// SPDX-License-Identifier: GPL-2.0-only
/*
* Microchip Image Sensor Controller (ISC) common driver base
*
* Copyright (C) 2016-2019 Microchip Technology, Inc.
*
* Author: Songjun Wu
* Author: Eugen Hristev <eugen.hristev@microchip.com>
*
*/
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/videodev2.h>
#include <linux/atmel-isc-media.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include "atmel-isc-regs.h"
#include "atmel-isc.h"
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");
static unsigned int sensor_preferred = 1;
module_param(sensor_preferred, uint, 0644);
MODULE_PARM_DESC(sensor_preferred,
"Sensor is preferred to output the specified format (1-on 0-off), default 1");
#define ISC_IS_FORMAT_RAW(mbus_code) \
(((mbus_code) & 0xf000) == 0x3000)
#define ISC_IS_FORMAT_GREY(mbus_code) \
(((mbus_code) == MEDIA_BUS_FMT_Y10_1X10) | \
(((mbus_code) == MEDIA_BUS_FMT_Y8_1X8)))
static inline void isc_update_v4l2_ctrls(struct isc_device *isc)
{
struct isc_ctrls *ctrls = &isc->ctrls;
/* In here we set the v4l2 controls w.r.t. our pipeline config */
v4l2_ctrl_s_ctrl(isc->r_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_R]);
v4l2_ctrl_s_ctrl(isc->b_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_B]);
v4l2_ctrl_s_ctrl(isc->gr_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_GR]);
v4l2_ctrl_s_ctrl(isc->gb_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_GB]);
v4l2_ctrl_s_ctrl(isc->r_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_R]);
v4l2_ctrl_s_ctrl(isc->b_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_B]);
v4l2_ctrl_s_ctrl(isc->gr_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_GR]);
v4l2_ctrl_s_ctrl(isc->gb_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_GB]);
}
static inline void isc_update_awb_ctrls(struct isc_device *isc)
{
struct isc_ctrls *ctrls = &isc->ctrls;
/* In here we set our actual hw pipeline config */
regmap_write(isc->regmap, ISC_WB_O_RGR,
((ctrls->offset[ISC_HIS_CFG_MODE_R])) |
((ctrls->offset[ISC_HIS_CFG_MODE_GR]) << 16));
regmap_write(isc->regmap, ISC_WB_O_BGB,
((ctrls->offset[ISC_HIS_CFG_MODE_B])) |
((ctrls->offset[ISC_HIS_CFG_MODE_GB]) << 16));
regmap_write(isc->regmap, ISC_WB_G_RGR,
ctrls->gain[ISC_HIS_CFG_MODE_R] |
(ctrls->gain[ISC_HIS_CFG_MODE_GR] << 16));
regmap_write(isc->regmap, ISC_WB_G_BGB,
ctrls->gain[ISC_HIS_CFG_MODE_B] |
(ctrls->gain[ISC_HIS_CFG_MODE_GB] << 16));
}
static inline void isc_reset_awb_ctrls(struct isc_device *isc)
{
unsigned int c;
for (c = ISC_HIS_CFG_MODE_GR; c <= ISC_HIS_CFG_MODE_B; c++) {
/* gains have a fixed point at 9 decimals */
isc->ctrls.gain[c] = 1 << 9;
/* offsets are in 2's complements */
isc->ctrls.offset[c] = 0;
}
}
static int isc_wait_clk_stable(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
struct regmap *regmap = isc_clk->regmap;
unsigned long timeout = jiffies + usecs_to_jiffies(1000);
unsigned int status;
while (time_before(jiffies, timeout)) {
regmap_read(regmap, ISC_CLKSR, &status);
if (!(status & ISC_CLKSR_SIP))
return 0;
usleep_range(10, 250);
}
return -ETIMEDOUT;
}
static int isc_clk_prepare(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
int ret;
if (isc_clk->id == ISC_ISPCK) {
ret = pm_runtime_resume_and_get(isc_clk->dev);
if (ret < 0)
return ret;
}
return isc_wait_clk_stable(hw);
}
static void isc_clk_unprepare(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
isc_wait_clk_stable(hw);
if (isc_clk->id == ISC_ISPCK)
pm_runtime_put_sync(isc_clk->dev);
}
static int isc_clk_enable(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
u32 id = isc_clk->id;
struct regmap *regmap = isc_clk->regmap;
unsigned long flags;
unsigned int status;
dev_dbg(isc_clk->dev, "ISC CLK: %s, id = %d, div = %d, parent id = %d\n",
__func__, id, isc_clk->div, isc_clk->parent_id);
spin_lock_irqsave(&isc_clk->lock, flags);
regmap_update_bits(regmap, ISC_CLKCFG,
ISC_CLKCFG_DIV_MASK(id) | ISC_CLKCFG_SEL_MASK(id),
(isc_clk->div << ISC_CLKCFG_DIV_SHIFT(id)) |
(isc_clk->parent_id << ISC_CLKCFG_SEL_SHIFT(id)));
regmap_write(regmap, ISC_CLKEN, ISC_CLK(id));
spin_unlock_irqrestore(&isc_clk->lock, flags);
regmap_read(regmap, ISC_CLKSR, &status);
if (status & ISC_CLK(id))
return 0;
else
return -EINVAL;
}
static void isc_clk_disable(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
u32 id = isc_clk->id;
unsigned long flags;
spin_lock_irqsave(&isc_clk->lock, flags);
regmap_write(isc_clk->regmap, ISC_CLKDIS, ISC_CLK(id));
spin_unlock_irqrestore(&isc_clk->lock, flags);
}
static int isc_clk_is_enabled(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
u32 status;
int ret;
if (isc_clk->id == ISC_ISPCK) {
ret = pm_runtime_resume_and_get(isc_clk->dev);
if (ret < 0)
return 0;
}
regmap_read(isc_clk->regmap, ISC_CLKSR, &status);
if (isc_clk->id == ISC_ISPCK)
pm_runtime_put_sync(isc_clk->dev);
return status & ISC_CLK(isc_clk->id) ? 1 : 0;
}
static unsigned long
isc_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
return DIV_ROUND_CLOSEST(parent_rate, isc_clk->div + 1);
}
static int isc_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
long best_rate = -EINVAL;
int best_diff = -1;
unsigned int i, div;
for (i = 0; i < clk_hw_get_num_parents(hw); i++) {
struct clk_hw *parent;
unsigned long parent_rate;
parent = clk_hw_get_parent_by_index(hw, i);
if (!parent)
continue;
parent_rate = clk_hw_get_rate(parent);
if (!parent_rate)
continue;
for (div = 1; div < ISC_CLK_MAX_DIV + 2; div++) {
unsigned long rate;
int diff;
rate = DIV_ROUND_CLOSEST(parent_rate, div);
diff = abs(req->rate - rate);
if (best_diff < 0 || best_diff > diff) {
best_rate = rate;
best_diff = diff;
req->best_parent_rate = parent_rate;
req->best_parent_hw = parent;
}
if (!best_diff || rate < req->rate)
break;
}
if (!best_diff)
break;
}
dev_dbg(isc_clk->dev,
"ISC CLK: %s, best_rate = %ld, parent clk: %s @ %ld\n",
__func__, best_rate,
__clk_get_name((req->best_parent_hw)->clk),
req->best_parent_rate);
if (best_rate < 0)
return best_rate;
req->rate = best_rate;
return 0;
}
static int isc_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
if (index >= clk_hw_get_num_parents(hw))
return -EINVAL;
isc_clk->parent_id = index;
return 0;
}
static u8 isc_clk_get_parent(struct clk_hw *hw)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
return isc_clk->parent_id;
}
static int isc_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct isc_clk *isc_clk = to_isc_clk(hw);
u32 div;
if (!rate)
return -EINVAL;
div = DIV_ROUND_CLOSEST(parent_rate, rate);
if (div > (ISC_CLK_MAX_DIV + 1) || !div)
return -EINVAL;
isc_clk->div = div - 1;
return 0;
}
static const struct clk_ops isc_clk_ops = {
.prepare = isc_clk_prepare,
.unprepare = isc_clk_unprepare,
.enable = isc_clk_enable,
.disable = isc_clk_disable,
.is_enabled = isc_clk_is_enabled,
.recalc_rate = isc_clk_recalc_rate,
.determine_rate = isc_clk_determine_rate,
.set_parent = isc_clk_set_parent,
.get_parent = isc_clk_get_parent,
.set_rate = isc_clk_set_rate,
};
static int isc_clk_register(struct isc_device *isc, unsigned int id)
{
struct regmap *regmap = isc->regmap;
struct device_node *np = isc->dev->of_node;
struct isc_clk *isc_clk;
struct clk_init_data init;
