steps per page
 * @size:	data bytes per ECC step
 * @bytes:	ECC bytes per step
 * @strength:	max number of correctible bits per ECC step
 * @total:	total number of ECC bytes per page
 * @prepad:	padding information for syndrome based ECC generators
 * @postpad:	padding information for syndrome based ECC generators
 * @options:	ECC specific options (see NAND_ECC_XXX flags defined above)
 * @calc_buf:	buffer for calculated ECC, size is oobsize.
 * @code_buf:	buffer for ECC read from flash, size is oobsize.
 * @hwctl:	function to control hardware ECC generator. Must only
 *		be provided if an hardware ECC is available
 * @calculate:	function for ECC calculation or readback from ECC hardware
 * @correct:	function for ECC correction, matching to ECC generator (sw/hw).
 *		Should return a positive number representing the number of
 *		corrected bitflips, -EBADMSG if the number of bitflips exceed
 *		ECC strength, or any other error code if the error is not
 *		directly related to correction.
 *		If -EBADMSG is returned the input buffers should be left
 *		untouched.
 * @read_page_raw:	function to read a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and always return contiguous in-band and
 *			out-of-band data even if they're not stored
 *			contiguously on the NAND chip (e.g.
 *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
 *			out-of-band data).
 * @write_page_raw:	function to write a raw page without ECC. This function
 *			should hide the specific layout used by the ECC
 *			controller and consider the passed data as contiguous
 *			in-band and out-of-band data. ECC controller is
 *			responsible for doing the appropriate transformations
 *			to adapt to its specific layout (e.g.
 *			NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
 *			out-of-band data).
 * @read_page:	function to read a page according to the ECC generator
 *		requirements; returns maximum number of bitflips corrected in
 *		any single ECC step, -EIO hw error
 * @read_subpage:	function to read parts of the page covered by ECC;
 *			returns same as read_page()
 * @write_subpage:	function to write parts of the page covered by ECC.
 * @write_page:	function to write a page according to the ECC generator
 *		requirements.
 * @write_oob_raw:	function to write chip OOB data without ECC
 * @read_oob_raw:	function to read chip OOB data without ECC
 * @read_oob:	function to read chip OOB data
 * @write_oob:	function to write chip OOB data
 */
struct nand_ecc_ctrl {
	enum nand_ecc_engine_type engine_type;
	enum nand_ecc_placement placement;
	enum nand_ecc_algo algo;
	int steps;
	int size;
	int bytes;
	int total;
	int strength;
	int prepad;
	int postpad;
	unsigned int options;
	u8 *calc_buf;
	u8 *code_buf;
	void (*hwctl)(struct nand_chip *chip, int mode);
	int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
			 uint8_t *ecc_code);
	int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
		       uint8_t *calc_ecc);
	int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
			     int oob_required, int page);
	int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
			      int oob_required, int page);
	int (*read_page)(struct nand_chip *chip, uint8_t *buf,
			 int oob_required, int page);
	int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
			    uint32_t len, uint8_t *buf, int page);
	int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
			     uint32_t data_len, const uint8_t *data_buf,
			     int oob_required, int page);
	int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
			  int oob_required, int page);
	int (*write_oob_raw)(struct nand_chip *chip, int page);
	int (*read_oob_raw)(struct nand_chip *chip, int page);
	int (*read_oob)(struct nand_chip *chip, int page);
	int (*write_oob)(struct nand_chip *chip, int page);
};

/**
 * struct nand_sdr_timings - SDR NAND chip timings
 *
 * This struct defines the timing requirements of a SDR NAND chip.
 * These information can be found in every NAND datasheets and the timings
 * meaning are described in the ONFI specifications:
 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
 * (chapter 4.15 Timing Parameters)
 *
 * All these timings are expressed in picoseconds.
 *
 * @tBERS_max: Block erase time
 * @tCCS_min: Change column setup time
 * @tPROG_max: Page program time
 * @tR_max: Page read time
 * @tALH_min: ALE hold time
 * @tADL_min: ALE to data loading time
 * @tALS_min: ALE setup time
 * @tAR_min: ALE to RE# delay
 * @tCEA_max: CE# access time
 * @tCEH_min: CE# high hold time
 * @tCH_min:  CE# hold time
 * @tCHZ_max: CE# high to output hi-Z
 * @tCLH_min: CLE hold time
 * @tCLR_min: CLE to RE# delay
 * @tCLS_min: CLE setup time
 * @tCOH_min: CE# high to output hold
 * @tCS_min: CE# setup time
 * @tDH_min: Data hold time
 * @tDS_min: Data setup time
 * @tFEAT_max: Busy time for Set Features and Get Features
 * @tIR_min: Output hi-Z to RE# low
 * @tITC_max: Interface and Timing Mode Change time
 * @tRC_min: RE# cycle time
 * @tREA_max: RE# access time
 * @tREH_min: RE# high hold time
 * @tRHOH_min: RE# high to output hold
 * @tRHW_min: RE# high to WE# low
 * @tRHZ_max: RE# high to output hi-Z
 * @tRLOH_min: RE# low to output hold
 * @tRP_min: RE# pulse width
 * @tRR_min: Ready to RE# low (data only)
 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 *	      rising edge of R/B#.
 * @tWB_max: WE# high to SR[6] low
 * @tWC_min: WE# cycle time
 * @tWH_min: WE# high hold time
 * @tWHR_min: WE# high to RE# low
 * @tWP_min: WE# pulse width
 * @tWW_min: WP# transition to WE# low
 */
struct nand_sdr_timings {
	u64 tBERS_max;
	u32 tCCS_min;
	u64 tPROG_max;
	u64 tR_max;
	u32 tALH_min;
	u32 tADL_min;
	u32 tALS_min;
	u32 tAR_min;
	u32 tCEA_max;
	u32 tCEH_min;
	u32 tCH_min;
	u32 tCHZ_max;
	u32 tCLH_min;
	u32 tCLR_min;
	u32 tCLS_min;
	u32 tCOH_min;
	u32 tCS_min;
	u32 tDH_min;
	u32 tDS_min;
	u32 tFEAT_max;
	u32 tIR_min;
	u32 tITC_max;
	u32 tRC_min;
	u32 tREA_max;
	u32 tREH_min;
	u32 tRHOH_min;
	u32 tRHW_min;
	u32 tRHZ_max;
	u32 tRLOH_min;
	u32 tRP_min;
	u32 tRR_min;
	u64 tRST_max;
	u32 tWB_max;
	u32 tWC_min;
	u32 tWH_min;
	u32 tWHR_min;
	u32 tWP_min;
	u32 tWW_min;
};

