Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 | // SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org> #define pr_fmt(fmt) "irq_timings: " fmt #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/slab.h> #include <linux/static_key.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/idr.h> #include <linux/irq.h> #include <linux/math64.h> #include <linux/log2.h> #include <trace/events/irq.h> #include "internals.h" DEFINE_STATIC_KEY_FALSE(irq_timing_enabled); DEFINE_PER_CPU(struct irq_timings, irq_timings); static DEFINE_IDR(irqt_stats); void irq_timings_enable(void) { static_branch_enable(&irq_timing_enabled); } void irq_timings_disable(void) { static_branch_disable(&irq_timing_enabled); } /* * The main goal of this algorithm is to predict the next interrupt * occurrence on the current CPU. * * Currently, the interrupt timings are stored in a circular array * buffer every time there is an interrupt, as a tuple: the interrupt * number and the associated timestamp when the event occurred <irq, * timestamp>. * * For every interrupt occurring in a short period of time, we can * measure the elapsed time between the occurrences for the same * interrupt and we end up with a suite of intervals. The experience * showed the interrupts are often coming following a periodic * pattern. * * The objective of the algorithm is to find out this periodic pattern * in a fastest way and use its period to predict the next irq event. * * When the next interrupt event is requested, we are in the situation * where the interrupts are disabled and the circular buffer * containing the timings is filled with the events which happened * after the previous next-interrupt-event request. * * At this point, we read the circular buffer and we fill the irq * related statistics structure. After this step, the circular array * containing the timings is empty because all the values are * dispatched in their corresponding buffers. * * Now for each interrupt, we can predict the next event by using the * suffix array, log interval and exponential moving average * * 1. Suffix array * * Suffix array is an array of all the suffixes of a string. It is * widely used as a data structure for compression, text search, ... * For instance for the word 'banana', the suffixes will be: 'banana' * 'anana' 'nana' 'ana' 'na' 'a' * * Usually, the suffix array is sorted but for our purpose it is * not necessary and won't provide any improvement in the context of * the solved problem where we clearly define the boundaries of the * search by a max period and min period. * * The suffix array will build a suite of intervals of different * length and will look for the repetition of each suite. If the suite * is repeating then we have the period because it is the length of * the suite whatever its position in the buffer. * * 2. Log interval * * We saw the irq timings allow to compute the interval of the * occurrences for a specific interrupt. We can reasonably assume the * longer is the interval, the higher is the error for the next event * and we can consider storing those interval values into an array * where each slot in the array correspond to an interval at the power * of 2 of the index. For example, index 12 will contain values * between 2^11 and 2^12. * * At the end we have an array of values where at each index defines a * [2^index - 1, 2 ^ index] interval values allowing to store a large * number of values inside a small array. * * For example, if we have the value 1123, then we store it at * ilog2(1123) = 10 index value. * * Storing those value at the specific index is done by computing an * exponential moving average for this specific slot. For instance, * for values 1800, 1123, 1453, ... fall under the same slot (10) and * the exponential moving average is computed every time a new value * is stored at this slot. * * 3. Exponential Moving Average * * The EMA is largely used