const char *clk_name = np->name;
const char *parent_names[3];
int num_parents;
num_parents = of_clk_get_parent_count(np);
if (num_parents < 1 || num_parents > 3)
return -EINVAL;
if (num_parents > 2 && id == ISC_ISPCK)
num_parents = 2;
of_clk_parent_fill(np, parent_names, num_parents);
if (id == ISC_MCK)
of_property_read_string(np, "clock-output-names", &clk_name);
else
clk_name = "isc-ispck";
init.parent_names = parent_names;
init.num_parents = num_parents;
init.name = clk_name;
init.ops = &isc_clk_ops;
init.flags = CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
isc_clk = &isc->isc_clks[id];
isc_clk->hw.init = &init;
isc_clk->regmap = regmap;
isc_clk->id = id;
isc_clk->dev = isc->dev;
spin_lock_init(&isc_clk->lock);
isc_clk->clk = clk_register(isc->dev, &isc_clk->hw);
if (IS_ERR(isc_clk->clk)) {
dev_err(isc->dev, "%s: clock register fail\n", clk_name);
return PTR_ERR(isc_clk->clk);
} else if (id == ISC_MCK)
of_clk_add_provider(np, of_clk_src_simple_get, isc_clk->clk);
return 0;
}
int isc_clk_init(struct isc_device *isc)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(isc->isc_clks); i++)
isc->isc_clks[i].clk = ERR_PTR(-EINVAL);
for (i = 0; i < ARRAY_SIZE(isc->isc_clks); i++) {
ret = isc_clk_register(isc, i);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(isc_clk_init);
void isc_clk_cleanup(struct isc_device *isc)
{
unsigned int i;
of_clk_del_provider(isc->dev->of_node);
for (i = 0; i < ARRAY_SIZE(isc->isc_clks); i++) {
struct isc_clk *isc_clk = &isc->isc_clks[i];
if (!IS_ERR(isc_clk->clk))
clk_unregister(isc_clk->clk);
}
}
EXPORT_SYMBOL_GPL(isc_clk_cleanup);
static int isc_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct isc_device *isc = vb2_get_drv_priv(vq);
unsigned int size = isc->fmt.fmt.pix.sizeimage;
if (*nplanes)
return sizes[0] < size ? -EINVAL : 0;
*nplanes = 1;
sizes[0] = size;
return 0;
}
static int isc_buffer_prepare(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct isc_device *isc = vb2_get_drv_priv(vb->vb2_queue);
unsigned long size = isc->fmt.fmt.pix.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
v4l2_err(&isc->v4l2_dev, "buffer too small (%lu < %lu)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, size);
vbuf->field = isc->fmt.fmt.pix.field;
return 0;
}
static void isc_start_dma(struct isc_device *isc)
{
struct regmap *regmap = isc->regmap;
u32 sizeimage = isc->fmt.fmt.pix.sizeimage;
u32 dctrl_dview;
dma_addr_t addr0;
u32 h, w;
h = isc->fmt.fmt.pix.height;
w = isc->fmt.fmt.pix.width;
/*
* In case the sensor is not RAW, it will output a pixel (12-16 bits)
* with two samples on the ISC Data bus (which is 8-12)
* ISC will count each sample, so, we need to multiply these values
* by two, to get the real number of samples for the required pixels.
*/
if (!ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code)) {
h <<= 1;
w <<= 1;
}
/*
* We limit the column/row count that the ISC will output according
* to the configured resolution that we want.
* This will avoid the situation where the sensor is misconfigured,
* sending more data, and the ISC will just take it and DMA to memory,
* causing corruption.
*/
regmap_write(regmap, ISC_PFE_CFG1,
(ISC_PFE_CFG1_COLMIN(0) & ISC_PFE_CFG1_COLMIN_MASK) |
(ISC_PFE_CFG1_COLMAX(w - 1) & ISC_PFE_CFG1_COLMAX_MASK));
regmap_write(regmap, ISC_PFE_CFG2,
(ISC_PFE_CFG2_ROWMIN(0) & ISC_PFE_CFG2_ROWMIN_MASK) |
(ISC_PFE_CFG2_ROWMAX(h - 1) & ISC_PFE_CFG2_ROWMAX_MASK));
regmap_update_bits(regmap, ISC_PFE_CFG0,
ISC_PFE_CFG0_COLEN | ISC_PFE_CFG0_ROWEN,
ISC_PFE_CFG0_COLEN | ISC_PFE_CFG0_ROWEN);
addr0 = vb2_dma_contig_plane_dma_addr(&isc->cur_frm->vb.vb2_buf, 0);
regmap_write(regmap, ISC_DAD0 + isc->offsets.dma, addr0);
switch (isc->config.fourcc) {
case V4L2_PIX_FMT_YUV420:
regmap_write(regmap, ISC_DAD1 + isc->offsets.dma,
addr0 + (sizeimage * 2) / 3);
regmap_write(regmap, ISC_DAD2 + isc->offsets.dma,
addr0 + (sizeimage * 5) / 6);
break;
case V4L2_PIX_FMT_YUV422P:
regmap_write(regmap, ISC_DAD1 + isc->offsets.dma,
addr0 + sizeimage / 2);
regmap_write(regmap, ISC_DAD2 + isc->offsets.dma,
addr0 + (sizeimage * 3) / 4);
break;
default:
break;
}
dctrl_dview = isc->config.dctrl_dview;
regmap_write(regmap, ISC_DCTRL + isc->offsets.dma,
dctrl_dview | ISC_DCTRL_IE_IS);
spin_lock(&isc->awb_lock);
regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_CAPTURE);
spin_unlock(&isc->awb_lock);
}
static void isc_set_pipeline(struct isc_device *isc, u32 pipeline)
{
struct regmap *regmap = isc->regmap;
struct isc_ctrls *ctrls = &isc->ctrls;
u32 val, bay_cfg;
const u32 *gamma;
unsigned int i;
/* WB-->CFA-->CC-->GAM-->CSC-->CBC-->SUB422-->SUB420 */
for (i = 0; i < ISC_PIPE_LINE_NODE_NUM; i++) {
val = pipeline & BIT(i) ? 1 : 0;
regmap_field_write(isc->pipeline[i], val);
}
if (!pipeline)
return;
bay_cfg = isc->config.sd_format->cfa_baycfg;
regmap_write(regmap, ISC_WB_CFG, bay_cfg);
isc_update_awb_ctrls(isc);
isc_update_v4l2_ctrls(isc);
regmap_write(regmap, ISC_CFA_CFG, bay_cfg | ISC_CFA_CFG_EITPOL);
gamma = &isc->gamma_table[ctrls->gamma_index][0];
regmap_bulk_write(regmap, ISC_GAM_BENTRY, gamma, GAMMA_ENTRIES);
regmap_bulk_write(regmap, ISC_GAM_GENTRY, gamma, GAMMA_ENTRIES);
regmap_bulk_write(regmap, ISC_GAM_RENTRY, gamma, GAMMA_ENTRIES);
isc->config_dpc(isc);
isc->config_csc(isc);
isc->config_cbc(isc);
isc->config_cc(isc);
isc->config_gam(isc);
}
static int isc_update_profile(struct isc_device *isc)
{
struct regmap *regmap = isc->regmap;
u32 sr;
int counter = 100;
regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_UPPRO);
regmap_read(regmap, ISC_CTRLSR, &sr);
while ((sr & ISC_CTRL_UPPRO) && counter--) {
usleep_range(1000, 2000);
regmap_read(regmap, ISC_CTRLSR, &sr);
}
if (counter < 0) {
v4l2_warn(&isc->v4l2_dev, "Time out to update profile\n");
return -ETIMEDOUT;
}
return 0;
}
static void isc_set_histogram(struct isc_device *isc, bool enable)
{
struct regmap *regmap = isc->regmap;
struct isc_ctrls *ctrls = &isc->ctrls;
if (enable) {
regmap_write(regmap, ISC_HIS_CFG + isc->offsets.his,
ISC_HIS_CFG_MODE_GR |
(isc->config.sd_format->cfa_baycfg
<< ISC_HIS_CFG_BAYSEL_SHIFT) |
ISC_HIS_CFG_RAR);
regmap_write(regmap, ISC_HIS_CTRL + isc->offsets.his,
ISC_HIS_CTRL_EN);
regmap_write(regmap, ISC_INTEN, ISC_INT_HISDONE);
ctrls->hist_id = ISC_HIS_CFG_MODE_GR;
isc_update_profile(isc);
regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_HISREQ);
ctrls->hist_stat = HIST_ENABLED;
} else {
regmap_write(regmap, ISC_INTDIS, ISC_INT_HISDONE);
regmap_write(regmap, ISC_HIS_CTRL + isc->offsets.his,
ISC_HIS_CTRL_DIS);
ctrls->hist_stat = HIST_DISABLED;
}
}
static int isc_configure(struct isc_device *isc)
{
struct regmap *regmap = isc->regmap;
u32 pfe_cfg0, dcfg, mask, pipeline;
struct isc_subdev_entity *subdev = isc->current_subdev;
pfe_cfg0 = isc->config.sd_format->pfe_cfg0_bps;
pipeline = isc->config.bits_pipeline;
dcfg = isc->config.dcfg_imode | isc->dcfg;
pfe_cfg0 |= subdev->pfe_cfg0 | ISC_PFE_CFG0_MODE_PROGRESSIVE;
mask = ISC_PFE_CFG0_BPS_MASK | ISC_PFE_CFG0_HPOL_LOW |
ISC_PFE_CFG0_VPOL_LOW | ISC_PFE_CFG0_PPOL_LOW |
ISC_PFE_CFG0_MODE_MASK | ISC_PFE_CFG0_CCIR_CRC |
ISC_PFE_CFG0_CCIR656 | ISC_PFE_CFG0_MIPI;