/**
 * struct nand_nvddr_timings - NV-DDR NAND chip timings
 *
 * This struct defines the timing requirements of a NV-DDR NAND data interface.
 * These information can be found in every NAND datasheets and the timings
 * meaning are described in the ONFI specifications:
 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
 * (chapter 4.18.2 NV-DDR)
 *
 * All these timings are expressed in picoseconds.
 *
 * @tBERS_max: Block erase time
 * @tCCS_min: Change column setup time
 * @tPROG_max: Page program time
 * @tR_max: Page read time
 * @tAC_min: Access window of DQ[7:0] from CLK
 * @tAC_max: Access window of DQ[7:0] from CLK
 * @tADL_min: ALE to data loading time
 * @tCAD_min: Command, Address, Data delay
 * @tCAH_min: Command/Address DQ hold time
 * @tCALH_min: W/R_n, CLE and ALE hold time
 * @tCALS_min: W/R_n, CLE and ALE setup time
 * @tCAS_min: Command/address DQ setup time
 * @tCEH_min: CE# high hold time
 * @tCH_min:  CE# hold time
 * @tCK_min: Average clock cycle time
 * @tCS_min: CE# setup time
 * @tDH_min: Data hold time
 * @tDQSCK_min: Start of the access window of DQS from CLK
 * @tDQSCK_max: End of the access window of DQS from CLK
 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
 * @tDS_min: Data setup time
 * @tDSC_min: DQS cycle time
 * @tFEAT_max: Busy time for Set Features and Get Features
 * @tITC_max: Interface and Timing Mode Change time
 * @tQHS_max: Data hold skew factor
 * @tRHW_min: Data output cycle to command, address, or data input cycle
 * @tRR_min: Ready to RE# low (data only)
 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
 *	      rising edge of R/B#.
 * @tWB_max: WE# high to SR[6] low
 * @tWHR_min: WE# high to RE# low
 * @tWRCK_min: W/R_n low to data output cycle
 * @tWW_min: WP# transition to WE# low
 */
struct nand_nvddr_timings {
	u64 tBERS_max;
	u32 tCCS_min;
	u64 tPROG_max;
	u64 tR_max;
	u32 tAC_min;
	u32 tAC_max;
	u32 tADL_min;
	u32 tCAD_min;
	u32 tCAH_min;
	u32 tCALH_min;
	u32 tCALS_min;
	u32 tCAS_min;
	u32 tCEH_min;
	u32 tCH_min;
	u32 tCK_min;
	u32 tCS_min;
	u32 tDH_min;
	u32 tDQSCK_min;
	u32 tDQSCK_max;
	u32 tDQSD_min;
	u32 tDQSD_max;
	u32 tDQSHZ_max;
	u32 tDQSQ_max;
	u32 tDS_min;
	u32 tDSC_min;
	u32 tFEAT_max;
	u32 tITC_max;
	u32 tQHS_max;
	u32 tRHW_min;
	u32 tRR_min;
	u32 tRST_max;
	u32 tWB_max;
	u32 tWHR_min;
	u32 tWRCK_min;
	u32 tWW_min;
};

/*
 * While timings related to the data interface itself are mostly different
 * between SDR and NV-DDR, timings related to the internal chip behavior are
 * common. IOW, the following entries which describe the internal delays have
 * the same definition and are shared in both SDR and NV-DDR timing structures:
 * - tADL_min
 * - tBERS_max
 * - tCCS_min
 * - tFEAT_max
 * - tPROG_max
 * - tR_max
 * - tRR_min
 * - tRST_max
 * - tWB_max
 *
 * The below macros return the value of a given timing, no matter the interface.
 */
#define NAND_COMMON_TIMING_PS(conf, timing_name)		\
	nand_interface_is_sdr(conf) ?				\
		nand_get_sdr_timings(conf)->timing_name :	\
		nand_get_nvddr_timings(conf)->timing_name

