Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. */ #ifndef LINUX_DMAENGINE_H #define LINUX_DMAENGINE_H #include <linux/device.h> #include <linux/err.h> #include <linux/uio.h> #include <linux/bug.h> #include <linux/scatterlist.h> #include <linux/bitmap.h> #include <linux/types.h> #include <asm/page.h> /** * typedef dma_cookie_t - an opaque DMA cookie * * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code */ typedef s32 dma_cookie_t; #define DMA_MIN_COOKIE 1 static inline int dma_submit_error(dma_cookie_t cookie) { return cookie < 0 ? cookie : 0; } /** * enum dma_status - DMA transaction status * @DMA_COMPLETE: transaction completed * @DMA_IN_PROGRESS: transaction not yet processed * @DMA_PAUSED: transaction is paused * @DMA_ERROR: transaction failed */ enum dma_status { DMA_COMPLETE, DMA_IN_PROGRESS, DMA_PAUSED, DMA_ERROR, DMA_OUT_OF_ORDER, }; /** * enum dma_transaction_type - DMA transaction types/indexes * * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is * automatically set as dma devices are registered. */ enum dma_transaction_type { DMA_MEMCPY, DMA_XOR, DMA_PQ, DMA_XOR_VAL, DMA_PQ_VAL, DMA_MEMSET, DMA_MEMSET_SG, DMA_INTERRUPT, DMA_PRIVATE, DMA_ASYNC_TX, DMA_SLAVE, DMA_CYCLIC, DMA_INTERLEAVE, DMA_COMPLETION_NO_ORDER, DMA_REPEAT, DMA_LOAD_EOT, /* last transaction type for creation of the capabilities mask */ DMA_TX_TYPE_END, }; /** * enum dma_transfer_direction - dma transfer mode and direction indicator * @DMA_MEM_TO_MEM: Async/Memcpy mode * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory * @DMA_DEV_TO_DEV: Slave mode & From Device to Device */ enum dma_transfer_direction { DMA_MEM_TO_MEM, DMA_MEM_TO_DEV, DMA_DEV_TO_MEM, DMA_DEV_TO_DEV, DMA_TRANS_NONE, }; /** * Interleaved Transfer Request * ---------------------------- * A chunk is collection of contiguous bytes to be transferred. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). * ICGs may or may not change between chunks. * A FRAME is the smallest series of contiguous {chunk,icg} pairs, * that when repeated an integral number of times, specifies the transfer. * A transfer template is specification of a Frame, the number of times * it is to be repeated and other per-transfer attributes. * * Practically, a client driver would have ready a template for each * type of transfer it is going to need during its lifetime and * set only 'src_start' and 'dst_start' before submitting the requests. * * * | Frame-1 | Frame-2 | ~ | Frame-'numf' | * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| * * == Chunk size * ... ICG */ /** * struct data_chunk - Element of scatter-gather list that makes a frame. * @size: Number of bytes to read from source. * size_dst := fn(op, size_src), so doesn't mean much for destination. * @icg: Number of bytes to jump after last src/dst address of this * chunk and before first src/dst address for next chunk. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. * @dst_icg: Number of bytes to jump after last dst address of this * chunk and before the first dst address for next chunk. * Ignored if dst_inc is true and dst_sgl is false. * @src_icg: Number of bytes to jump after last src address of this * chunk and before the first src address for next chunk. * Ignored if src_inc is true and src_sgl is false. */ struct data_chunk { size_t size; size_t icg; size_t dst_icg; size_t src_icg; }; /** * struct dma_interleaved_template - Template to convey DMAC the transfer pattern * and attributes. * @src_start: Bus address of source for the first chunk. * @dst_start: Bus address of destination for the first chunk. * @dir: Specifies the type of Source and Destination. * @src_inc: If the source address increments after reading from it. * @dst_inc: If the destination address increments after writing to it. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). * Otherwise, source is read contiguously (icg ignored). * Ignored if src_inc is false. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). * Otherwise, destination is filled contiguously (icg ignored). * Ignored if dst_inc is false. * @numf: Number of frames in this template. * @frame_size: Number of chunks in a frame i.e, size of sgl[]. * @sgl: Array of {chunk,icg} pairs that make up a frame. */ struct dma_interleaved_template { dma_addr_t src_start; dma_addr_t dst_start; enum dma_transfer_direction dir; bool src_inc; bool dst_inc; bool src_sgl; bool dst_sgl; size_t numf; size_t frame_size; struct data_chunk sgl[]; }; /** * enum dma_ctrl_flags - DMA flags to augment operation preparation, * control completion, and communicate status. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of * this transaction * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client * acknowledges receipt, i.e. has a chance to establish any dependency * chains * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as * sources that were the result of a previous operation, in the case of a PQ * operation it continues the calculation with new sources * @DMA_PREP_FENCE - tell the driver that subsequent operations depend * on the result of this operation * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till * cleared or freed * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command * data and the descriptor should be in different format from normal * data descriptors. * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically * repeated when it ends until a transaction is issued on the same channel * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to * interleaved transactions and is ignored for all other transaction types. * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the * repeated transaction ends. Not setting this flag when the previously queued * transaction is marked with DMA_PREP_REPEAT will cause the new transaction * to never be processed and stay in the issued queue forever. The flag is * ignored if the previous transaction is not a repeated transaction. */ enum dma_ctrl_flags { DMA_PREP_INTERRUPT = (1 << 0), DMA_CTRL_ACK = (1 << 1), DMA_PREP_PQ_DISABLE_P = (1 << 2), DMA_PREP_PQ_DISABLE_Q = (1 << 3), DMA_PREP_CONTINUE = (1 << 4), DMA_PREP_FENCE = (1 << 5), DMA_CTRL_REUSE = (1 << 6), DMA_PREP_CMD = (1 << 7), DMA_PREP_REPEAT = (1 << 8), DMA_PREP_LOAD_EOT = (1 << 9), }; /** * enum sum_check_bits - bit position of pq_check_flags */ enum sum_check_bits { SUM_CHECK_P = 0, SUM_CHECK_Q = 1, }; /** * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise */ enum sum_check_flags { SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), }; /** * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. * See linux/cpumask.h */ typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; /** * struct dma_chan_percpu - the per-CPU part of struct dma_chan * @memcpy_count: transaction counter * @bytes_transferred: byte counter */ /** * enum dma_desc_metadata_mode - per descriptor metadata mode types supported * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the * client driver and it is attached (via the dmaengine_desc_attach_metadata() * helper) to the descriptor. * * Client drivers interested to use this mode can follow: * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: * 1. prepare the descriptor (dmaengine_prep_*) * construct the metadata in the client's buffer * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the * descriptor * 3. submit the transfer * - DMA_DEV_TO_MEM: * 1. prepare the descriptor (dmaengine_prep_*) * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the * descriptor * 3. submit the transfer * 4. when the transfer is completed, the metadata should be available in the * attached buffer * * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA * driver. The client driver can ask for the pointer, maximum size and the * currently used size of the metadata and can directly update or read it. * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is * provided as helper functions. * * Note: the metadata area for the descriptor is no longer valid after the * transfer has been completed (valid up to the point when the completion * callback returns if used). * * Client drivers interested to use this mode can follow: * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: * 1. prepare the descriptor (dmaengine_prep_*) * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's * metadata area * 3. update the metadata at the pointer * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount * of data the client has placed into the metadata buffer * 5. submit the transfer * - DMA_DEV_TO_MEM: * 1. prepare the descriptor (dmaengine_prep_*) * 2. submit the transfer * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the * pointer to the engine's metadata area * 4. Read out the metadata from the pointer * * Note: the two mode is not compatible and clients must use one mode for a * descriptor. */ enum dma_desc_metadata_mode { DESC_METADATA_NONE = 0, DESC_METADATA_CLIENT = BIT(0), DESC_METADATA_ENGINE = BIT(1), }; struct dma_chan_percpu { /* stats */ unsigned long memcpy_count; unsigned long bytes_transferred; }; /** * struct dma_router - DMA router structure * @dev: pointer to the DMA router device * @route_free: function to be called when the route can be disconnected */ struct dma_router { struct device *dev; void (*route_free)(struct device *dev, void *route_data); }; /** * struct dma_chan - devices supply DMA channels, clients use them * @device: ptr to the dma device who supplies this channel, always !%NULL * @slave: ptr to the device using this channel * @cookie: last cookie value returned to client * @completed_cookie: last completed cookie for this channel * @chan_id: channel ID for sysfs * @dev: class device for sysfs * @name: backlink name for sysfs * @dbg_client_name: slave name for debugfs in format: * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" * @device_node: used to add this to the device chan list * @local: per-cpu pointer to a struct dma_chan_percpu * @client_count: how many clients are using this channel * @table_count: number of appearances in the mem-to-mem allocation table * @router: pointer to the DMA router structure * @route_data: channel specific data for the router * @private: private data for certain client-channel associations */ struct dma_chan { struct dma_device *device; struct device *slave; dma_cookie_t