regmap_update_bits(regmap, ISC_PFE_CFG0, mask, pfe_cfg0);
isc->config_rlp(isc);
regmap_write(regmap, ISC_DCFG + isc->offsets.dma, dcfg);
/* Set the pipeline */
isc_set_pipeline(isc, pipeline);
/*
* The current implemented histogram is available for RAW R, B, GB, GR
* channels. We need to check if sensor is outputting RAW BAYER
*/
if (isc->ctrls.awb &&
ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code))
isc_set_histogram(isc, true);
else
isc_set_histogram(isc, false);
/* Update profile */
return isc_update_profile(isc);
}
static int isc_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct isc_device *isc = vb2_get_drv_priv(vq);
struct regmap *regmap = isc->regmap;
struct isc_buffer *buf;
unsigned long flags;
int ret;
/* Enable stream on the sub device */
ret = v4l2_subdev_call(isc->current_subdev->sd, video, s_stream, 1);
if (ret && ret != -ENOIOCTLCMD) {
v4l2_err(&isc->v4l2_dev, "stream on failed in subdev %d\n",
ret);
goto err_start_stream;
}
ret = pm_runtime_resume_and_get(isc->dev);
if (ret < 0) {
v4l2_err(&isc->v4l2_dev, "RPM resume failed in subdev %d\n",
ret);
goto err_pm_get;
}
ret = isc_configure(isc);
if (unlikely(ret))
goto err_configure;
/* Enable DMA interrupt */
regmap_write(regmap, ISC_INTEN, ISC_INT_DDONE);
spin_lock_irqsave(&isc->dma_queue_lock, flags);
isc->sequence = 0;
isc->stop = false;
reinit_completion(&isc->comp);
isc->cur_frm = list_first_entry(&isc->dma_queue,
struct isc_buffer, list);
list_del(&isc->cur_frm->list);
isc_start_dma(isc);
spin_unlock_irqrestore(&isc->dma_queue_lock, flags);
/* if we streaming from RAW, we can do one-shot white balance adj */
if (ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code))
v4l2_ctrl_activate(isc->do_wb_ctrl, true);
return 0;
err_configure:
pm_runtime_put_sync(isc->dev);
err_pm_get:
v4l2_subdev_call(isc->current_subdev->sd, video, s_stream, 0);
err_start_stream:
spin_lock_irqsave(&isc->dma_queue_lock, flags);
list_for_each_entry(buf, &isc->dma_queue, list)
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
INIT_LIST_HEAD(&isc->dma_queue);
spin_unlock_irqrestore(&isc->dma_queue_lock, flags);
return ret;
}
static void isc_stop_streaming(struct vb2_queue *vq)
{
struct isc_device *isc = vb2_get_drv_priv(vq);
unsigned long flags;
struct isc_buffer *buf;
int ret;
v4l2_ctrl_activate(isc->do_wb_ctrl, false);
isc->stop = true;
/* Wait until the end of the current frame */
if (isc->cur_frm && !wait_for_completion_timeout(&isc->comp, 5 * HZ))
v4l2_err(&isc->v4l2_dev,
"Timeout waiting for end of the capture\n");
/* Disable DMA interrupt */
regmap_write(isc->regmap, ISC_INTDIS, ISC_INT_DDONE);
pm_runtime_put_sync(isc->dev);
/* Disable stream on the sub device */
ret = v4l2_subdev_call(isc->current_subdev->sd, video, s_stream, 0);
if (ret && ret != -ENOIOCTLCMD)
v4l2_err(&isc->v4l2_dev, "stream off failed in subdev\n");
/* Release all active buffers */
spin_lock_irqsave(&isc->dma_queue_lock, flags);
if (unlikely(isc->cur_frm)) {
vb2_buffer_done(&isc->cur_frm->vb.vb2_buf,
VB2_BUF_STATE_ERROR);
isc->cur_frm = NULL;
}
list_for_each_entry(buf, &isc->dma_queue, list)
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
INIT_LIST_HEAD(&isc->dma_queue);
spin_unlock_irqrestore(&isc->dma_queue_lock, flags);
}
static void isc_buffer_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct isc_buffer *buf = container_of(vbuf, struct isc_buffer, vb);
struct isc_device *isc = vb2_get_drv_priv(vb->vb2_queue);
unsigned long flags;
spin_lock_irqsave(&isc->dma_queue_lock, flags);
if (!isc->cur_frm && list_empty(&isc->dma_queue) &&
vb2_is_streaming(vb->vb2_queue)) {
isc->cur_frm = buf;
isc_start_dma(isc);
} else
list_add_tail(&buf->list, &isc->dma_queue);
spin_unlock_irqrestore(&isc->dma_queue_lock, flags);
}
static struct isc_format *find_format_by_fourcc(struct isc_device *isc,
unsigned int fourcc)
{
unsigned int num_formats = isc->num_user_formats;
struct isc_format *fmt;
unsigned int i;
for (i = 0; i < num_formats; i++) {
fmt = isc->user_formats[i];
if (fmt->fourcc == fourcc)
return fmt;
}
return NULL;
}
static const struct vb2_ops isc_vb2_ops = {
.queue_setup = isc_queue_setup,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.buf_prepare = isc_buffer_prepare,
.start_streaming = isc_start_streaming,
.stop_streaming = isc_stop_streaming,
.buf_queue = isc_buffer_queue,
};
static int isc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct isc_device *isc = video_drvdata(file);
strscpy(cap->driver, "microchip-isc", sizeof(cap->driver));
strscpy(cap->card, "Atmel Image Sensor Controller", sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", isc->v4l2_dev.name);
return 0;
}
static int isc_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct isc_device *isc = video_drvdata(file);
u32 index = f->index;
u32 i, supported_index;
if (index < isc->controller_formats_size) {
f->pixelformat = isc->controller_formats[index].fourcc;
return 0;
}
index -= isc->controller_formats_size;
supported_index = 0;
for (i = 0; i < isc->formats_list_size; i++) {
if (!ISC_IS_FORMAT_RAW(isc->formats_list[i].mbus_code) ||
!isc->formats_list[i].sd_support)
continue;
if (supported_index == index) {
f->pixelformat = isc->formats_list[i].fourcc;
return 0;
}
supported_index++;
}
return -EINVAL;
}
static int isc_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *fmt)
{
struct isc_device *isc = video_drvdata(file);
*fmt = isc->fmt;
return 0;
}
/*
* Checks the current configured format, if ISC can output it,
* considering which type of format the ISC receives from the sensor
*/
static int isc_try_validate_formats(struct isc_device *isc)
{
int ret;
bool bayer = false, yuv = false, rgb = false, grey = false;
/* all formats supported by the RLP module are OK */
switch (isc->try_config.fourcc) {
case V4L2_PIX_FMT_SBGGR8:
case V4L2_PIX_FMT_SGBRG8:
case V4L2_PIX_FMT_SGRBG8:
case V4L2_PIX_FMT_SRGGB8:
case V4L2_PIX_FMT_SBGGR10:
case V4L2_PIX_FMT_SGBRG10:
case V4L2_PIX_FMT_SGRBG10:
case V4L2_PIX_FMT_SRGGB10:
case V4L2_PIX_FMT_SBGGR12:
case V4L2_PIX_FMT_SGBRG12:
case V4L2_PIX_FMT_SGRBG12:
case V4L2_PIX_FMT_SRGGB12:
ret = 0;
bayer = true;
break;
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
ret = 0;
yuv = true;
break;
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_ABGR32:
case V4L2_PIX_FMT_XBGR32:
case V4L2_PIX_FMT_ARGB444:
case V4L2_PIX_FMT_ARGB555:
ret = 0;
rgb = true;
break;
case V4L2_PIX_FMT_GREY:
case V4L2_PIX_FMT_Y10:
case V4L2_PIX_FMT_Y16:
ret = 0;
grey = true;
break;
default:
/* any other different formats are not supported */
ret = -EINVAL;
}
v4l2_dbg(1, debug, &isc->v4l2_dev,
"Format validation, requested rgb=%u, yuv=%u, grey=%u, bayer=%u\n",
rgb, yuv, grey, bayer);
/* we cannot output RAW if we do not receive RAW */
if ((bayer) && !ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code))
return -EINVAL;
/* we cannot output GREY if we do not receive RAW/GREY */
if (grey && !ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code) &&
!ISC_IS_FORMAT_GREY(isc->try_config.sd_format->mbus_code))
return -EINVAL;
return ret;
}
/*
* Configures the RLP and DMA modules, depending on the output format
* configured for the ISC.