#define NAND_COMMON_TIMING_MS(conf, timing_name) \
	PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))

#define NAND_COMMON_TIMING_NS(conf, timing_name) \
	PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))

/**
 * enum nand_interface_type - NAND interface type
 * @NAND_SDR_IFACE:	Single Data Rate interface
 * @NAND_NVDDR_IFACE:	Double Data Rate interface
 */
enum nand_interface_type {
	NAND_SDR_IFACE,
	NAND_NVDDR_IFACE,
};

/**
 * struct nand_interface_config - NAND interface timing
 * @type:	 type of the timing
 * @timings:	 The timing information
 * @timings.mode: Timing mode as defined in the specification
 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
 */
struct nand_interface_config {
	enum nand_interface_type type;
	struct nand_timings {
		unsigned int mode;
		union {
			struct nand_sdr_timings sdr;
			struct nand_nvddr_timings nvddr;
		};
	} timings;
};

/**
 * nand_interface_is_sdr - get the interface type
 * @conf:	The data interface
 */
static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
{
	return conf->type == NAND_SDR_IFACE;
}

/**
 * nand_interface_is_nvddr - get the interface type
 * @conf:	The data interface
 */
static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
{
	return conf->type == NAND_NVDDR_IFACE;
}

/**
 * nand_get_sdr_timings - get SDR timing from data interface
 * @conf:	The data interface
 */
static inline const struct nand_sdr_timings *
nand_get_sdr_timings(const struct nand_interface_config *conf)
{
	if (!nand_interface_is_sdr(conf))
		return ERR_PTR(-EINVAL);

	return &conf->timings.sdr;
}

/**
 * nand_get_nvddr_timings - get NV-DDR timing from data interface
 * @conf:	The data interface
 */
static inline const struct nand_nvddr_timings *
nand_get_nvddr_timings(const struct nand_interface_config *conf)
{
	if (!nand_interface_is_nvddr(conf))
		return ERR_PTR(-EINVAL);

	return &conf->timings.nvddr;
}

/**
 * struct nand_op_cmd_instr - Definition of a command instruction
 * @opcode: the command to issue in one cycle
 */
struct nand_op_cmd_instr {
	u8 opcode;
};

/**
 * struct nand_op_addr_instr - Definition of an address instruction
 * @naddrs: length of the @addrs array
 * @addrs: array containing the address cycles to issue
 */
struct nand_op_addr_instr {
	unsigned int naddrs;
	const u8 *addrs;
};

/**
 * struct nand_op_data_instr - Definition of a data instruction
 * @len: number of data bytes to move
 * @buf: buffer to fill
 * @buf.in: buffer to fill when reading from the NAND chip
 * @buf.out: buffer to read from when writing to the NAND chip
 * @force_8bit: force 8-bit access
 *
 * Please note that "in" and "out" are inverted from the ONFI specification
 * and are from the controller perspective, so a "in" is a read from the NAND
 * chip while a "out" is a write to the NAND chip.
 */
struct nand_op_data_instr {
	unsigned int len;
	union {
		void *in;
		const void *out;
	} buf;
	bool force_8bit;
};

/**
 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
 */
struct nand_op_waitrdy_instr {
	unsigned int timeout_ms;
};

/**
 * enum nand_op_instr_type - Definition of all instruction types
 * @NAND_OP_CMD_INSTR: command instruction
 * @NAND_OP_ADDR_INSTR: address instruction
 * @NAND_OP_DATA_IN_INSTR: data in instruction
 * @NAND_OP_DATA_OUT_INSTR: data out instruction
 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
 */
enum nand_op_instr_type {
	NAND_OP_CMD_INSTR,
	NAND_OP_ADDR_INSTR,
	NAND_OP_DATA_IN_INSTR,
	NAND_OP_DATA_OUT_INSTR,
	NAND_OP_WAITRDY_INSTR,
};

/**
 * struct nand_op_instr - Instruction object
 * @type: the instruction type
 * @ctx:  extra data associated to the instruction. You'll have to use the
 *        appropriate element depending on @type
 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
 *	      or %NAND_OP_DATA_OUT_INSTR
 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
 * @delay_ns: delay the controller should apply after the instruction has been
 *	      issued on the bus. Most modern controllers have internal timings
 *	      control logic, and in this case, the controller driver can ignore
 *	      this field.
 */
struct nand_op_instr {
	enum nand_op_instr_type type;
	union {
		struct nand_op_cmd_instr cmd;
		struct nand_op_addr_instr addr;
		struct nand_op_data_instr data;
		struct nand_op_waitrdy_instr waitrdy;
	} ctx;
	unsigned int delay_ns;
};

