Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/percpu-refcount.h>

/*
 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
 * don't try to detect the ref hitting 0 - which means that get/put can just
 * increment or decrement the local counter. Note that the counter on a
 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
 * percpu counters will all sum to the correct value
 *
 * (More precisely: because modular arithmetic is commutative the sum of all the
 * percpu_count vars will be equal to what it would have been if all the gets
 * and puts were done to a single integer, even if some of the percpu integers
 * overflow or underflow).
 *
 * The real trick to implementing percpu refcounts is shutdown. We can't detect
 * the ref hitting 0 on every put - this would require global synchronization
 * and defeat the whole purpose of using percpu refs.
 *
 * What we do is require the user to keep track of the initial refcount; we know
 * the ref can't hit 0 before the user drops the initial ref, so as long as we
 * convert to non percpu mode before the initial ref is dropped everything
 * works.
 *
 * Converting to non percpu mode is done with some RCUish stuff in
 * percpu_ref_kill. Additionally, we need a bias value so that the
 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
 */

#define PERCPU_COUNT_BIAS	(1LU << (BITS_PER_LONG - 1))

static DEFINE_SPINLOCK(percpu_ref_switch_lock);
static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);

static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
{
	return (unsigned long __percpu *)
		(ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
}

/**
 * percpu_ref_init - initialize a percpu refcount
 * @ref: percpu_ref to initialize
 * @release: function which will be called when refcount hits 0
 * @flags: PERCPU_REF_INIT_* flags
 * @gfp: allocation mask to use
 *
 * Initializes @ref.  @ref starts out in percpu mode with a refcount of 1 unless
 * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD.  These flags
 * change the start state to atomic with the latter setting the initial refcount
 * to 0.  See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
 *
 * Note that @release must not sleep - it may potentially be called from RCU
 * callback context by percpu_ref_kill().
 */
int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
		    unsigned int flags, gfp_t gfp)
{
	size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
			     __alignof__(unsigned long));
	unsigned long start_count = 0;
	struct percpu_ref_data *data;

	ref->percpu_count_ptr = (unsigned long)
		__alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
	if (!ref->percpu_count_ptr)
		return -ENOMEM;

	data = kzalloc(sizeof(*ref->data), gfp);
	if (!data) {
		free_percpu((void __percpu *)ref->percpu_count_ptr);
		return -ENOMEM;
	}

	data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
	data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;

	if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
		data->allow_reinit = true;
	} else {
		start_count += PERCPU_COUNT_BIAS;
	}

	if (flags & PERCPU_REF_INIT_DEAD)
		ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
	else
		start_count++;

	atomic_long_set(&data->count, start_count);

	data->release = release;
	data->confirm_switch = NULL;
	data->ref = ref;
	ref->data = data;
	return 0;
}
EXPORT_SYMBOL_GPL(percpu_ref_init);

static void __percpu_ref_exit(struct percpu_ref *ref)
{
	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);

	if (percpu_count) {
		/* non-NULL confirm_switch indicates switching in progress */
		WARN_ON_ONCE(ref->data && ref->data->confirm_switch);
		free_percpu(percpu_count);
		ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
	}
}

/**
 * percpu_ref_exit - undo percpu_ref_init()
 * @ref: percpu_ref to exit
 *
 * This function exits @ref.  The caller is responsible for ensuring that
 * @ref is no longer in active use.  The usual places to invoke this
 * function from are the @ref->release() callback or in init failure path
 * where percpu_ref_init() succeeded but other parts of the initialization
 * of the embedding object failed.
 */
void percpu_ref_exit(struct percpu_ref *ref)
{
	struct percpu_ref_data *data = ref->data;
	unsigned long flags;

	__percpu_ref_exit(ref);

	if (!data)
		return;

	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
	ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) <<
		__PERCPU_REF_FLAG_BITS;
	ref->data = NULL;
	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);

	kfree(data);
}
EXPORT_SYMBOL_GPL(percpu_ref_exit);

static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
{
	struct percpu_ref_data *data = container_of(rcu,
			struct percpu_ref_data, rcu);
	struct percpu_ref *ref = data->ref;

	data->confirm_switch(ref);
	data->confirm_switch = NULL;
	wake_up_all(&percpu_ref_switch_waitq);

	if (!data->allow_reinit)
		__percpu_ref_exit(ref);