* If direct_dump == true, just dump raw data 8/16 bits depending on format.
*/
static int isc_try_configure_rlp_dma(struct isc_device *isc, bool direct_dump)
{
isc->try_config.rlp_cfg_mode = 0;
switch (isc->try_config.fourcc) {
case V4L2_PIX_FMT_SBGGR8:
case V4L2_PIX_FMT_SGBRG8:
case V4L2_PIX_FMT_SGRBG8:
case V4L2_PIX_FMT_SRGGB8:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT8;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED8;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 8;
break;
case V4L2_PIX_FMT_SBGGR10:
case V4L2_PIX_FMT_SGBRG10:
case V4L2_PIX_FMT_SGRBG10:
case V4L2_PIX_FMT_SRGGB10:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT10;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_SBGGR12:
case V4L2_PIX_FMT_SGBRG12:
case V4L2_PIX_FMT_SGRBG12:
case V4L2_PIX_FMT_SRGGB12:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT12;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_RGB565:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_RGB565;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_ARGB444:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_ARGB444;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_ARGB555:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_ARGB555;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_ABGR32:
case V4L2_PIX_FMT_XBGR32:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_ARGB32;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 32;
break;
case V4L2_PIX_FMT_YUV420:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YYCC;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_YC420P;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PLANAR;
isc->try_config.bpp = 12;
break;
case V4L2_PIX_FMT_YUV422P:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YYCC;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_YC422P;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PLANAR;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_YUYV:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YCYC | ISC_RLP_CFG_YMODE_YUYV;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_UYVY:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YCYC | ISC_RLP_CFG_YMODE_UYVY;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_VYUY:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YCYC | ISC_RLP_CFG_YMODE_VYUY;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
case V4L2_PIX_FMT_GREY:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DATY8;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED8;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 8;
break;
case V4L2_PIX_FMT_Y16:
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DATY10 | ISC_RLP_CFG_LSH;
fallthrough;
case V4L2_PIX_FMT_Y10:
isc->try_config.rlp_cfg_mode |= ISC_RLP_CFG_MODE_DATY10;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
isc->try_config.bpp = 16;
break;
default:
return -EINVAL;
}
if (direct_dump) {
isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT8;
isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED8;
isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED;
return 0;
}
return 0;
}
/*
* Configuring pipeline modules, depending on which format the ISC outputs
* and considering which format it has as input from the sensor.
*/
static int isc_try_configure_pipeline(struct isc_device *isc)
{
switch (isc->try_config.fourcc) {
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_ARGB555:
case V4L2_PIX_FMT_ARGB444:
case V4L2_PIX_FMT_ABGR32:
case V4L2_PIX_FMT_XBGR32:
/* if sensor format is RAW, we convert inside ISC */
if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) {
isc->try_config.bits_pipeline = CFA_ENABLE |
WB_ENABLE | GAM_ENABLES | DPC_BLCENABLE |
CC_ENABLE;
} else {
isc->try_config.bits_pipeline = 0x0;
}
break;
case V4L2_PIX_FMT_YUV420:
/* if sensor format is RAW, we convert inside ISC */
if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) {
isc->try_config.bits_pipeline = CFA_ENABLE |
CSC_ENABLE | GAM_ENABLES | WB_ENABLE |
SUB420_ENABLE | SUB422_ENABLE | CBC_ENABLE |
DPC_BLCENABLE;
} else {
isc->try_config.bits_pipeline = 0x0;
}
break;
case V4L2_PIX_FMT_YUV422P:
/* if sensor format is RAW, we convert inside ISC */
if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) {
isc->try_config.bits_pipeline = CFA_ENABLE |
CSC_ENABLE | WB_ENABLE | GAM_ENABLES |
SUB422_ENABLE | CBC_ENABLE | DPC_BLCENABLE;
} else {
isc->try_config.bits_pipeline = 0x0;
}
break;
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
/* if sensor format is RAW, we convert inside ISC */
if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) {
isc->try_config.bits_pipeline = CFA_ENABLE |
CSC_ENABLE | WB_ENABLE | GAM_ENABLES |
SUB422_ENABLE | CBC_ENABLE | DPC_BLCENABLE;
} else {
isc->try_config.bits_pipeline = 0x0;
}
break;
case V4L2_PIX_FMT_GREY:
case V4L2_PIX_FMT_Y16:
/* if sensor format is RAW, we convert inside ISC */
if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) {
isc->try_config.bits_pipeline = CFA_ENABLE |
CSC_ENABLE | WB_ENABLE | GAM_ENABLES |
CBC_ENABLE | DPC_BLCENABLE;
} else {
isc->try_config.bits_pipeline = 0x0;
}
break;
default:
if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code))
isc->try_config.bits_pipeline = WB_ENABLE | DPC_BLCENABLE;
else
isc->try_config.bits_pipeline = 0x0;
}
/* Tune the pipeline to product specific */
isc->adapt_pipeline(isc);
return 0;
}
static void isc_try_fse(struct isc_device *isc,
struct v4l2_subdev_state *sd_state)
{
int ret;
struct v4l2_subdev_frame_size_enum fse = {};
/*
* If we do not know yet which format the subdev is using, we cannot
* do anything.
*/
if (!isc->try_config.sd_format)
return;
fse.code = isc->try_config.sd_format->mbus_code;
fse.which = V4L2_SUBDEV_FORMAT_TRY;
ret = v4l2_subdev_call(isc->current_subdev->sd, pad, enum_frame_size,
sd_state, &fse);
/*
* Attempt to obtain format size from subdev. If not available,
* just use the maximum ISC can receive.
*/
if (ret) {
sd_state->pads->try_crop.width = isc->max_width;
sd_state->pads->try_crop.height = isc->max_height;
} else {
sd_state->pads->try_crop.width = fse.max_width;
sd_state->pads->try_crop.height = fse.max_height;
}
}
static int isc_try_fmt(struct isc_device *isc, struct v4l2_format *f,
u32 *code)
{
int i;
struct isc_format *sd_fmt = NULL, *direct_fmt = NULL;
struct v4l2_pix_format *pixfmt = &f->fmt.pix;
struct v4l2_subdev_pad_config pad_cfg = {};
struct v4l2_subdev_state pad_state = {
.pads = &pad_cfg
};
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
u32 mbus_code;
int ret;
bool rlp_dma_direct_dump = false;
if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
/* Step 1: find a RAW format that is supported */
for (i = 0; i < isc->num_user_formats; i++) {
if (ISC_IS_FORMAT_RAW(isc->user_formats[i]->mbus_code)) {
sd_fmt = isc->user_formats[i];
break;
}
}
/* Step 2: We can continue with this RAW format, or we can look
* for better: maybe sensor supports directly what we need.
*/
direct_fmt = find_format_by_fourcc(isc, pixfmt->pixelformat);
/* Step 3: We have both. We decide given the module parameter which
* one to use.
*/
if (direct_fmt && sd_fmt && sensor_preferred)
sd_fmt = direct_fmt;
/* Step 4: we do not have RAW but we have a direct format. Use it. */
if (direct_fmt && !sd_fmt)
sd_fmt = direct_fmt;
/* Step 5: if we are using a direct format, we need to package
* everything as 8 bit data and just dump it
*/
if (sd_fmt == direct_fmt)
rlp_dma_direct_dump = true;
/* Step 6: We have no format. This can happen if the userspace
* requests some weird/invalid format.