to track a signal for stocks or as a low * pass filter. The magic of the formula, is it is very simple and the * reactivity of the average can be tuned with the factors called * alpha. * * The higher the alphas are, the faster the average respond to the * signal change. In our case, if a slot in the array is a big * interval, we can have numbers with a big difference between * them. The impact of those differences in the average computation * can be tuned by changing the alpha value. * * * -- The algorithm -- * * We saw the different processing above, now let's see how they are * used together. * * For each interrupt: * For each interval: * Compute the index = ilog2(interval) * Compute a new_ema(buffer[index], interval) * Store the index in a circular buffer * * Compute the suffix array of the indexes * * For each suffix: * If the suffix is reverse-found 3 times * Return suffix * * Return Not found * * However we can not have endless suffix array to be build, it won't * make sense and it will add an extra overhead, so we can restrict * this to a maximum suffix length of 5 and a minimum suffix length of * 2. The experience showed 5 is the majority of the maximum pattern * period found for different devices. * * The result is a pattern finding less than 1us for an interrupt. * * Example based on real values: * * Example 1 : MMC write/read interrupt interval: * * 223947, 1240, 1384, 1386, 1386, * 217416, 1236, 1384, 1386, 1387, * 214719, 1241, 1386, 1387, 1384, * 213696, 1234, 1384, 1386, 1388, * 219904, 1240, 1385, 1389, 1385, * 212240, 1240, 1386, 1386, 1386, * 214415, 1236, 1384, 1386, 1387, * 214276, 1234, 1384, 1388, ? * * For each element, apply ilog2(value) * * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, ? * * Max period of 5, we take the last (max_period * 3) 15 elements as * we can be confident if the pattern repeats itself three times it is * a repeating pattern. * * 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, 8, * 15, 8, 8, 8, ? * * Suffixes are: * * 1) 8, 15, 8, 8, 8 <- max period * 2) 8, 15, 8, 8 * 3) 8, 15, 8 * 4) 8, 15 <- min period * * From there we search the repeating pattern for each suffix. * * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8 * | | | | | | | | | | | | | | | * 8, 15, 8, 8, 8 | | | | | | | | | | * 8, 15, 8, 8, 8 | | | | | * 8, 15, 8, 8, 8 * * When moving the suffix, we found exactly 3 matches. * * The first suffix with period 5 is repeating. * * The next event is (3 * max_period) % suffix_period * * In this example, the result 0, so the next event is suffix[0] => 8 * * However, 8 is the index in the array of exponential moving average * which was calculated on the fly when storing the values, so the * interval is ema[8] = 1366 * * * Example 2: * * 4, 3, 5, 100, * 3, 3, 5, 117, * 4, 4, 5, 112, * 4, 3, 4, 110, * 3, 5, 3, 117, * 4, 4, 5, 112, * 4, 3, 4, 110, * 3, 4, 5, 112, * 4, 3, 4, 110 * * ilog2 * * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4 * * Max period 5: * 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4, * 0, 0, 0, 4 * * Suffixes: * * 1) 0, 0, 4, 0, 0 * 2) 0, 0, 4, 0 * 3) 0, 0, 4 * 4) 0, 0 * * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4 * | | | | | | X * 0, 0, 4, 0, 0, | X * 0, 0 * * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4 * | | | | | | | | | | | | | | | * 0, 0, 4, 0, | | | | | | | | | | | * 0, 0, 4, 0, | | | | | | | * 0, 0, 4, 0, | | | * 0 0 4 * * Pattern is found 3 times, the remaining is 1 which results from * (max_period * 3) % suffix_period. This value is the index in the * suffix arrays. The suffix array for a period 4 has the value 4 * at index 1. */ #define EMA_ALPHA_VAL 64 #define EMA_ALPHA_SHIFT 7 #define PREDICTION_PERIOD_MIN 3 #define PREDICTION_PERIOD_MAX 5 #define PREDICTION_FACTOR 4 #define PREDICTION_MAX 10 /* 2 ^ PREDICTION_MAX useconds */ #define PREDICTION_BUFFER_SIZE 16 /* slots for EMAs, hardly more than 16 */ /* * Number of elements in the circular buffer: If it happens it was * flushed before, then the number of elements could be smaller than * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is * used as we wrapped. The index begins from zero when we did not * wrap. That could be done in a nicer way with the proper circular * array structure type but with the cost of extra computation in the * interrupt handler hot path. We choose efficiency. */ #define for_each_irqts(i, irqts) \ for (i = irqts->count < IRQ_TIMINGS_SIZE ? \ 0 : irqts->count & IRQ_TIMINGS_MASK, \ irqts->count = min(IRQ_TIMINGS_SIZE, \ irqts->count); \ irqts->count > 0; irqts->count--, \ i = (i + 1) & IRQ_TIMINGS_MASK) struct irqt_stat { u64 last_ts; u64 ema_time[PREDICTION_BUFFER_SIZE]; int timings[IRQ_TIMINGS_SIZE]; int circ_timings[IRQ_TIMINGS_SIZE]; int count; }; /* * Exponential moving average computation */ static u64 irq_timings_ema_new(u64 value, u64 ema_old) { s64 diff; if (unlikely(!ema_old)) return value; diff = (value - ema_old) * EMA_ALPHA_VAL; /* * We can use a s64 type variable to be added with the u64 * ema_old variable as this one will never have its topmost * bit set, it will be always smaller than 2^63 nanosec * interrupt interval (292 years). */ return ema_old + (diff >> EMA_ALPHA_SHIFT); } static int irq_timings_next_event_index(int *buffer, size_t len, int period_max) { int period; /* * Move the beginning pointer to the end minus the max period x 3. * We are at the point we can begin searching the pattern */ buffer = &buffer[len - (period_max * 3)]; /* Adjust the length to the maximum allowed period x 3 */ len = period_max * 3; /* * The buffer contains the suite of intervals, in a ilog2 * basis, we are looking for a repetition. We point the * beginning of the search three times the length of the * period beginning at the end of the buffer. We do that for * each suffix. */ for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) { /* * The first comparison always succeed because the * suffix is deduced from the first n-period bytes of * the buffer and we compare the initial suffix with * itself, so we can skip the first iteration. */ int idx = period; size_t size = period; /* * We look if the suite with period 'i' repeat * itself. If it is truncated at the end, as it * repeats we can use the period to find out the next * element with the modulo. */ while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) { /* * Move the index in a period basis */ idx += size; /* * If this condition is reached, all previous * memcmp were successful, so the period is * found. */ if (idx == len) return buffer[len % period]; /* * If the remaining elements to compare are * smaller than the period, readjust the size * of the comparison for the last iteration. */ if (len - idx < period) size = len - idx; } } return -1; } static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now) { int index, i, period_max, count, start, min = INT_MAX; if ((now - irqs->last_ts) >= NSEC_PER_SEC) { irqs->count = irqs->last_ts = 0; return U64_MAX; } /* * As we want to find three times the repetition, we need a * number of intervals greater or equal to three times the * maximum period, otherwise we truncate the max period. */ period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ? PREDICTION_PERIOD_MAX : irqs->count / 3; /* * If we don't have enough irq timings for this prediction, * just bail out. */ if (period_max <= PREDICTION_PERIOD_MIN) return U64_MAX; /* * 'count' will depends if the circular buffer wrapped or not */ count = irqs->count < IRQ_TIMINGS_SIZE ? irqs->count : IRQ_TIMINGS_SIZE; start = irqs->count < IRQ_TIMINGS_SIZE ? 