	/* drop ref from percpu_ref_switch_to_atomic() */
	percpu_ref_put(ref);
}

static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
{
	struct percpu_ref_data *data = container_of(rcu,
			struct percpu_ref_data, rcu);
	struct percpu_ref *ref = data->ref;
	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
	static atomic_t underflows;
	unsigned long count = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		count += *per_cpu_ptr(percpu_count, cpu);

	pr_debug("global %lu percpu %lu\n",
		 atomic_long_read(&data->count), count);

	/*
	 * It's crucial that we sum the percpu counters _before_ adding the sum
	 * to &ref->count; since gets could be happening on one cpu while puts
	 * happen on another, adding a single cpu's count could cause
	 * @ref->count to hit 0 before we've got a consistent value - but the
	 * sum of all the counts will be consistent and correct.
	 *
	 * Subtracting the bias value then has to happen _after_ adding count to
	 * &ref->count; we need the bias value to prevent &ref->count from
	 * reaching 0 before we add the percpu counts. But doing it at the same
	 * time is equivalent and saves us atomic operations:
	 */
	atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count);

	if (WARN_ONCE(atomic_long_read(&data->count) <= 0,
		      "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
		      data->release, atomic_long_read(&data->count)) &&
	    atomic_inc_return(&underflows) < 4) {
		pr_err("%s(): percpu_ref underflow", __func__);
		mem_dump_obj(data);
	}

	/* @ref is viewed as dead on all CPUs, send out switch confirmation */
	percpu_ref_call_confirm_rcu(rcu);
}

static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
{
}

static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
					  percpu_ref_func_t *confirm_switch)
{
	if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
		if (confirm_switch)
			confirm_switch(ref);
		return;
	}

	/* switching from percpu to atomic */
	ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;

	/*
	 * Non-NULL ->confirm_switch is used to indicate that switching is
	 * in progress.  Use noop one if unspecified.
	 */
	ref->data->confirm_switch = confirm_switch ?:
		percpu_ref_noop_confirm_switch;

	percpu_ref_get(ref);	/* put after confirmation */
	call_rcu(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu);
}

static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
{
	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
	int cpu;

	BUG_ON(!percpu_count);

	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
		return;

	if (WARN_ON_ONCE(!ref->data->allow_reinit))
		return;

	atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count);

	/*
	 * Restore per-cpu operation.  smp_store_release() is paired
	 * with READ_ONCE() in __ref_is_percpu() and guarantees that the
	 * zeroing is visible to all percpu accesses which can see the
	 * following __PERCPU_REF_ATOMIC clearing.
	 */
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(percpu_count, cpu) = 0;

	smp_store_release(&ref->percpu_count_ptr,
			  ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
}

static void __percpu_ref_switch_mode(struct percpu_ref *ref,
				     percpu_ref_func_t *confirm_switch)
{
	struct percpu_ref_data *data = ref->data;

	lockdep_assert_held(&percpu_ref_switch_lock);

	/*
	 * If the previous ATOMIC switching hasn't finished yet, wait for
	 * its completion.  If the caller ensures that ATOMIC switching
	 * isn't in progress, this function can be called from any context.
	 */
	wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch,
			    percpu_ref_switch_lock);

	if (data->force_atomic || percpu_ref_is_dying(ref))
		__percpu_ref_switch_to_atomic(ref, confirm_switch);
	else
		__percpu_ref_switch_to_percpu(ref);
}

/**
 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
 * @ref: percpu_ref to switch to atomic mode
 * @confirm_switch: optional confirmation callback
 *
 * There's no reason to use this function for the usual reference counting.
 * Use percpu_ref_kill[_and_confirm]().
 *
 * Schedule switching of @ref to atomic mode.  All its percpu counts will
 * be collected to the main atomic counter.  On completion, when all CPUs
 * are guaraneed to be in atomic mode, @confirm_switch, which may not
 * block, is invoked.  This function may be invoked concurrently with all
 * the get/put operations and can safely be mixed with kill and reinit
 * operations.  Note that @ref will stay in atomic mode across kill/reinit
 * cycles until percpu_ref_switch_to_percpu() is called.
 *
 * This function may block if @ref is in the process of switching to atomic
 * mode.  If the caller ensures that @ref is not in the process of
 * switching to atomic mode, this function can be called from any context.
 */
void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
				 percpu_ref_func_t *confirm_switch)
{
	unsigned long flags;

	spin_lock_irqsave(&percpu_ref_switch_lock, flags);

	ref->data->force_atomic = true;
	__percpu_ref_switch_mode(ref, confirm_switch);