* In this case, default to whatever we have
*/
if (!sd_fmt && !direct_fmt) {
sd_fmt = isc->user_formats[isc->num_user_formats - 1];
v4l2_dbg(1, debug, &isc->v4l2_dev,
"Sensor not supporting %.4s, using %.4s\n",
(char *)&pixfmt->pixelformat, (char *)&sd_fmt->fourcc);
}
if (!sd_fmt) {
ret = -EINVAL;
goto isc_try_fmt_err;
}
/* Step 7: Print out what we decided for debugging */
v4l2_dbg(1, debug, &isc->v4l2_dev,
"Preferring to have sensor using format %.4s\n",
(char *)&sd_fmt->fourcc);
/* Step 8: at this moment we decided which format the subdev will use */
isc->try_config.sd_format = sd_fmt;
/* Limit to Atmel ISC hardware capabilities */
if (pixfmt->width > isc->max_width)
pixfmt->width = isc->max_width;
if (pixfmt->height > isc->max_height)
pixfmt->height = isc->max_height;
/*
* The mbus format is the one the subdev outputs.
* The pixels will be transferred in this format Sensor -> ISC
*/
mbus_code = sd_fmt->mbus_code;
/*
* Validate formats. If the required format is not OK, default to raw.
*/
isc->try_config.fourcc = pixfmt->pixelformat;
if (isc_try_validate_formats(isc)) {
pixfmt->pixelformat = isc->try_config.fourcc = sd_fmt->fourcc;
/* Re-try to validate the new format */
ret = isc_try_validate_formats(isc);
if (ret)
goto isc_try_fmt_err;
}
ret = isc_try_configure_rlp_dma(isc, rlp_dma_direct_dump);
if (ret)
goto isc_try_fmt_err;
ret = isc_try_configure_pipeline(isc);
if (ret)
goto isc_try_fmt_err;
/* Obtain frame sizes if possible to have crop requirements ready */
isc_try_fse(isc, &pad_state);
v4l2_fill_mbus_format(&format.format, pixfmt, mbus_code);
ret = v4l2_subdev_call(isc->current_subdev->sd, pad, set_fmt,
&pad_state, &format);
if (ret < 0)
goto isc_try_fmt_subdev_err;
v4l2_fill_pix_format(pixfmt, &format.format);
/* Limit to Atmel ISC hardware capabilities */
if (pixfmt->width > isc->max_width)
pixfmt->width = isc->max_width;
if (pixfmt->height > isc->max_height)
pixfmt->height = isc->max_height;
pixfmt->field = V4L2_FIELD_NONE;
pixfmt->bytesperline = (pixfmt->width * isc->try_config.bpp) >> 3;
pixfmt->sizeimage = pixfmt->bytesperline * pixfmt->height;
if (code)
*code = mbus_code;
return 0;
isc_try_fmt_err:
v4l2_err(&isc->v4l2_dev, "Could not find any possible format for a working pipeline\n");
isc_try_fmt_subdev_err:
memset(&isc->try_config, 0, sizeof(isc->try_config));
return ret;
}
static int isc_set_fmt(struct isc_device *isc, struct v4l2_format *f)
{
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
u32 mbus_code = 0;
int ret;
ret = isc_try_fmt(isc, f, &mbus_code);
if (ret)
return ret;
v4l2_fill_mbus_format(&format.format, &f->fmt.pix, mbus_code);
ret = v4l2_subdev_call(isc->current_subdev->sd, pad,
set_fmt, NULL, &format);
if (ret < 0)
return ret;
/* Limit to Atmel ISC hardware capabilities */
if (f->fmt.pix.width > isc->max_width)
f->fmt.pix.width = isc->max_width;
if (f->fmt.pix.height > isc->max_height)
f->fmt.pix.height = isc->max_height;
isc->fmt = *f;
if (isc->try_config.sd_format && isc->config.sd_format &&
isc->try_config.sd_format != isc->config.sd_format) {
isc->ctrls.hist_stat = HIST_INIT;
isc_reset_awb_ctrls(isc);
isc_update_v4l2_ctrls(isc);
}
/* make the try configuration active */
isc->config = isc->try_config;
v4l2_dbg(1, debug, &isc->v4l2_dev, "New ISC configuration in place\n");
return 0;
}
static int isc_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct isc_device *isc = video_drvdata(file);
if (vb2_is_streaming(&isc->vb2_vidq))
return -EBUSY;
return isc_set_fmt(isc, f);
}
static int isc_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct isc_device *isc = video_drvdata(file);
return isc_try_fmt(isc, f, NULL);
}
static int isc_enum_input(struct file *file, void *priv,
struct v4l2_input *inp)
{
if (inp->index != 0)
return -EINVAL;
inp->type = V4L2_INPUT_TYPE_CAMERA;
inp->std = 0;
strscpy(inp->name, "Camera", sizeof(inp->name));
return 0;
}
static int isc_g_input(struct file *file, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int isc_s_input(struct file *file, void *priv, unsigned int i)
{
if (i > 0)
return -EINVAL;
return 0;
}
static int isc_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct isc_device *isc = video_drvdata(file);
return v4l2_g_parm_cap(video_devdata(file), isc->current_subdev->sd, a);
}
static int isc_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a)
{
struct isc_device *isc = video_drvdata(file);
return v4l2_s_parm_cap(video_devdata(file), isc->current_subdev->sd, a);
}
static int isc_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct isc_device *isc = video_drvdata(file);
struct v4l2_subdev_frame_size_enum fse = {
.code = isc->config.sd_format->mbus_code,
.index = fsize->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret = -EINVAL;
int i;
for (i = 0; i < isc->num_user_formats; i++)
if (isc->user_formats[i]->fourcc == fsize->pixel_format)
ret = 0;
for (i = 0; i < isc->controller_formats_size; i++)
if (isc->controller_formats[i].fourcc == fsize->pixel_format)
ret = 0;
if (ret)
return ret;
ret = v4l2_subdev_call(isc->current_subdev->sd, pad, enum_frame_size,
NULL, &fse);
if (ret)
return ret;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = fse.max_width;
fsize->discrete.height = fse.max_height;
return 0;
}
static int isc_enum_frameintervals(struct file *file, void *fh,
struct v4l2_frmivalenum *fival)
{
struct isc_device *isc = video_drvdata(file);
struct v4l2_subdev_frame_interval_enum fie = {
.code = isc->config.sd_format->mbus_code,
.index = fival->index,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret = -EINVAL;
unsigned int i;
for (i = 0; i < isc->num_user_formats; i++)
if (isc->user_formats[i]->fourcc == fival->pixel_format)
ret = 0;
for (i = 0; i < isc->controller_formats_size; i++)
if (isc->controller_formats[i].fourcc == fival->pixel_format)
ret = 0;
if (ret)
return ret;
ret = v4l2_subdev_call(isc->current_subdev->sd, pad,
enum_frame_interval, NULL, &fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
static const struct v4l2_ioctl_ops isc_ioctl_ops = {
.vidioc_querycap = isc_querycap,
.vidioc_enum_fmt_vid_cap = isc_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = isc_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = isc_s_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = isc_try_fmt_vid_cap,
.vidioc_enum_input = isc_enum_input,
.vidioc_g_input = isc_g_input,
.vidioc_s_input = isc_s_input,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_g_parm = isc_g_parm,
.vidioc_s_parm = isc_s_parm,
.vidioc_enum_framesizes = isc_enum_framesizes,
.vidioc_enum_frameintervals = isc_enum_frameintervals,