0 : (irqs->count & IRQ_TIMINGS_MASK); /* * Copy the content of the circular buffer into another buffer * in order to linearize the buffer instead of dealing with * wrapping indexes and shifted array which will be prone to * error and extremely difficult to debug. */ for (i = 0; i < count; i++) { int index = (start + i) & IRQ_TIMINGS_MASK; irqs->timings[i] = irqs->circ_timings[index]; min = min_t(int, irqs->timings[i], min); } index = irq_timings_next_event_index(irqs->timings, count, period_max); if (index < 0) return irqs->last_ts + irqs->ema_time[min]; return irqs->last_ts + irqs->ema_time[index]; } static __always_inline int irq_timings_interval_index(u64 interval) { /* * The PREDICTION_FACTOR increase the interval size for the * array of exponential average. */ u64 interval_us = (interval >> 10) / PREDICTION_FACTOR; return likely(interval_us) ? ilog2(interval_us) : 0; } static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs, u64 interval) { int index; /* * Get the index in the ema table for this interrupt. */ index = irq_timings_interval_index(interval); /* * Store the index as an element of the pattern in another * circular array. */ irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index; irqs->ema_time[index] = irq_timings_ema_new(interval, irqs->ema_time[index]); irqs->count++; } static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts) { u64 old_ts = irqs->last_ts; u64 interval; /* * The timestamps are absolute time values, we need to compute * the timing interval between two interrupts. */ irqs->last_ts = ts; /* * The interval type is u64 in order to deal with the same * type in our computation, that prevent mindfuck issues with * overflow, sign and division. */ interval = ts - old_ts; /* * The interrupt triggered more than one second apart, that * ends the sequence as predictable for our purpose. In this * case, assume we have the beginning of a sequence and the * timestamp is the first value. As it is impossible to * predict anything at this point, return. * * Note the first timestamp of the sequence will always fall * in this test because the old_ts is zero. That is what we * want as we need another timestamp to compute an interval. */ if (interval >= NSEC_PER_SEC) { irqs->count = 0; return; } __irq_timings_store(irq, irqs, interval); } /** * irq_timings_next_event - Return when the next event is supposed to arrive * * During the last busy cycle, the number of interrupts is incremented * and stored in the irq_timings structure. This information is * necessary to: * * - know if the index in the table wrapped up: * * If more than the array size interrupts happened during the * last busy/idle cycle, the index wrapped up and we have to * begin with the next element in the array which is the last one * in the sequence, otherwise it is at the index 0. * * - have an indication of the interrupts activity on this CPU * (eg. irq/sec) * * The values are 'consumed' after inserting in the statistical model, * thus the count is reinitialized. * * The array of values **must** be browsed in the time direction, the * timestamp must increase between an element and the next one. * * Returns a nanosec time based estimation of the earliest interrupt, * U64_MAX otherwise. */ u64 irq_timings_next_event(u64 now) { struct irq_timings *irqts = this_cpu_ptr(&irq_timings); struct irqt_stat *irqs; struct irqt_stat __percpu *s; u64 ts, next_evt = U64_MAX; int i, irq = 0; /* * This function must be called with the local irq disabled in * order to prevent the timings circular buffer to be updated * while we are reading it. */ lockdep_assert_irqs_disabled(); if (!irqts->count) return next_evt; /* * Number of elements in the circular buffer: If it happens it * was flushed before, then the number of elements could be * smaller than IRQ_TIMINGS_SIZE, so the count is used, * otherwise the array size is used as we wrapped. The index * begins from zero when we did not wrap. That could be done * in a nicer way with the proper circular array structure * type but with the cost of extra computation in the * interrupt handler hot path. We choose efficiency. * * Inject measured irq/timestamp to the pattern