cookie; dma_cookie_t completed_cookie; /* sysfs */ int chan_id; struct dma_chan_dev *dev; const char *name; #ifdef CONFIG_DEBUG_FS char *dbg_client_name; #endif struct list_head device_node; struct dma_chan_percpu __percpu *local; int client_count; int table_count; /* DMA router */ struct dma_router *router; void *route_data; void *private; }; /** * struct dma_chan_dev - relate sysfs device node to backing channel device * @chan: driver channel device * @device: sysfs device * @dev_id: parent dma_device dev_id * @chan_dma_dev: The channel is using custom/different dma-mapping * compared to the parent dma_device */ struct dma_chan_dev { struct dma_chan *chan; struct device device; int dev_id; bool chan_dma_dev; }; /** * enum dma_slave_buswidth - defines bus width of the DMA slave * device, source or target buses */ enum dma_slave_buswidth { DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, DMA_SLAVE_BUSWIDTH_1_BYTE = 1, DMA_SLAVE_BUSWIDTH_2_BYTES = 2, DMA_SLAVE_BUSWIDTH_3_BYTES = 3, DMA_SLAVE_BUSWIDTH_4_BYTES = 4, DMA_SLAVE_BUSWIDTH_8_BYTES = 8, DMA_SLAVE_BUSWIDTH_16_BYTES = 16, DMA_SLAVE_BUSWIDTH_32_BYTES = 32, DMA_SLAVE_BUSWIDTH_64_BYTES = 64, }; /** * struct dma_slave_config - dma slave channel runtime config * @direction: whether the data shall go in or out on this slave * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are * legal values. DEPRECATED, drivers should use the direction argument * to the device_prep_slave_sg and device_prep_dma_cyclic functions or * the dir field in the dma_interleaved_template structure. * @src_addr: this is the physical address where DMA slave data * should be read (RX), if the source is memory this argument is * ignored. * @dst_addr: this is the physical address where DMA slave data * should be written (TX), if the source is memory this argument * is ignored. * @src_addr_width: this is the width in bytes of the source (RX) * register where DMA data shall be read. If the source * is memory this may be ignored depending on architecture. * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. * @dst_addr_width: same as src_addr_width but for destination * target (TX) mutatis mutandis. * @src_maxburst: the maximum number of words (note: words, as in * units of the src_addr_width member, not bytes) that can be sent * in one burst to the device. Typically something like half the * FIFO depth on I/O peripherals so you don't overflow it. This * may or may not be applicable on memory sources. * @dst_maxburst: same as src_maxburst but for destination target * mutatis mutandis. * @src_port_window_size: The length of the register area in words the data need * to be accessed on the device side. It is only used for devices which is using * an area instead of a single register to receive the data. Typically the DMA * loops in this area in order to transfer the data. * @dst_port_window_size: same as src_port_window_size but for the destination * port. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill * with 'true' if peripheral should be flow controller. Direction will be * selected at Runtime. * @slave_id: Slave requester id. Only valid for slave channels. The dma * slave peripheral will have unique id as dma requester which need to be * pass as slave config. * @peripheral_config: peripheral configuration for programming peripheral * for dmaengine transfer * @peripheral_size: peripheral configuration buffer size * * This struct is passed in as configuration data to a DMA engine * in order to set up a certain channel for DMA transport at runtime. * The DMA device/engine has to provide support for an additional * callback in the dma_device structure, device_config and this struct * will then be passed in as an argument to the function. * * The rationale for adding configuration information to this struct is as * follows: if it is likely that more than one DMA slave controllers in * the world will support the configuration option, then make it generic. * If not: if it is fixed so that it be sent in static from the platform * data, then prefer to do that. */ struct dma_slave_config { enum dma_transfer_direction direction; phys_addr_t src_addr; phys_addr_t dst_addr; enum dma_slave_buswidth src_addr_width; enum dma_slave_buswidth dst_addr_width; u32 src_maxburst; u32 dst_maxburst; u32 src_port_window_size; u32 dst_port_window_size; bool device_fc; unsigned int slave_id; void *peripheral_config; size_t peripheral_size; }; /** * enum dma_residue_granularity - Granularity of the reported transfer residue * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The * DMA channel is only able to tell whether a descriptor has been completed or * not, which means residue reporting is not supported by this channel. The * residue field of the dma_tx_state field will always be 0. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully * completed segment of the transfer (For cyclic transfers this is after each * period). This is typically implemented by having the hardware generate an * interrupt after each transferred segment and then the drivers updates the * outstanding residue by the size of the segment. Another possibility is if * the hardware supports scatter-gather and the segment descriptor has a field * which gets set after the segment has been completed. The driver then counts * the number of segments without the flag set to compute the residue. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred * burst. This is typically only supported if the hardware has a progress * register of some sort (E.g. a register with the current read/write address * or a register with the amount of bursts/beats/bytes that have been * transferred or still need to be transferred). */ enum dma_residue_granularity { DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, DMA_RESIDUE_GRANULARITY_SEGMENT = 1, DMA_RESIDUE_GRANULARITY_BURST = 2, }; /** * struct dma_slave_caps - expose capabilities of a slave channel only * @src_addr_widths: bit mask of src addr widths the channel supports. * Width is specified in bytes, e.g. for a channel supporting * a width of 4 the mask should have BIT(4) set. * @dst_addr_widths: bit mask of dst addr widths the channel supports * @directions: bit mask of slave directions the channel supports. * Since the enum dma_transfer_direction is not defined as bit flag for * each type, the dma controller should set BIT(<TYPE>) and same * should be checked by controller as well * @min_burst: min burst capability per-transfer * @max_burst: max burst capability per-transfer * @max_sg_burst: max number of SG list entries executed in a single burst * DMA tansaction with no software intervention for reinitialization. * Zero value means unlimited number of entries. * @cmd_pause: true, if pause is supported (i.e. for reading residue or * for resume later) * @cmd_resume: true, if resume is supported * @cmd_terminate: true, if terminate cmd is supported * @residue_granularity: granularity of the reported transfer residue * @descriptor_reuse: if a descriptor can be reused by client and * resubmitted multiple times */ struct dma_slave_caps { u32 src_addr_widths; u32 dst_addr_widths; u32 directions; u32 min_burst; u32 max_burst; u32 max_sg_burst; bool cmd_pause; bool cmd_resume; bool cmd_terminate; enum dma_residue_granularity residue_granularity; bool descriptor_reuse; }; static inline const char *dma_chan_name(struct dma_chan *chan) { return dev_name(&chan->dev->device); } void dma_chan_cleanup(struct kref *kref); /** * typedef dma_filter_fn - callback filter for dma_request_channel * @chan: channel to be reviewed * @filter_param: opaque parameter passed through dma_request_channel * * When this optional parameter is specified in a call to dma_request_channel a * suitable channel is passed to this routine for further dispositioning before * being returned. Where 'suitable' indicates a non-busy channel that * satisfies the given capability mask. It returns 'true' to indicate that the * channel is suitable. */ typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); typedef void (*dma_async_tx_callback)(void *dma_async_param); enum dmaengine_tx_result { DMA_TRANS_NOERROR = 0, /* SUCCESS */ DMA_TRANS_READ_FAILED, /* Source DMA read failed */ DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ DMA_TRANS_ABORTED, /* Op never submitted / aborted */ }; struct dmaengine_result { enum dmaengine_tx_result result; u32 residue; }; typedef void (*dma_async_tx_callback_result)(void *dma_async_param, const struct dmaengine_result *result); struct dmaengine_unmap_data { #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) u16 map_cnt; #else u8 map_cnt; #endif u8 to_cnt; u8 from_cnt; u8 bidi_cnt; struct device *dev; struct kref kref; size_t len; dma_addr_t addr[]; }; struct dma_async_tx_descriptor; struct dma_descriptor_metadata_ops { int (*attach)(struct dma_async_tx_descriptor *desc, void *data, size_t len); void *(*get_ptr)(struct dma_async_tx_descriptor *desc, size_t *payload_len, size_t *max_len); int (*set_len)(struct dma_async_tx_descriptor *desc, size_t payload_len); }; /** * struct dma_async_tx_descriptor - async transaction descriptor * ---dma generic offload fields--- * @cookie: tracking cookie for this transaction, set to -EBUSY if * this tx is sitting on a dependency list * @flags: flags to augment operation preparation, control completion, and * communicate status * @phys: physical address of the descriptor * @chan: target channel for this operation * @tx_submit: accept the descriptor, assign ordered cookie and mark the * descriptor pending. To be pushed on .issue_pending() call * @callback: routine to call after this operation is complete * @callback_param: general parameter to pass to the callback routine * @desc_metadata_mode: core managed metadata mode to protect mixed use of * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise * DESC_METADATA_NONE * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the * DMA driver if metadata mode is supported with the descriptor * ---async_tx api specific fields--- * @next: at completion submit this descriptor * @parent: pointer to the next level up in the dependency chain * @lock: protect the parent and next pointers */ struct dma_async_tx_descriptor { dma_cookie_t cookie; enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ dma_addr_t phys; struct