/*
 * Special handling must be done for the WAITRDY timeout parameter as it usually
 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
 * tBERS (during an erase) which all of them are u64 values that cannot be
 * divided by usual kernel macros and must be handled with the special
 * DIV_ROUND_UP_ULL() macro.
 *
 * Cast to type of dividend is needed here to guarantee that the result won't
 * be an unsigned long long when the dividend is an unsigned long (or smaller),
 * which is what the compiler does when it sees ternary operator with 2
 * different return types (picks the largest type to make sure there's no
 * loss).
 */
#define __DIVIDE(dividend, divisor) ({						\
	(__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?	\
			       DIV_ROUND_UP(dividend, divisor) :		\
			       DIV_ROUND_UP_ULL(dividend, divisor)); 		\
	})
#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)

#define NAND_OP_CMD(id, ns)						\
	{								\
		.type = NAND_OP_CMD_INSTR,				\
		.ctx.cmd.opcode = id,					\
		.delay_ns = ns,						\
	}

#define NAND_OP_ADDR(ncycles, cycles, ns)				\
	{								\
		.type = NAND_OP_ADDR_INSTR,				\
		.ctx.addr = {						\
			.naddrs = ncycles,				\
			.addrs = cycles,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_DATA_IN(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_IN_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.in = b,					\
			.force_8bit = false,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_DATA_OUT(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_OUT_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.out = b,					\
			.force_8bit = false,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_8BIT_DATA_IN(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_IN_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.in = b,					\
			.force_8bit = true,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_8BIT_DATA_OUT(l, b, ns)					\
	{								\
		.type = NAND_OP_DATA_OUT_INSTR,				\
		.ctx.data = {						\
			.len = l,					\
			.buf.out = b,					\
			.force_8bit = true,				\
		},							\
		.delay_ns = ns,						\
	}

#define NAND_OP_WAIT_RDY(tout_ms, ns)					\
	{								\
		.type = NAND_OP_WAITRDY_INSTR,				\
		.ctx.waitrdy.timeout_ms = tout_ms,			\
		.delay_ns = ns,						\
	}

/**
 * struct nand_subop - a sub operation
 * @cs: the CS line to select for this NAND sub-operation
 * @instrs: array of instructions
 * @ninstrs: length of the @instrs array
 * @first_instr_start_off: offset to start from for the first instruction
 *			   of the sub-operation
 * @last_instr_end_off: offset to end at (excluded) for the last instruction
 *			of the sub-operation
 *
 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
 * address instructions.
 *
 * When an operation cannot be handled as is by the NAND controller, it will
 * be split by the parser into sub-operations which will be passed to the
 * controller driver.
 */
struct nand_subop {
	unsigned int cs;
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
	unsigned int first_instr_start_off;
	unsigned int last_instr_end_off;
};

unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
					 unsigned int op_id);
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
					   unsigned int op_id);
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
				     unsigned int op_id);

/**
 * struct nand_op_parser_addr_constraints - Constraints for address instructions
 * @maxcycles: maximum number of address cycles the controller can issue in a
 *	       single step
 */
struct nand_op_parser_addr_constraints {
	unsigned int maxcycles;
};

/**
 * struct nand_op_parser_data_constraints - Constraints for data instructions
 * @maxlen: maximum data length that the controller can handle in a single step
 */
struct nand_op_parser_data_constraints {
	unsigned int maxlen;
};

/**
 * struct nand_op_parser_pattern_elem - One element of a pattern
 * @type: the instructuction type
 * @optional: whether this element of the pattern is optional or mandatory
 * @ctx: address or data constraint
 * @ctx.addr: address constraint (number of cycles)
 * @ctx.data: data constraint (data length)
 */
struct nand_op_parser_pattern_elem {
	enum nand_op_instr_type type;
	bool optional;
	union {
		struct nand_op_parser_addr_constraints addr;
		struct nand_op_parser_data_constraints data;
	} ctx;
};

#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)			\
	{							\
		.type = NAND_OP_CMD_INSTR,			\
		.optional = _opt,				\
	}

#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)		\
	{							\
		.type = NAND_OP_ADDR_INSTR,			\
		.optional = _opt,				\
		.ctx.addr.maxcycles = _maxcycles,		\
	}

#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)		\
	{							\
		.type = NAND_OP_DATA_IN_INSTR,			\
		.optional = _opt,				\
		.ctx.data.maxlen = _maxlen,			\
	}

#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)		\
	{							\
		.type = NAND_OP_DATA_OUT_INSTR,			\
		.optional = _opt,				\
		.ctx.data.maxlen = _maxlen,			\
	}

#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)			\
	{							\
		.type = NAND_OP_WAITRDY_INSTR,			\
		.optional = _opt,				\
	}

/**
 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
 * @elems: array of pattern elements
 * @nelems: number of pattern elements in @elems array
 * @exec: the function that will issue a sub-operation
 *
 * A pattern is a list of elements, each element reprensenting one instruction
 * with its constraints. The pattern itself is used by the core to match NAND
 * chip operation with NAND controller operations.
 * Once a match between a NAND controller operation pattern and a NAND chip
 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
 * hook is called so that the controller driver can issue the operation on the
 * bus.
 *
 * Controller drivers should declare as many patterns as they support and pass
 * this list of patterns (created with the help of the following macro) to
 * the nand_op_parser_exec_op() helper.
 */
struct nand_op_parser_pattern {
	const struct nand_op_parser_pattern_elem *elems;
	unsigned int nelems;
	int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
};