prediction * model while decrementing the counter because we consume the * data from our circular buffer. */ for_each_irqts(i, irqts) { irq = irq_timing_decode(irqts->values[i], &ts); s = idr_find(&irqt_stats, irq); if (s) irq_timings_store(irq, this_cpu_ptr(s), ts); } /* * Look in the list of interrupts' statistics, the earliest * next event. */ idr_for_each_entry(&irqt_stats, s, i) { irqs = this_cpu_ptr(s); ts = __irq_timings_next_event(irqs, i, now); if (ts <= now) return now; if (ts < next_evt) next_evt = ts; } return next_evt; } void irq_timings_free(int irq) { struct irqt_stat __percpu *s; s = idr_find(&irqt_stats, irq); if (s) { free_percpu(s); idr_remove(&irqt_stats, irq); } } int irq_timings_alloc(int irq) { struct irqt_stat __percpu *s; int id; /* * Some platforms can have the same private interrupt per cpu, * so this function may be called several times with the * same interrupt number. Just bail out in case the per cpu * stat structure is already allocated. */ s = idr_find(&irqt_stats, irq); if (s) return 0; s = alloc_percpu(*s); if (!s) return -ENOMEM; idr_preload(GFP_KERNEL); id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT); idr_preload_end(); if (id < 0) { free_percpu(s); return id; } return 0; } #ifdef CONFIG_TEST_IRQ_TIMINGS struct timings_intervals { u64 *intervals; size_t count; }; /* * Intervals are given in nanosecond base */ static u64 intervals0[] __initdata = { 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, 500000, 10000, 50000, 200000, }; static u64 intervals1[] __initdata = { 223947000, 1240000, 1384000, 1386000, 1386000, 217416000, 1236000, 1384000, 1386000, 1387000, 214719000, 1241000, 1386000, 1387000, 1384000, 213696000, 1234000, 1384000, 1386000, 1388000, 219904000, 1240000, 1385000, 1389000, 1385000, 212240000, 1240000, 1386000, 1386000, 1386000, 214415000, 1236000, 1384000, 1386000, 1387000, 214276000, 1234000, }; static u64 intervals2[] __initdata = { 4000, 3000, 5000, 100000, 3000, 3000, 5000, 117000, 4000, 4000, 5000, 112000, 4000, 3000, 4000, 110000, 3000, 5000, 3000, 117000, 4000, 4000, 5000, 112000, 4000, 3000, 4000, 110000, 3000, 4000, 5000, 112000, 4000, }; static u64 intervals3[] __initdata = { 1385000, 212240000, 1240000, 1386000, 214415000, 1236000, 1384000, 214276000, 1234000, 1386000, 214415000, 1236000, 1385000, 212240000, 1240000, 1386000, 214415000, 1236000, 1384000, 214276000, 1234000, 1386000, 214415000, 1236000, 1385000, 212240000, 1240000, }; static u64 intervals4[] __initdata = { 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, 50000, 10000, }; static struct timings_intervals tis[] __initdata = { { intervals0, ARRAY_SIZE(intervals0) }, { intervals1, ARRAY_SIZE(intervals1) }, { intervals2, ARRAY_SIZE(intervals2) }, { intervals3, ARRAY_SIZE(intervals3) }, { intervals4, ARRAY_SIZE(intervals4) }, }; static int __init irq_timings_test_next_index(struct timings_intervals *ti) { int _buffer[IRQ_TIMINGS_SIZE]; int buffer[IRQ_TIMINGS_SIZE]; int index, start, i, count, period_max; count = ti->count - 1; period_max = count > (3 * PREDICTION_PERIOD_MAX) ? PREDICTION_PERIOD_MAX : count / 3; /* * Inject all values except the last one which will be used * to compare with the next index result. */ pr_debug("index suite: "); for (i = 0; i < count; i++) { index = irq_timings_interval_index(ti->intervals[i]); _buffer[i & IRQ_TIMINGS_MASK] = index; pr_cont("%d ", index); } start = count < IRQ_TIMINGS_SIZE ? 