dma_chan *chan; dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); int (*desc_free)(struct dma_async_tx_descriptor *tx); dma_async_tx_callback callback; dma_async_tx_callback_result callback_result; void *callback_param; struct dmaengine_unmap_data *unmap; enum dma_desc_metadata_mode desc_metadata_mode; struct dma_descriptor_metadata_ops *metadata_ops; #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH struct dma_async_tx_descriptor *next; struct dma_async_tx_descriptor *parent; spinlock_t lock; #endif }; #ifdef CONFIG_DMA_ENGINE static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, struct dmaengine_unmap_data *unmap) { kref_get(&unmap->kref); tx->unmap = unmap; } struct dmaengine_unmap_data * dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); #else static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, struct dmaengine_unmap_data *unmap) { } static inline struct dmaengine_unmap_data * dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) { return NULL; } static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) { } #endif static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) { if (!tx->unmap) return; dmaengine_unmap_put(tx->unmap); tx->unmap = NULL; } #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH static inline void txd_lock(struct dma_async_tx_descriptor *txd) { } static inline void txd_unlock(struct dma_async_tx_descriptor *txd) { } static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) { BUG(); } static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) { } static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) { } static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) { return NULL; } static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) { return NULL; } #else static inline void txd_lock(struct dma_async_tx_descriptor *txd) { spin_lock_bh(&txd->lock); } static inline void txd_unlock(struct dma_async_tx_descriptor *txd) { spin_unlock_bh(&txd->lock); } static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) { txd->next = next; next->parent = txd; } static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) { txd->parent = NULL; } static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) { txd->next = NULL; } static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) { return txd->parent; } static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) { return txd->next; } #endif /** * struct dma_tx_state - filled in to report the status of * a transfer. * @last: last completed DMA cookie * @used: last issued DMA cookie (i.e. the one in progress) * @residue: the remaining number of bytes left to transmit * on the selected transfer for states DMA_IN_PROGRESS and * DMA_PAUSED if this is implemented in the driver, else 0 * @in_flight_bytes: amount of data in bytes cached by the DMA. */ struct dma_tx_state { dma_cookie_t last; dma_cookie_t used; u32 residue; u32 in_flight_bytes; }; /** * enum dmaengine_alignment - defines alignment of the DMA async tx * buffers */ enum dmaengine_alignment { DMAENGINE_ALIGN_1_BYTE = 0, DMAENGINE_ALIGN_2_BYTES = 1, DMAENGINE_ALIGN_4_BYTES = 2, DMAENGINE_ALIGN_8_BYTES = 3, DMAENGINE_ALIGN_16_BYTES = 4, DMAENGINE_ALIGN_32_BYTES = 5, DMAENGINE_ALIGN_64_BYTES = 6, DMAENGINE_ALIGN_128_BYTES = 7, DMAENGINE_ALIGN_256_BYTES = 8, }; /** * struct dma_slave_map - associates slave device and it's slave channel with * parameter to be used by a filter function * @devname: name of the device * @slave: slave channel name * @param: opaque parameter to pass to struct dma_filter.fn */ struct dma_slave_map { const char *devname; const char *slave; void *param; }; /** * struct dma_filter - information for slave device/channel to filter_fn/param * mapping * @fn: filter function callback * @mapcnt: number of slave device/channel in the map * @map: array of channel to filter mapping data */ struct dma_filter { dma_filter_fn fn; int mapcnt; const struct dma_slave_map *map; }; /** * struct dma_device - info on the entity supplying DMA services * @chancnt: how many DMA channels are supported * @privatecnt: how many DMA channels are requested by dma_request_channel * @channels: the list of struct dma_chan * @global_node: list_head for global dma_device_list * @filter: information for device/slave to filter function/param mapping * @cap_mask: one or more dma_capability flags * @desc_metadata_modes: supported metadata modes by the DMA device * @max_xor: maximum number of xor sources, 0 if no capability * @max_pq: maximum number of PQ sources and PQ-continue capability * @copy_align: alignment shift for memcpy operations * @xor_align: alignment shift for xor operations * @pq_align: alignment shift for pq operations * @fill_align: alignment shift for memset operations * @dev_id: unique device ID * @dev: struct device reference for dma mapping api * @owner: owner module (automatically set based on the provided dev) * @src_addr_widths: bit mask of src addr widths the device supports * Width is specified in bytes, e.g. for a device supporting * a width of 4 the mask should have BIT(4) set. * @dst_addr_widths: bit mask of dst addr widths the device supports * @directions: bit mask of slave directions the device supports. * Since the enum dma_transfer_direction is not defined as bit flag for * each type, the dma controller should set BIT(<TYPE>) and same * should be checked by controller as well * @min_burst: min burst capability per-transfer * @max_burst: max burst capability per-transfer * @max_sg_burst: max number of SG list entries executed in a single burst * DMA tansaction with no software intervention for reinitialization. * Zero value means unlimited number of entries. * @residue_granularity: granularity of the transfer residue reported * by tx_status * @device_alloc_chan_resources: allocate resources and return the * number of allocated descriptors * @device_router_config: optional callback for DMA router configuration * @device_free_chan_resources: release DMA channel's resources * @device_prep_dma_memcpy: prepares a memcpy operation * @device_prep_dma_xor: prepares a xor operation * @device_prep_dma_xor_val: prepares a xor validation operation * @device_prep_dma_pq: prepares a pq operation * @device_prep_dma_pq_val: prepares a pqzero_sum operation * @device_prep_dma_memset: prepares a memset operation * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list * @device_prep_dma_interrupt: prepares an end of chain interrupt operation * @device_prep_slave_sg: prepares a slave dma operation * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. * The function takes a buffer of size buf_len. The callback function will * be called after period_len bytes have been transferred. * @device_prep_interleaved_dma: Transfer expression in a generic way. * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address * @device_caps: May be used to override the generic DMA slave capabilities * with per-channel specific ones * @device_config: Pushes a new configuration to a channel, return 0 or an error * code * @device_pause: Pauses any transfer happening on a channel. Returns * 0 or an error code * @device_resume: Resumes any transfer on a channel previously * paused. Returns 0 or an error code * @device_terminate_all: Aborts all transfers on a channel. Returns 0 * or an error code * @device_synchronize: Synchronizes the termination of a transfers to the * current context. * @device_tx_status: poll for transaction completion, the optional * txstate parameter can be supplied with a pointer to get a * struct with auxiliary transfer status information, otherwise the call * will just return a simple status code * @device_issue_pending: push pending transactions to hardware * @descriptor_reuse: a submitted transfer can be resubmitted after completion * @device_release: called sometime atfer dma_async_device_unregister() is * called and there are no further references to this structure. This * must be implemented to free resources however many existing drivers * do not and are therefore not safe to unbind while in use. * @dbg_summary_show: optional routine to show contents in debugfs; default code * will be used when this is omitted, but custom code can show extra, * controller specific information. */ struct dma_device { struct kref ref; unsigned int chancnt; unsigned int privatecnt; struct list_head channels; struct list_head global_node; struct dma_filter filter; dma_cap_mask_t cap_mask; enum dma_desc_metadata_mode desc_metadata_modes; unsigned short max_xor; unsigned short max_pq; enum dmaengine_alignment copy_align; enum dmaengine_alignment xor_align; enum dmaengine_alignment pq_align; enum dmaengine_alignment fill_align; #define DMA_HAS_PQ_CONTINUE (1 << 15) int dev_id; struct device *dev; struct module *owner; struct ida chan_ida; struct mutex chan_mutex; /* to protect chan_ida */ u32 src_addr_widths; u32 dst_addr_widths; u32 directions; u32 min_burst; u32 max_burst; u32 max_sg_burst; bool descriptor_reuse; enum dma_residue_granularity residue_granularity; int (*device_alloc_chan_resources)(struct dma_chan *chan); int (*device_router_config)(struct dma_chan *chan); void (*device_free_chan_resources)(struct dma_chan *chan); struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_xor)( struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, size_t len, enum sum_check_flags *result, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_pq)( struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, enum sum_check_flags *pqres, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_memset)( struct dma_chan *chan, dma_addr_t dest, int value, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( struct dma_chan *chan, struct scatterlist *sg, unsigned int nents, int value, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( struct dma_chan *chan, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_slave_sg)( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context); struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( struct dma_chan *chan, dma_addr_t dst, u64 data, unsigned long flags); void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config); int (*device_pause)(struct dma_chan *chan); int (*device_resume)(struct dma_chan *chan); int (*device_terminate_all)(struct dma_chan *chan); void (*device_synchronize)(struct