#define NAND_OP_PARSER_PATTERN(_exec, ...)							\
	{											\
		.exec = _exec,									\
		.elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },		\
		.nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /	\
			  sizeof(struct nand_op_parser_pattern_elem),				\
	}

/**
 * struct nand_op_parser - NAND controller operation parser descriptor
 * @patterns: array of supported patterns
 * @npatterns: length of the @patterns array
 *
 * The parser descriptor is just an array of supported patterns which will be
 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
 * NAND operation (or tries to determine if a specific operation is supported).
 *
 * It is worth mentioning that patterns will be tested in their declaration
 * order, and the first match will be taken, so it's important to order patterns
 * appropriately so that simple/inefficient patterns are placed at the end of
 * the list. Usually, this is where you put single instruction patterns.
 */
struct nand_op_parser {
	const struct nand_op_parser_pattern *patterns;
	unsigned int npatterns;
};

#define NAND_OP_PARSER(...)									\
	{											\
		.patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },		\
		.npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /	\
			     sizeof(struct nand_op_parser_pattern),				\
	}

/**
 * struct nand_operation - NAND operation descriptor
 * @cs: the CS line to select for this NAND operation
 * @instrs: array of instructions to execute
 * @ninstrs: length of the @instrs array
 *
 * The actual operation structure that will be passed to chip->exec_op().
 */
struct nand_operation {
	unsigned int cs;
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
};

#define NAND_OPERATION(_cs, _instrs)				\
	{							\
		.cs = _cs,					\
		.instrs = _instrs,				\
		.ninstrs = ARRAY_SIZE(_instrs),			\
	}

int nand_op_parser_exec_op(struct nand_chip *chip,
			   const struct nand_op_parser *parser,
			   const struct nand_operation *op, bool check_only);

static inline void nand_op_trace(const char *prefix,
				 const struct nand_op_instr *instr)
{
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
	switch (instr->type) {
	case NAND_OP_CMD_INSTR:
		pr_debug("%sCMD      [0x%02x]\n", prefix,
			 instr->ctx.cmd.opcode);
		break;
	case NAND_OP_ADDR_INSTR:
		pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
			 instr->ctx.addr.naddrs,
			 instr->ctx.addr.naddrs < 64 ?
			 instr->ctx.addr.naddrs : 64,
			 instr->ctx.addr.addrs);
		break;
	case NAND_OP_DATA_IN_INSTR:
		pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
			 instr->ctx.data.len,
			 instr->ctx.data.force_8bit ?
			 ", force 8-bit" : "");
		break;
	case NAND_OP_DATA_OUT_INSTR:
		pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
			 instr->ctx.data.len,
			 instr->ctx.data.force_8bit ?
			 ", force 8-bit" : "");
		break;
	case NAND_OP_WAITRDY_INSTR:
		pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
			 instr->ctx.waitrdy.timeout_ms);
		break;
	}
#endif
}

/**
 * struct nand_controller_ops - Controller operations
 *
 * @attach_chip: this method is called after the NAND detection phase after
 *		 flash ID and MTD fields such as erase size, page size and OOB
 *		 size have been set up. ECC requirements are available if
 *		 provided by the NAND chip or device tree. Typically used to
 *		 choose the appropriate ECC configuration and allocate
 *		 associated resources.
 *		 This hook is optional.
 * @detach_chip: free all resources allocated/claimed in
 *		 nand_controller_ops->attach_chip().
 *		 This hook is optional.
 * @exec_op:	 controller specific method to execute NAND operations.
 *		 This method replaces chip->legacy.cmdfunc(),
 *		 chip->legacy.{read,write}_{buf,byte,word}(),
 *		 chip->legacy.dev_ready() and chip->legacy.waifunc().
 * @setup_interface: setup the data interface and timing. If chipnr is set to
 *		     %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
 *		     should not be applied but only checked.
 *		     This hook is optional.
 */
struct nand_controller_ops {
	int (*attach_chip)(struct nand_chip *chip);
	void (*detach_chip)(struct nand_chip *chip);
	int (*exec_op)(struct nand_chip *chip,
		       const struct nand_operation *op,
		       bool check_only);
	int (*setup_interface)(struct nand_chip *chip, int chipnr,
			       const struct nand_interface_config *conf);
};

/**
 * struct nand_controller - Structure used to describe a NAND controller
 *
 * @lock:		lock used to serialize accesses to the NAND controller
 * @ops:		NAND controller operations.
 */
struct nand_controller {
	struct mutex lock;
	const struct nand_controller_ops *ops;
};

static inline void nand_controller_init(struct nand_controller *nfc)
{
	mutex_init(&nfc->lock);
}