.vidioc_log_status = v4l2_ctrl_log_status,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static int isc_open(struct file *file)
{
struct isc_device *isc = video_drvdata(file);
struct v4l2_subdev *sd = isc->current_subdev->sd;
int ret;
if (mutex_lock_interruptible(&isc->lock))
return -ERESTARTSYS;
ret = v4l2_fh_open(file);
if (ret < 0)
goto unlock;
if (!v4l2_fh_is_singular_file(file))
goto unlock;
ret = v4l2_subdev_call(sd, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD) {
v4l2_fh_release(file);
goto unlock;
}
ret = isc_set_fmt(isc, &isc->fmt);
if (ret) {
v4l2_subdev_call(sd, core, s_power, 0);
v4l2_fh_release(file);
}
unlock:
mutex_unlock(&isc->lock);
return ret;
}
static int isc_release(struct file *file)
{
struct isc_device *isc = video_drvdata(file);
struct v4l2_subdev *sd = isc->current_subdev->sd;
bool fh_singular;
int ret;
mutex_lock(&isc->lock);
fh_singular = v4l2_fh_is_singular_file(file);
ret = _vb2_fop_release(file, NULL);
if (fh_singular)
v4l2_subdev_call(sd, core, s_power, 0);
mutex_unlock(&isc->lock);
return ret;
}
static const struct v4l2_file_operations isc_fops = {
.owner = THIS_MODULE,
.open = isc_open,
.release = isc_release,
.unlocked_ioctl = video_ioctl2,
.read = vb2_fop_read,
.mmap = vb2_fop_mmap,
.poll = vb2_fop_poll,
};
irqreturn_t isc_interrupt(int irq, void *dev_id)
{
struct isc_device *isc = (struct isc_device *)dev_id;
struct regmap *regmap = isc->regmap;
u32 isc_intsr, isc_intmask, pending;
irqreturn_t ret = IRQ_NONE;
regmap_read(regmap, ISC_INTSR, &isc_intsr);
regmap_read(regmap, ISC_INTMASK, &isc_intmask);
pending = isc_intsr & isc_intmask;
if (likely(pending & ISC_INT_DDONE)) {
spin_lock(&isc->dma_queue_lock);
if (isc->cur_frm) {
struct vb2_v4l2_buffer *vbuf = &isc->cur_frm->vb;
struct vb2_buffer *vb = &vbuf->vb2_buf;
vb->timestamp = ktime_get_ns();
vbuf->sequence = isc->sequence++;
vb2_buffer_done(vb, VB2_BUF_STATE_DONE);
isc->cur_frm = NULL;
}
if (!list_empty(&isc->dma_queue) && !isc->stop) {
isc->cur_frm = list_first_entry(&isc->dma_queue,
struct isc_buffer, list);
list_del(&isc->cur_frm->list);
isc_start_dma(isc);
}
if (isc->stop)
complete(&isc->comp);
ret = IRQ_HANDLED;
spin_unlock(&isc->dma_queue_lock);
}
if (pending & ISC_INT_HISDONE) {
schedule_work(&isc->awb_work);
ret = IRQ_HANDLED;
}
return ret;
}
EXPORT_SYMBOL_GPL(isc_interrupt);
static void isc_hist_count(struct isc_device *isc, u32 *min, u32 *max)
{
struct regmap *regmap = isc->regmap;
struct isc_ctrls *ctrls = &isc->ctrls;
u32 *hist_count = &ctrls->hist_count[ctrls->hist_id];
u32 *hist_entry = &ctrls->hist_entry[0];
u32 i;
*min = 0;
*max = HIST_ENTRIES;
regmap_bulk_read(regmap, ISC_HIS_ENTRY + isc->offsets.his_entry,
hist_entry, HIST_ENTRIES);
*hist_count = 0;
/*
* we deliberately ignore the end of the histogram,
* the most white pixels
*/
for (i = 1; i < HIST_ENTRIES; i++) {
if (*hist_entry && !*min)
*min = i;
if (*hist_entry)
*max = i;
*hist_count += i * (*hist_entry++);
}
if (!*min)
*min = 1;
}
static void isc_wb_update(struct isc_ctrls *ctrls)
{
u32 *hist_count = &ctrls->hist_count[0];
u32 c, offset[4];
u64 avg = 0;
/* We compute two gains, stretch gain and grey world gain */
u32 s_gain[4], gw_gain[4];
/*
* According to Grey World, we need to set gains for R/B to normalize
* them towards the green channel.
* Thus we want to keep Green as fixed and adjust only Red/Blue
* Compute the average of the both green channels first
*/
avg = (u64)hist_count[ISC_HIS_CFG_MODE_GR] +
(u64)hist_count[ISC_HIS_CFG_MODE_GB];
avg >>= 1;
/* Green histogram is null, nothing to do */
if (!avg)
return;
for (c = ISC_HIS_CFG_MODE_GR; c <= ISC_HIS_CFG_MODE_B; c++) {
/*
* the color offset is the minimum value of the histogram.
* we stretch this color to the full range by substracting
* this value from the color component.
*/
offset[c] = ctrls->hist_minmax[c][HIST_MIN_INDEX];
/*
* The offset is always at least 1. If the offset is 1, we do
* not need to adjust it, so our result must be zero.
* the offset is computed in a histogram on 9 bits (0..512)
* but the offset in register is based on
* 12 bits pipeline (0..4096).
* we need to shift with the 3 bits that the histogram is
* ignoring
*/
ctrls->offset[c] = (offset[c] - 1) << 3;
/*
* the offset is then taken and converted to 2's complements,
* and must be negative, as we subtract this value from the
* color components
*/
ctrls->offset[c] = -ctrls->offset[c];
/*
* the stretch gain is the total number of histogram bins
* divided by the actual range of color component (Max - Min)
* If we compute gain like this, the actual color component
* will be stretched to the full histogram.
* We need to shift 9 bits for precision, we have 9 bits for
* decimals
*/
s_gain[c] = (HIST_ENTRIES << 9) /
(ctrls->hist_minmax[c][HIST_MAX_INDEX] -
ctrls->hist_minmax[c][HIST_MIN_INDEX] + 1);
/*
* Now we have to compute the gain w.r.t. the average.
* Add/lose gain to the component towards the average.
* If it happens that the component is zero, use the
* fixed point value : 1.0 gain.
*/
if (hist_count[c])
gw_gain[c] = div_u64(avg << 9, hist_count[c]);
else
gw_gain[c] = 1 << 9;
/* multiply both gains and adjust for decimals */
ctrls->gain[c] = s_gain[c] * gw_gain[c];
ctrls->gain[c] >>= 9;
}
}
static void isc_awb_work(struct work_struct *w)
{
struct isc_device *isc =
container_of(w, struct isc_device, awb_work);
struct regmap *regmap = isc->regmap;
struct isc_ctrls *ctrls = &isc->ctrls;
u32 hist_id = ctrls->hist_id;
u32 baysel;
unsigned long flags;
u32 min, max;
int ret;
/* streaming is not active anymore */
if (isc->stop)
return;
if (ctrls->hist_stat != HIST_ENABLED)
return;
isc_hist_count(isc, &min, &max);
ctrls->hist_minmax[hist_id][HIST_MIN_INDEX] = min;
ctrls->hist_minmax[hist_id][HIST_MAX_INDEX] = max;
if (hist_id != ISC_HIS_CFG_MODE_B) {
hist_id++;
} else {
isc_wb_update(ctrls);
hist_id = ISC_HIS_CFG_MODE_GR;
}
ctrls->hist_id = hist_id;
baysel = isc->config.sd_format->cfa_baycfg << ISC_HIS_CFG_BAYSEL_SHIFT;
ret = pm_runtime_resume_and_get(isc->dev);
if (ret < 0)
return;
/*
* only update if we have all the required histograms and controls
* if awb has been disabled, we need to reset registers as well.
*/
if (hist_id == ISC_HIS_CFG_MODE_GR || ctrls->awb == ISC_WB_NONE) {
/*
* It may happen that DMA Done IRQ will trigger while we are
* updating white balance registers here.
* In that case, only parts of the controls have been updated.
* We can avoid that by locking the section.
*/
spin_lock_irqsave(&isc->awb_lock, flags);
isc_update_awb_ctrls(isc);
spin_unlock_irqrestore(&isc->awb_lock, flags);
/*
* if we are doing just the one time white balance adjustment,
* we are basically done.