0 : count & IRQ_TIMINGS_MASK; count = min_t(int, count, IRQ_TIMINGS_SIZE); for (i = 0; i < count; i++) { int index = (start + i) & IRQ_TIMINGS_MASK; buffer[i] = _buffer[index]; } index = irq_timings_next_event_index(buffer, count, period_max); i = irq_timings_interval_index(ti->intervals[ti->count - 1]); if (index != i) { pr_err("Expected (%d) and computed (%d) next indexes differ\n", i, index); return -EINVAL; } return 0; } static int __init irq_timings_next_index_selftest(void) { int i, ret; for (i = 0; i < ARRAY_SIZE(tis); i++) { pr_info("---> Injecting intervals number #%d (count=%zd)\n", i, tis[i].count); ret = irq_timings_test_next_index(&tis[i]); if (ret) break; } return ret; } static int __init irq_timings_test_irqs(struct timings_intervals *ti) { struct irqt_stat __percpu *s; struct irqt_stat *irqs; int i, index, ret, irq = 0xACE5; ret = irq_timings_alloc(irq); if (ret) { pr_err("Failed to allocate irq timings\n"); return ret; } s = idr_find(&irqt_stats, irq); if (!s) { ret = -EIDRM; goto out; } irqs = this_cpu_ptr(s); for (i = 0; i < ti->count; i++) { index = irq_timings_interval_index(ti->intervals[i]); pr_debug("%d: interval=%llu ema_index=%d\n", i, ti->intervals[i], index); __irq_timings_store(irq, irqs, ti->intervals[i]); if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) { pr_err("Failed to store in the circular buffer\n"); goto out; } } if (irqs->count != ti->count) { pr_err("Count differs\n"); goto out; } ret = 0; out: irq_timings_free(irq); return ret; } static int __init irq_timings_irqs_selftest(void) { int i, ret; for (i = 0; i < ARRAY_SIZE(tis); i++) { pr_info("---> Injecting intervals number #%d (count=%zd)\n", i, tis[i].count); ret = irq_timings_test_irqs(&tis[i]); if (ret) break; } return ret; } static int __init irq_timings_test_irqts(struct irq_timings *irqts, unsigned count) { int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0; int i, irq, oirq = 0xBEEF; u64 ots = 0xDEAD, ts; /* * Fill the circular buffer by using the dedicated function. */ for (i = 0; i < count; i++) { pr_debug("%d: index=%d, ts=%llX irq=%X\n", i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i); irq_timings_push(ots + i, oirq + i); } /* * Compute the first elements values after the index wrapped * up or not. */ ots += start; oirq += start; /* * Test the circular buffer count is correct. */ pr_debug("---> Checking timings array count (%d) is right\n", count); if (WARN_ON(irqts->count != count)) return -EINVAL; /* * Test the macro allowing to browse all the irqts. */ pr_debug("---> Checking the for_each_irqts() macro\n"); for_each_irqts(i, irqts) { irq = irq_timing_decode(irqts->values[i], &ts); pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n", i, ts, ots, irq, oirq); if (WARN_ON(ts != ots || irq != oirq)) return -EINVAL; ots++; oirq++; } /* * The circular buffer should have be flushed when browsed * with for_each_irqts */ pr_debug("---> Checking timings array is empty after browsing it\n"); if (WARN_ON(irqts->count)) return -EINVAL; return 0; } static int __init irq_timings_irqts_selftest(void) { struct irq_timings *irqts = this_cpu_ptr(&irq_timings); int i, ret; /* * Test the circular buffer with different number of * elements. The purpose is to test at the limits (empty, half * full, full, wrapped with the cursor at the boundaries, * wrapped several times, etc ... */ int count[] = { 0, IRQ_TIMINGS_SIZE >> 1, IRQ_TIMINGS_SIZE, IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1), 2 * IRQ_TIMINGS_SIZE, (2 * IRQ_TIMINGS_SIZE) + 3, }; for (i = 0; i < ARRAY_SIZE(count); i++) { pr_info("---> Checking the timings with %d/%d values\n", count[i], IRQ_TIMINGS_SIZE); ret = irq_timings_test_irqts(irqts, count[i]); if (ret) break; } return ret; } static int __init irq_timings_selftest(void) { int ret; pr_info("------------------- selftest start -----------------\n"); /* * At this point, we don't except any subsystem to use the irq * timings but us, so it should not be enabled. */ if (static_branch_unlikely(&irq_timing_enabled)) { pr_warn("irq timings already initialized, skipping selftest\n"); return 0; } ret = irq_timings_irqts_selftest(); if (ret) goto out; ret = irq_timings_irqs_selftest(); if (ret) goto out; ret = irq_timings_next_index_selftest(); out: pr_info("---------- selftest end with %s -----------\n", ret ? "failure" : "success"); return ret; } early_initcall(irq_timings_selftest); #endif |