/**
 * struct nand_legacy - NAND chip legacy fields/hooks
 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
 * @select_chip: select/deselect a specific target/die
 * @read_byte: read one byte from the chip
 * @write_byte: write a single byte to the chip on the low 8 I/O lines
 * @write_buf: write data from the buffer to the chip
 * @read_buf: read data from the chip into the buffer
 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
 *	      to write command and address
 * @cmdfunc: hardware specific function for writing commands to the chip.
 * @dev_ready: hardware specific function for accessing device ready/busy line.
 *	       If set to NULL no access to ready/busy is available and the
 *	       ready/busy information is read from the chip status register.
 * @waitfunc: hardware specific function for wait on ready.
 * @block_bad: check if a block is bad, using OOB markers
 * @block_markbad: mark a block bad
 * @set_features: set the NAND chip features
 * @get_features: get the NAND chip features
 * @chip_delay: chip dependent delay for transferring data from array to read
 *		regs (tR).
 * @dummy_controller: dummy controller implementation for drivers that can
 *		      only control a single chip
 *
 * If you look at this structure you're already wrong. These fields/hooks are
 * all deprecated.
 */
struct nand_legacy {
	void __iomem *IO_ADDR_R;
	void __iomem *IO_ADDR_W;
	void (*select_chip)(struct nand_chip *chip, int cs);
	u8 (*read_byte)(struct nand_chip *chip);
	void (*write_byte)(struct nand_chip *chip, u8 byte);
	void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
	void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
	void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
	void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
			int page_addr);
	int (*dev_ready)(struct nand_chip *chip);
	int (*waitfunc)(struct nand_chip *chip);
	int (*block_bad)(struct nand_chip *chip, loff_t ofs);
	int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
	int (*set_features)(struct nand_chip *chip, int feature_addr,
			    u8 *subfeature_para);
	int (*get_features)(struct nand_chip *chip, int feature_addr,
			    u8 *subfeature_para);
	int chip_delay;
	struct nand_controller dummy_controller;
};

/**
 * struct nand_chip_ops - NAND chip operations
 * @suspend: Suspend operation
 * @resume: Resume operation
 * @lock_area: Lock operation
 * @unlock_area: Unlock operation
 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
 * @choose_interface_config: Choose the best interface configuration
 */
struct nand_chip_ops {
	int (*suspend)(struct nand_chip *chip);
	void (*resume)(struct nand_chip *chip);
	int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
	int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
	int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
	int (*choose_interface_config)(struct nand_chip *chip,
				       struct nand_interface_config *iface);
};

/**
 * struct nand_manufacturer - NAND manufacturer structure
 * @desc: The manufacturer description
 * @priv: Private information for the manufacturer driver
 */
struct nand_manufacturer {
	const struct nand_manufacturer_desc *desc;
	void *priv;
};

/**
 * struct nand_secure_region - NAND secure region structure
 * @offset: Offset of the start of the secure region
 * @size: Size of the secure region
 */
struct nand_secure_region {
	u64 offset;
	u64 size;
};

/**
 * struct nand_chip - NAND Private Flash Chip Data
 * @base: Inherit from the generic NAND device
 * @id: Holds NAND ID
 * @parameters: Holds generic parameters under an easily readable form
 * @manufacturer: Manufacturer information
 * @ops: NAND chip operations
 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
 *          to use any of these fields/hooks, and if you're modifying an
 *          existing driver that is using those fields/hooks, you should
 *          consider reworking the driver and avoid using them.
 * @options: Various chip options. They can partly be set to inform nand_scan
 *           about special functionality. See the defines for further
 *           explanation.
 * @current_interface_config: The currently used NAND interface configuration
 * @best_interface_config: The best NAND interface configuration which fits both
 *                         the NAND chip and NAND controller constraints. If
 *                         unset, the default reset interface configuration must
 *                         be used.
 * @bbt_erase_shift: Number of address bits in a bbt entry
 * @bbt_options: Bad block table specific options. All options used here must
 *               come from bbm.h. By default, these options will be copied to
 *               the appropriate nand_bbt_descr's.
 * @badblockpos: Bad block marker position in the oob area
 * @badblockbits: Minimum number of set bits in a good block's bad block marker
 *                position; i.e., BBM = 11110111b is good when badblockbits = 7
 * @bbt_td: Bad block table descriptor for flash lookup
 * @bbt_md: Bad block table mirror descriptor
 * @badblock_pattern: Bad block scan pattern used for initial bad block scan
 * @bbt: Bad block table pointer
 * @page_shift: Number of address bits in a page (column address bits)
 * @phys_erase_shift: Number of address bits in a physical eraseblock
 * @chip_shift: Number of address bits in one chip
 * @pagemask: Page number mask = number of (pages / chip) - 1
 * @subpagesize: Holds the subpagesize
 * @data_buf: Buffer for data, size is (page size + oobsize)
 * @oob_poi: pointer on the OOB area covered by data_buf
 * @pagecache: Structure containing page cache related fields
 * @pagecache.bitflips: Number of bitflips of the cached page
 * @pagecache.page: Page number currently in the cache. -1 means no page is
 *                  currently cached
 * @buf_align: Minimum buffer alignment required by a platform
 * @lock: Lock protecting the suspended field. Also used to serialize accesses
 *        to the NAND device
 * @suspended: Set to 1 when the device is suspended, 0 when it's not
 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
 *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
 *          NAND Controller drivers should not modify this value, but they're
 *          allowed to read it.
 * @read_retries: The number of read retry modes supported
 * @secure_regions: Structure containing the secure regions info
 * @nr_secure_regions: Number of secure regions
 * @controller: The hardware controller	structure which is shared among multiple
 *              independent devices
 * @ecc: The ECC controller structure
 * @priv: Chip private data
 */
struct nand_chip {
	struct nand_device base;
	struct nand_id id;
	struct nand_parameters parameters;
	struct nand_manufacturer manufacturer;
	struct nand_chip_ops ops;
	struct nand_legacy legacy;
	unsigned int options;