	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
}
EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);

/**
 * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
 * @ref: percpu_ref to switch to atomic mode
 *
 * Schedule switching the ref to atomic mode, and wait for the
 * switch to complete.  Caller must ensure that no other thread
 * will switch back to percpu mode.
 */
void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
{
	percpu_ref_switch_to_atomic(ref, NULL);
	wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch);
}
EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);

/**
 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
 * @ref: percpu_ref to switch to percpu mode
 *
 * There's no reason to use this function for the usual reference counting.
 * To re-use an expired ref, use percpu_ref_reinit().
 *
 * Switch @ref to percpu mode.  This function may be invoked concurrently
 * with all the get/put operations and can safely be mixed with kill and
 * reinit operations.  This function reverses the sticky atomic state set
 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
 * dying or dead, the actual switching takes place on the following
 * percpu_ref_reinit().
 *
 * This function may block if @ref is in the process of switching to atomic
 * mode.  If the caller ensures that @ref is not in the process of
 * switching to atomic mode, this function can be called from any context.
 */
void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
{
	unsigned long flags;

	spin_lock_irqsave(&percpu_ref_switch_lock, flags);

	ref->data->force_atomic = false;
	__percpu_ref_switch_mode(ref, NULL);

	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
}
EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);

/**
 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
 * @ref: percpu_ref to kill
 * @confirm_kill: optional confirmation callback
 *
 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
 * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
 * called after @ref is seen as dead from all CPUs at which point all
 * further invocations of percpu_ref_tryget_live() will fail.  See
 * percpu_ref_tryget_live() for details.
 *
 * This function normally doesn't block and can be called from any context
 * but it may block if @confirm_kill is specified and @ref is in the
 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
 *
 * There are no implied RCU grace periods between kill and release.
 */
void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
				 percpu_ref_func_t *confirm_kill)
{
	unsigned long flags;

	spin_lock_irqsave(&percpu_ref_switch_lock, flags);

	WARN_ONCE(percpu_ref_is_dying(ref),
		  "%s called more than once on %ps!", __func__,
		  ref->data->release);

	ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
	__percpu_ref_switch_mode(ref, confirm_kill);
	percpu_ref_put(ref);

	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
}
EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);

/**
 * percpu_ref_is_zero - test whether a percpu refcount reached zero
 * @ref: percpu_ref to test
 *
 * Returns %true if @ref reached zero.
 *
 * This function is safe to call as long as @ref is between init and exit.
 */
bool percpu_ref_is_zero(struct percpu_ref *ref)
{
	unsigned long __percpu *percpu_count;
	unsigned long count, flags;

	if (__ref_is_percpu(ref, &percpu_count))
		return false;

	/* protect us from being destroyed */
	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
	if (ref->data)
		count = atomic_long_read(&ref->data->count);
	else
		count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS;
	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);

	return count == 0;
}
EXPORT_SYMBOL_GPL(percpu_ref_is_zero);

/**
 * percpu_ref_reinit - re-initialize a percpu refcount
 * @ref: perpcu_ref to re-initialize
 *
 * Re-initialize @ref so that it's in the same state as when it finished
 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
 * initialized successfully and reached 0 but not exited.
 *
 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
 * this function is in progress.
 */
void percpu_ref_reinit(struct percpu_ref *ref)
{
	WARN_ON_ONCE(!percpu_ref_is_zero(ref));

	percpu_ref_resurrect(ref);
}
EXPORT_SYMBOL_GPL(percpu_ref_reinit);

/**
 * percpu_ref_resurrect - modify a percpu refcount from dead to live
 * @ref: perpcu_ref to resurrect
 *
 * Modify @ref so that it's in the same state as before percpu_ref_kill() was
 * called. @ref must be dead but must not yet have exited.
 *
 * If @ref->release() frees @ref then the caller is responsible for
 * guaranteeing that @ref->release() does not get called while this
 * function is in progress.
 *
 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
 * this function is in progress.
 */
void percpu_ref_resurrect(struct percpu_ref *ref)
{
	unsigned long __percpu *percpu_count;
	unsigned long flags;

	spin_lock_irqsave(&percpu_ref_switch_lock, flags);

	WARN_ON_ONCE(!percpu_ref_is_dying(ref));
	WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));

	ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
	percpu_ref_get(ref);
	__percpu_ref_switch_mode(ref, NULL);

	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
}
EXPORT_SYMBOL_GPL(percpu_ref_resurrect);