*/
if (ctrls->awb == ISC_WB_ONETIME) {
v4l2_info(&isc->v4l2_dev,
"Completed one time white-balance adjustment.\n");
/* update the v4l2 controls values */
isc_update_v4l2_ctrls(isc);
ctrls->awb = ISC_WB_NONE;
}
}
regmap_write(regmap, ISC_HIS_CFG + isc->offsets.his,
hist_id | baysel | ISC_HIS_CFG_RAR);
isc_update_profile(isc);
/* if awb has been disabled, we don't need to start another histogram */
if (ctrls->awb)
regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_HISREQ);
pm_runtime_put_sync(isc->dev);
}
static int isc_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct isc_device *isc = container_of(ctrl->handler,
struct isc_device, ctrls.handler);
struct isc_ctrls *ctrls = &isc->ctrls;
if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
return 0;
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
ctrls->brightness = ctrl->val & ISC_CBC_BRIGHT_MASK;
break;
case V4L2_CID_CONTRAST:
ctrls->contrast = ctrl->val & ISC_CBC_CONTRAST_MASK;
break;
case V4L2_CID_GAMMA:
ctrls->gamma_index = ctrl->val;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct v4l2_ctrl_ops isc_ctrl_ops = {
.s_ctrl = isc_s_ctrl,
};
static int isc_s_awb_ctrl(struct v4l2_ctrl *ctrl)
{
struct isc_device *isc = container_of(ctrl->handler,
struct isc_device, ctrls.handler);
struct isc_ctrls *ctrls = &isc->ctrls;
if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
return 0;
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
if (ctrl->val == 1)
ctrls->awb = ISC_WB_AUTO;
else
ctrls->awb = ISC_WB_NONE;
/* we did not configure ISC yet */
if (!isc->config.sd_format)
break;
/* configure the controls with new values from v4l2 */
if (ctrl->cluster[ISC_CTRL_R_GAIN]->is_new)
ctrls->gain[ISC_HIS_CFG_MODE_R] = isc->r_gain_ctrl->val;
if (ctrl->cluster[ISC_CTRL_B_GAIN]->is_new)
ctrls->gain[ISC_HIS_CFG_MODE_B] = isc->b_gain_ctrl->val;
if (ctrl->cluster[ISC_CTRL_GR_GAIN]->is_new)
ctrls->gain[ISC_HIS_CFG_MODE_GR] = isc->gr_gain_ctrl->val;
if (ctrl->cluster[ISC_CTRL_GB_GAIN]->is_new)
ctrls->gain[ISC_HIS_CFG_MODE_GB] = isc->gb_gain_ctrl->val;
if (ctrl->cluster[ISC_CTRL_R_OFF]->is_new)
ctrls->offset[ISC_HIS_CFG_MODE_R] = isc->r_off_ctrl->val;
if (ctrl->cluster[ISC_CTRL_B_OFF]->is_new)
ctrls->offset[ISC_HIS_CFG_MODE_B] = isc->b_off_ctrl->val;
if (ctrl->cluster[ISC_CTRL_GR_OFF]->is_new)
ctrls->offset[ISC_HIS_CFG_MODE_GR] = isc->gr_off_ctrl->val;
if (ctrl->cluster[ISC_CTRL_GB_OFF]->is_new)
ctrls->offset[ISC_HIS_CFG_MODE_GB] = isc->gb_off_ctrl->val;
isc_update_awb_ctrls(isc);
if (vb2_is_streaming(&isc->vb2_vidq)) {
/*
* If we are streaming, we can update profile to
* have the new settings in place.
*/
isc_update_profile(isc);
} else {
/*
* The auto cluster will activate automatically this
* control. This has to be deactivated when not
* streaming.
*/
v4l2_ctrl_activate(isc->do_wb_ctrl, false);
}
/* if we have autowhitebalance on, start histogram procedure */
if (ctrls->awb == ISC_WB_AUTO &&
vb2_is_streaming(&isc->vb2_vidq) &&
ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code))
isc_set_histogram(isc, true);
/*
* for one time whitebalance adjustment, check the button,
* if it's pressed, perform the one time operation.
*/
if (ctrls->awb == ISC_WB_NONE &&
ctrl->cluster[ISC_CTRL_DO_WB]->is_new &&
!(ctrl->cluster[ISC_CTRL_DO_WB]->flags &
V4L2_CTRL_FLAG_INACTIVE)) {
ctrls->awb = ISC_WB_ONETIME;
isc_set_histogram(isc, true);
v4l2_dbg(1, debug, &isc->v4l2_dev,
"One time white-balance started.\n");
}
return 0;
}
return 0;
}
static int isc_g_volatile_awb_ctrl(struct v4l2_ctrl *ctrl)
{
struct isc_device *isc = container_of(ctrl->handler,
struct isc_device, ctrls.handler);
struct isc_ctrls *ctrls = &isc->ctrls;
switch (ctrl->id) {
/* being a cluster, this id will be called for every control */
case V4L2_CID_AUTO_WHITE_BALANCE:
ctrl->cluster[ISC_CTRL_R_GAIN]->val =
ctrls->gain[ISC_HIS_CFG_MODE_R];
ctrl->cluster[ISC_CTRL_B_GAIN]->val =
ctrls->gain[ISC_HIS_CFG_MODE_B];
ctrl->cluster[ISC_CTRL_GR_GAIN]->val =
ctrls->gain[ISC_HIS_CFG_MODE_GR];
ctrl->cluster[ISC_CTRL_GB_GAIN]->val =
ctrls->gain[ISC_HIS_CFG_MODE_GB];
ctrl->cluster[ISC_CTRL_R_OFF]->val =
ctrls->offset[ISC_HIS_CFG_MODE_R];
ctrl->cluster[ISC_CTRL_B_OFF]->val =
ctrls->offset[ISC_HIS_CFG_MODE_B];
ctrl->cluster[ISC_CTRL_GR_OFF]->val =
ctrls->offset[ISC_HIS_CFG_MODE_GR];
ctrl->cluster[ISC_CTRL_GB_OFF]->val =
ctrls->offset[ISC_HIS_CFG_MODE_GB];
break;
}
return 0;
}
static const struct v4l2_ctrl_ops isc_awb_ops = {
.s_ctrl = isc_s_awb_ctrl,
.g_volatile_ctrl = isc_g_volatile_awb_ctrl,
};
#define ISC_CTRL_OFF(_name, _id, _name_str) \
static const struct v4l2_ctrl_config _name = { \
.ops = &isc_awb_ops, \
.id = _id, \
.name = _name_str, \
.type = V4L2_CTRL_TYPE_INTEGER, \
.flags = V4L2_CTRL_FLAG_SLIDER, \
.min = -4095, \
.max = 4095, \
.step = 1, \
.def = 0, \
}
ISC_CTRL_OFF(isc_r_off_ctrl, ISC_CID_R_OFFSET, "Red Component Offset");
ISC_CTRL_OFF(isc_b_off_ctrl, ISC_CID_B_OFFSET, "Blue Component Offset");
ISC_CTRL_OFF(isc_gr_off_ctrl, ISC_CID_GR_OFFSET, "Green Red Component Offset");
ISC_CTRL_OFF(isc_gb_off_ctrl, ISC_CID_GB_OFFSET, "Green Blue Component Offset");
#define ISC_CTRL_GAIN(_name, _id, _name_str) \
static const struct v4l2_ctrl_config _name = { \
.ops = &isc_awb_ops, \
.id = _id, \
.name = _name_str, \
.type = V4L2_CTRL_TYPE_INTEGER, \
.flags = V4L2_CTRL_FLAG_SLIDER, \
.min = 0, \
.max = 8191, \
.step = 1, \
.def = 512, \
}
ISC_CTRL_GAIN(isc_r_gain_ctrl, ISC_CID_R_GAIN, "Red Component Gain");
ISC_CTRL_GAIN(isc_b_gain_ctrl, ISC_CID_B_GAIN, "Blue Component Gain");
ISC_CTRL_GAIN(isc_gr_gain_ctrl, ISC_CID_GR_GAIN, "Green Red Component Gain");
ISC_CTRL_GAIN(isc_gb_gain_ctrl, ISC_CID_GB_GAIN, "Green Blue Component Gain");
static int isc_ctrl_init(struct isc_device *isc)
{
const struct v4l2_ctrl_ops *ops = &isc_ctrl_ops;
struct isc_ctrls *ctrls = &isc->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int ret;
ctrls->hist_stat = HIST_INIT;
isc_reset_awb_ctrls(isc);
ret = v4l2_ctrl_handler_init(hdl, 13);
if (ret < 0)
return ret;
/* Initialize product specific controls. For example, contrast */
isc->config_ctrls(isc, ops);
ctrls->brightness = 0;
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, -1024, 1023, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAMMA, 0, isc->gamma_max, 1,
isc->gamma_max);
isc->awb_ctrl = v4l2_ctrl_new_std(hdl, &isc_awb_ops,
V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
/* do_white_balance is a button, so min,max,step,default are ignored */
isc->do_wb_ctrl = v4l2_ctrl_new_std(hdl, &isc_awb_ops,
V4L2_CID_DO_WHITE_BALANCE,
0, 0, 0, 0);
if (!isc->do_wb_ctrl) {
ret = hdl->error;
v4l2_ctrl_handler_free(hdl);
return ret;
}
v4l2_ctrl_activate(isc->do_wb_ctrl, false);
isc->r_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_r_gain_ctrl, NULL);
isc->b_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_b_gain_ctrl, NULL);
isc->gr_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gr_gain_ctrl, NULL);
isc->gb_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gb_gain_ctrl, NULL);
isc->r_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_r_off_ctrl, NULL);
isc->b_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_b_off_ctrl, NULL);
isc->gr_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gr_off_ctrl, NULL);
isc->gb_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gb_off_ctrl, NULL);
/*
* The cluster is in auto mode with autowhitebalance enabled
* and manual mode otherwise.