	/* Data interface */
	const struct nand_interface_config *current_interface_config;
	struct nand_interface_config *best_interface_config;

	/* Bad block information */
	unsigned int bbt_erase_shift;
	unsigned int bbt_options;
	unsigned int badblockpos;
	unsigned int badblockbits;
	struct nand_bbt_descr *bbt_td;
	struct nand_bbt_descr *bbt_md;
	struct nand_bbt_descr *badblock_pattern;
	u8 *bbt;

	/* Device internal layout */
	unsigned int page_shift;
	unsigned int phys_erase_shift;
	unsigned int chip_shift;
	unsigned int pagemask;
	unsigned int subpagesize;

	/* Buffers */
	u8 *data_buf;
	u8 *oob_poi;
	struct {
		unsigned int bitflips;
		int page;
	} pagecache;
	unsigned long buf_align;

	/* Internals */
	struct mutex lock;
	unsigned int suspended : 1;
	int cur_cs;
	int read_retries;
	struct nand_secure_region *secure_regions;
	u8 nr_secure_regions;

	/* Externals */
	struct nand_controller *controller;
	struct nand_ecc_ctrl ecc;
	void *priv;
};

static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
{
	return container_of(mtd, struct nand_chip, base.mtd);
}

static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
{
	return &chip->base.mtd;
}

static inline void *nand_get_controller_data(struct nand_chip *chip)
{
	return chip->priv;
}

static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
{
	chip->priv = priv;
}

static inline void nand_set_manufacturer_data(struct nand_chip *chip,
					      void *priv)
{
	chip->manufacturer.priv = priv;
}

static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
{
	return chip->manufacturer.priv;
}

static inline void nand_set_flash_node(struct nand_chip *chip,
				       struct device_node *np)
{
	mtd_set_of_node(nand_to_mtd(chip), np);
}

static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
{
	return mtd_get_of_node(nand_to_mtd(chip));
}

/**
 * nand_get_interface_config - Retrieve the current interface configuration
 *                             of a NAND chip
 * @chip: The NAND chip
 */
static inline const struct nand_interface_config *
nand_get_interface_config(struct nand_chip *chip)
{
	return chip->current_interface_config;
}

/*
 * A helper for defining older NAND chips where the second ID byte fully
 * defined the chip, including the geometry (chip size, eraseblock size, page
 * size). All these chips have 512 bytes NAND page size.
 */
#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
	{ .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
	  .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }

/*
 * A helper for defining newer chips which report their page size and
 * eraseblock size via the extended ID bytes.
 *
 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
 * device ID now only represented a particular total chip size (and voltage,
 * buswidth), and the page size, eraseblock size, and OOB size could vary while
 * using the same device ID.
 */
#define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
	{ .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
	  .options = (opts) }

#define NAND_ECC_INFO(_strength, _step)	\
			{ .strength_ds = (_strength), .step_ds = (_step) }
#define NAND_ECC_STRENGTH(type)		((type)->ecc.strength_ds)
#define NAND_ECC_STEP(type)		((type)->ecc.step_ds)

/**
 * struct nand_flash_dev - NAND Flash Device ID Structure
 * @name: a human-readable name of the NAND chip
 * @dev_id: the device ID (the second byte of the full chip ID array)
 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
 *          memory address as ``id[0]``)
 * @dev_id: device ID part of the full chip ID array (refers the same memory
 *          address as ``id[1]``)
 * @id: full device ID array
 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
 *            well as the eraseblock size) is determined from the extended NAND
 *            chip ID array)
 * @chipsize: total chip size in MiB
 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
 * @options: stores various chip bit options
 * @id_len: The valid length of the @id.
 * @oobsize: OOB size
 * @ecc: ECC correctability and step information from the datasheet.
 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
 *                   @ecc_strength_ds in nand_chip{}.
 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
 *               @ecc_step_ds in nand_chip{}, also from the datasheet.
 *               For example, the "4bit ECC for each 512Byte" can be set with
 *               NAND_ECC_INFO(4, 512).
 */
struct nand_flash_dev {
	char *name;
	union {
		struct {
			uint8_t mfr_id;
			uint8_t dev_id;
		};
		uint8_t id[NAND_MAX_ID_LEN];
	};
	unsigned int pagesize;
	unsigned int chipsize;
	unsigned int erasesize;
	unsigned int options;
	uint16_t id_len;
	uint16_t oobsize;
	struct {
		uint16_t strength_ds;
		uint16_t step_ds;
	} ecc;
};

int nand_create_bbt(struct nand_chip *chip);