dma_chan *chan); enum dma_status (*device_tx_status)(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate); void (*device_issue_pending)(struct dma_chan *chan); void (*device_release)(struct dma_device *dev); /* debugfs support */ #ifdef CONFIG_DEBUG_FS void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); struct dentry *dbg_dev_root; #endif }; static inline int dmaengine_slave_config(struct dma_chan *chan, struct dma_slave_config *config) { if (chan->device->device_config) return chan->device->device_config(chan, config); return -ENOSYS; } static inline bool is_slave_direction(enum dma_transfer_direction direction) { return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); } static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( struct dma_chan *chan, dma_addr_t buf, size_t len, enum dma_transfer_direction dir, unsigned long flags) { struct scatterlist sg; sg_init_table(&sg, 1); sg_dma_address(&sg) = buf; sg_dma_len(&sg) = len; if (!chan || !chan->device || !chan->device->device_prep_slave_sg) return NULL; return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags, NULL); } static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_slave_sg) return NULL; return chan->device->device_prep_slave_sg(chan, sgl, sg_len, dir, flags, NULL); } #ifdef CONFIG_RAPIDIO_DMA_ENGINE struct rio_dma_ext; static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, struct rio_dma_ext *rio_ext) { if (!chan || !chan->device || !chan->device->device_prep_slave_sg) return NULL; return chan->device->device_prep_slave_sg(chan, sgl, sg_len, dir, flags, rio_ext); } #endif static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) return NULL; return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, period_len, dir, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) return NULL; if (flags & DMA_PREP_REPEAT && !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) return NULL; return chan->device->device_prep_interleaved_dma(chan, xt, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( struct dma_chan *chan, dma_addr_t dest, int value, size_t len, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_dma_memset) return NULL; return chan->device->device_prep_dma_memset(chan, dest, value, len, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) return NULL; return chan->device->device_prep_dma_memcpy(chan, dest, src, len, flags); } static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, enum dma_desc_metadata_mode mode) { if (!chan) return false; return !!(chan->device->desc_metadata_modes & mode); } #ifdef CONFIG_DMA_ENGINE int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, void *data, size_t len); void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, size_t *payload_len, size_t *max_len); int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, size_t payload_len); #else /* CONFIG_DMA_ENGINE */ static inline int dmaengine_desc_attach_metadata( struct dma_async_tx_descriptor *desc, void *data, size_t len) { return -EINVAL; } static inline void *dmaengine_desc_get_metadata_ptr( struct dma_async_tx_descriptor *desc, size_t *payload_len, size_t *max_len) { return NULL; } static inline int dmaengine_desc_set_metadata_len( struct dma_async_tx_descriptor *desc, size_t payload_len) { return -EINVAL; } #endif /* CONFIG_DMA_ENGINE */ /** * dmaengine_terminate_all() - Terminate all active DMA transfers * @chan: The channel for which to terminate the transfers * * This function is DEPRECATED use either dmaengine_terminate_sync() or * dmaengine_terminate_async() instead. */ static inline int dmaengine_terminate_all(struct dma_chan *chan) { if (chan->device->device_terminate_all) return chan->device->device_terminate_all(chan); return -ENOSYS; } /** * dmaengine_terminate_async() - Terminate all active DMA transfers * @chan: The channel for which to terminate the transfers * * Calling this function will terminate all active and pending descriptors * that have previously been submitted to the channel. It is not guaranteed * though that the transfer for the active descriptor has stopped when the * function returns. Furthermore it is possible the complete callback of a * submitted transfer is still running when this function returns. * * dmaengine_synchronize() needs to be called before it is safe to free * any memory that is accessed by previously submitted descriptors or before * freeing any resources accessed from within the completion callback of any * previously submitted descriptors. * * This function can be called from atomic context as well as from within a * complete callback of a descriptor submitted on the same channel. * * If none of the two conditions above apply consider using * dmaengine_terminate_sync() instead. */ static inline int dmaengine_terminate_async(struct dma_chan *chan) { if (chan->device->device_terminate_all) return chan->device->device_terminate_all(chan); return -EINVAL; } /** * dmaengine_synchronize() - Synchronize DMA channel termination * @chan: The channel to synchronize * * Synchronizes to the DMA channel termination to the current context. When this * function returns it is guaranteed that all transfers for previously