*/
v4l2_ctrl_auto_cluster(10, &isc->awb_ctrl, 0, true);
v4l2_ctrl_handler_setup(hdl);
return 0;
}
static int isc_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct isc_device *isc = container_of(notifier->v4l2_dev,
struct isc_device, v4l2_dev);
struct isc_subdev_entity *subdev_entity =
container_of(notifier, struct isc_subdev_entity, notifier);
if (video_is_registered(&isc->video_dev)) {
v4l2_err(&isc->v4l2_dev, "only supports one sub-device.\n");
return -EBUSY;
}
subdev_entity->sd = subdev;
return 0;
}
static void isc_async_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct isc_device *isc = container_of(notifier->v4l2_dev,
struct isc_device, v4l2_dev);
cancel_work_sync(&isc->awb_work);
video_unregister_device(&isc->video_dev);
v4l2_ctrl_handler_free(&isc->ctrls.handler);
}
static struct isc_format *find_format_by_code(struct isc_device *isc,
unsigned int code, int *index)
{
struct isc_format *fmt = &isc->formats_list[0];
unsigned int i;
for (i = 0; i < isc->formats_list_size; i++) {
if (fmt->mbus_code == code) {
*index = i;
return fmt;
}
fmt++;
}
return NULL;
}
static int isc_formats_init(struct isc_device *isc)
{
struct isc_format *fmt;
struct v4l2_subdev *subdev = isc->current_subdev->sd;
unsigned int num_fmts, i, j;
u32 list_size = isc->formats_list_size;
struct v4l2_subdev_mbus_code_enum mbus_code = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
num_fmts = 0;
while (!v4l2_subdev_call(subdev, pad, enum_mbus_code,
NULL, &mbus_code)) {
mbus_code.index++;
fmt = find_format_by_code(isc, mbus_code.code, &i);
if (!fmt) {
v4l2_warn(&isc->v4l2_dev, "Mbus code %x not supported\n",
mbus_code.code);
continue;
}
fmt->sd_support = true;
num_fmts++;
}
if (!num_fmts)
return -ENXIO;
isc->num_user_formats = num_fmts;
isc->user_formats = devm_kcalloc(isc->dev,
num_fmts, sizeof(*isc->user_formats),
GFP_KERNEL);
if (!isc->user_formats)
return -ENOMEM;
fmt = &isc->formats_list[0];
for (i = 0, j = 0; i < list_size; i++) {
if (fmt->sd_support)
isc->user_formats[j++] = fmt;
fmt++;
}
return 0;
}
static int isc_set_default_fmt(struct isc_device *isc)
{
struct v4l2_format f = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.fmt.pix = {
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.field = V4L2_FIELD_NONE,
.pixelformat = isc->user_formats[0]->fourcc,
},
};
int ret;
ret = isc_try_fmt(isc, &f, NULL);
if (ret)
return ret;
isc->fmt = f;
return 0;
}
static int isc_async_complete(struct v4l2_async_notifier *notifier)
{
struct isc_device *isc = container_of(notifier->v4l2_dev,
struct isc_device, v4l2_dev);
struct video_device *vdev = &isc->video_dev;
struct vb2_queue *q = &isc->vb2_vidq;
int ret = 0;
INIT_WORK(&isc->awb_work, isc_awb_work);
ret = v4l2_device_register_subdev_nodes(&isc->v4l2_dev);
if (ret < 0) {
v4l2_err(&isc->v4l2_dev, "Failed to register subdev nodes\n");
return ret;
}
isc->current_subdev = container_of(notifier,
struct isc_subdev_entity, notifier);
mutex_init(&isc->lock);
init_completion(&isc->comp);
/* Initialize videobuf2 queue */
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
q->drv_priv = isc;
q->buf_struct_size = sizeof(struct isc_buffer);
q->ops = &isc_vb2_ops;
q->mem_ops = &vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &isc->lock;
q->min_buffers_needed = 1;
q->dev = isc->dev;
ret = vb2_queue_init(q);
if (ret < 0) {
v4l2_err(&isc->v4l2_dev,
"vb2_queue_init() failed: %d\n", ret);
goto isc_async_complete_err;
}
/* Init video dma queues */
INIT_LIST_HEAD(&isc->dma_queue);
spin_lock_init(&isc->dma_queue_lock);
spin_lock_init(&isc->awb_lock);
ret = isc_formats_init(isc);
if (ret < 0) {
v4l2_err(&isc->v4l2_dev,
"Init format failed: %d\n", ret);
goto isc_async_complete_err;
}
ret = isc_set_default_fmt(isc);
if (ret) {
v4l2_err(&isc->v4l2_dev, "Could not set default format\n");
goto isc_async_complete_err;
}
ret = isc_ctrl_init(isc);
if (ret) {
v4l2_err(&isc->v4l2_dev, "Init isc ctrols failed: %d\n", ret);
goto isc_async_complete_err;
}
/* Register video device */
strscpy(vdev->name, "microchip-isc", sizeof(vdev->name));
vdev->release = video_device_release_empty;
vdev->fops = &isc_fops;
vdev->ioctl_ops = &isc_ioctl_ops;
vdev->v4l2_dev = &isc->v4l2_dev;
vdev->vfl_dir = VFL_DIR_RX;
vdev->queue = q;
vdev->lock = &isc->lock;
vdev->ctrl_handler = &isc->ctrls.handler;
vdev->device_caps = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_CAPTURE;
video_set_drvdata(vdev, isc);
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret < 0) {
v4l2_err(&isc->v4l2_dev,
"video_register_device failed: %d\n", ret);
goto isc_async_complete_err;
}
return 0;
isc_async_complete_err:
mutex_destroy(&isc->lock);
return ret;
}
const struct v4l2_async_notifier_operations isc_async_ops = {
.bound = isc_async_bound,
.unbind = isc_async_unbind,
.complete = isc_async_complete,
};
EXPORT_SYMBOL_GPL(isc_async_ops);
void isc_subdev_cleanup(struct isc_device *isc)
{
struct isc_subdev_entity *subdev_entity;
list_for_each_entry(subdev_entity, &isc->subdev_entities, list) {
v4l2_async_notifier_unregister(&subdev_entity->notifier);
v4l2_async_notifier_cleanup(&subdev_entity->notifier);
}
INIT_LIST_HEAD(&isc->subdev_entities);
}
EXPORT_SYMBOL_GPL(isc_subdev_cleanup);
int isc_pipeline_init(struct isc_device *isc)
{
struct device *dev = isc->dev;
struct regmap *regmap = isc->regmap;
struct regmap_field *regs;
unsigned int i;
/*
* DPCEN-->GDCEN-->BLCEN-->WB-->CFA-->CC-->
* GAM-->VHXS-->CSC-->CBC-->SUB422-->SUB420
*/
const struct reg_field regfields[ISC_PIPE_LINE_NODE_NUM] = {
REG_FIELD(ISC_DPC_CTRL, 0, 0),
REG_FIELD(ISC_DPC_CTRL, 1, 1),
REG_FIELD(ISC_DPC_CTRL, 2, 2),
REG_FIELD(ISC_WB_CTRL, 0, 0),
REG_FIELD(ISC_CFA_CTRL, 0, 0),
REG_FIELD(ISC_CC_CTRL, 0, 0),
REG_FIELD(ISC_GAM_CTRL, 0, 0),
REG_FIELD(ISC_GAM_CTRL, 1, 1),
REG_FIELD(ISC_GAM_CTRL, 2, 2),
REG_FIELD(ISC_GAM_CTRL, 3, 3),
REG_FIELD(ISC_VHXS_CTRL, 0, 0),
REG_FIELD(ISC_CSC_CTRL + isc->offsets.csc, 0, 0),
REG_FIELD(ISC_CBC_CTRL + isc->offsets.cbc, 0, 0),
REG_FIELD(ISC_SUB422_CTRL + isc->offsets.sub422, 0, 0),
REG_FIELD(ISC_SUB420_CTRL + isc->offsets.sub420, 0, 0),
};
for (i = 0; i < ISC_PIPE_LINE_NODE_NUM; i++) {
regs = devm_regmap_field_alloc(dev, regmap, regfields[i]);
if (IS_ERR(regs))
return PTR_ERR(regs);
isc->pipeline[i] = regs;
}
return 0;
}
EXPORT_SYMBOL_GPL(isc_pipeline_init);
/* regmap configuration */
#define ATMEL_ISC_REG_MAX 0xd5c
const struct regmap_config isc_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = ATMEL_ISC_REG_MAX,
};
EXPORT_SYMBOL_GPL(isc_regmap_config);
MODULE_AUTHOR("Songjun Wu");
MODULE_AUTHOR("Eugen Hristev");
MODULE_DESCRIPTION("Atmel ISC common code base");
MODULE_LICENSE("GPL v2");