/*
 * Check if it is a SLC nand.
 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
 * We do not distinguish the MLC and TLC now.
 */
static inline bool nand_is_slc(struct nand_chip *chip)
{
	WARN(nanddev_bits_per_cell(&chip->base) == 0,
	     "chip->bits_per_cell is used uninitialized\n");
	return nanddev_bits_per_cell(&chip->base) == 1;
}

/**
 * nand_opcode_8bits - Check if the opcode's address should be sent only on the
 *	lower 8 bits
 * @command: opcode to check
 */
static inline int nand_opcode_8bits(unsigned int command)
{
	switch (command) {
	case NAND_CMD_READID:
	case NAND_CMD_PARAM:
	case NAND_CMD_GET_FEATURES:
	case NAND_CMD_SET_FEATURES:
		return 1;
	default:
		break;
	}
	return 0;
}

int rawnand_sw_hamming_init(struct nand_chip *chip);
int rawnand_sw_hamming_calculate(struct nand_chip *chip,
				 const unsigned char *buf,
				 unsigned char *code);
int rawnand_sw_hamming_correct(struct nand_chip *chip,
			       unsigned char *buf,
			       unsigned char *read_ecc,
			       unsigned char *calc_ecc);
void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
int rawnand_sw_bch_init(struct nand_chip *chip);
int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
			   unsigned char *read_ecc, unsigned char *calc_ecc);
void rawnand_sw_bch_cleanup(struct nand_chip *chip);

int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int threshold);

int nand_ecc_choose_conf(struct nand_chip *chip,
			 const struct nand_ecc_caps *caps, int oobavail);

/* Default write_oob implementation */
int nand_write_oob_std(struct nand_chip *chip, int page);

/* Default read_oob implementation */
int nand_read_oob_std(struct nand_chip *chip, int page);

/* Stub used by drivers that do not support GET/SET FEATURES operations */
int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
				  u8 *subfeature_param);

/* read_page_raw implementations */
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
		       int page);
int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
				  int oob_required, int page);

/* write_page_raw implementations */
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
			int oob_required, int page);
int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
				   int oob_required, int page);

/* Reset and initialize a NAND device */
int nand_reset(struct nand_chip *chip, int chipnr);

/* NAND operation helpers */
int nand_reset_op(struct nand_chip *chip);
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
		   unsigned int len);
int nand_status_op(struct nand_chip *chip, u8 *status);
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, void *buf, unsigned int len);
int nand_change_read_column_op(struct nand_chip *chip,
			       unsigned int offset_in_page, void *buf,
			       unsigned int len, bool force_8bit);
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
		     unsigned int offset_in_page, void *buf, unsigned int len);
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
			    unsigned int offset_in_page, const void *buf,
			    unsigned int len);
int nand_prog_page_end_op(struct nand_chip *chip);
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, const void *buf,
		      unsigned int len);
int nand_change_write_column_op(struct nand_chip *chip,
				unsigned int offset_in_page, const void *buf,
				unsigned int len, bool force_8bit);
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
		      bool force_8bit, bool check_only);
int nand_write_data_op(struct nand_chip *chip, const void *buf,
		       unsigned int len, bool force_8bit);

/* Scan and identify a NAND device */
int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
		       struct nand_flash_dev *ids);

static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
{
	return nand_scan_with_ids(chip, max_chips, NULL);
}

/* Internal helper for board drivers which need to override command function */
void nand_wait_ready(struct nand_chip *chip);

/*
 * Free resources held by the NAND device, must be called on error after a
 * sucessful nand_scan().
 */
void nand_cleanup(struct nand_chip *chip);

/*
 * External helper for controller drivers that have to implement the WAITRDY
 * instruction and have no physical pin to check it.
 */
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
		      unsigned long timeout_ms);

/* Select/deselect a NAND target. */
void nand_select_target(struct nand_chip *chip, unsigned int cs);
void nand_deselect_target(struct nand_chip *chip);

/* Bitops */
void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
		       unsigned int src_off, unsigned int nbits);

/**
 * nand_get_data_buf() - Get the internal page buffer
 * @chip: NAND chip object
 *
 * Returns the pre-allocated page buffer after invalidating the cache. This
 * function should be used by drivers that do not want to allocate their own
 * bounce buffer and still need such a buffer for specific operations (most
 * commonly when reading OOB data only).
 *
 * Be careful to never call this function in the write/write_oob path, because
 * the core may have placed the data to be written out in this buffer.
 *
 * Return: pointer to the page cache buffer
 */
static inline void *nand_get_data_buf(struct nand_chip *chip)
{
	chip->pagecache.page = -1;

	return chip->data_buf;
}

/* Parse the gpio-cs property */
int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
			     unsigned int *ncs_array);

#endif /* __LINUX_MTD_RAWNAND_H */