issued * descriptors have stopped and it is safe to free the memory associated * with them. Furthermore it is guaranteed that all complete callback functions * for a previously submitted descriptor have finished running and it is safe to * free resources accessed from within the complete callbacks. * * The behavior of this function is undefined if dma_async_issue_pending() has * been called between dmaengine_terminate_async() and this function. * * This function must only be called from non-atomic context and must not be * called from within a complete callback of a descriptor submitted on the same * channel. */ static inline void dmaengine_synchronize(struct dma_chan *chan) { might_sleep(); if (chan->device->device_synchronize) chan->device->device_synchronize(chan); } /** * dmaengine_terminate_sync() - Terminate all active DMA transfers * @chan: The channel for which to terminate the transfers * * Calling this function will terminate all active and pending transfers * that have previously been submitted to the channel. It is similar to * dmaengine_terminate_async() but guarantees that the DMA transfer has actually * stopped and that all complete callbacks have finished running when the * function returns. * * This function must only be called from non-atomic context and must not be * called from within a complete callback of a descriptor submitted on the same * channel. */ static inline int dmaengine_terminate_sync(struct dma_chan *chan) { int ret; ret = dmaengine_terminate_async(chan); if (ret) return ret; dmaengine_synchronize(chan); return 0; } static inline int dmaengine_pause(struct dma_chan *chan) { if (chan->device->device_pause) return chan->device->device_pause(chan); return -ENOSYS; } static inline int dmaengine_resume(struct dma_chan *chan) { if (chan->device->device_resume) return chan->device->device_resume(chan); return -ENOSYS; } static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { return chan->device->device_tx_status(chan, cookie, state); } static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) { return desc->tx_submit(desc); } static inline bool dmaengine_check_align(enum dmaengine_alignment align, size_t off1, size_t off2, size_t len) { return !(((1 << align) - 1) & (off1 | off2 | len)); } static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->copy_align, off1, off2, len); } static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->xor_align, off1, off2, len); } static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->pq_align, off1, off2, len); } static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->fill_align, off1, off2, len); } static inline void dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) { dma->max_pq = maxpq; if (has_pq_continue) dma->max_pq |= DMA_HAS_PQ_CONTINUE; } static inline bool dmaf_continue(enum dma_ctrl_flags flags) { return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; } static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) { enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; return (flags & mask) == mask; } static inline bool dma_dev_has_pq_continue(struct dma_device *dma) { return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; } static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) { return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; } /* dma_maxpq - reduce maxpq in the face of continued operations * @dma - dma device with PQ capability * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set * * When an engine does not support native continuation we need 3 extra * source slots to reuse P and Q with the following coefficients: * 1/ {00} * P : remove P from Q', but use it as a source for P' * 2/ {01} * Q : use Q to continue Q' calculation * 3/ {00} * Q : subtract Q from P' to cancel (2) * * In the case where P is disabled we only need 1 extra source: * 1/ {01} * Q : use Q to continue Q' calculation */ static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) { if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) return dma_dev_to_maxpq(dma); if (dmaf_p_disabled_continue(flags)) return dma_dev_to_maxpq(dma) - 1; if (dmaf_continue(flags)) return dma_dev_to_maxpq(dma) - 3; BUG(); } static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, size_t dir_icg) { if (inc) { if (dir_icg) return dir_icg; if (sgl) return icg; } return 0; } static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, struct data_chunk *chunk) { return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, chunk->icg, chunk->dst_icg); } static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, struct data_chunk *chunk) { return dmaengine_get_icg(xt->src_inc, xt->src_sgl, chunk->icg, chunk->src_icg); } /* --- public DMA engine API --- */ #ifdef CONFIG_DMA_ENGINE void dmaengine_get(void); void dmaengine_put(void); #else static inline void dmaengine_get(void) { } static inline void dmaengine_put(void) { } #endif #ifdef CONFIG_ASYNC_TX_DMA #define async_dmaengine_get() dmaengine_get() #define async_dmaengine_put() dmaengine_put() #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) #else #define async_dma_find_channel(type) dma_find_channel(type) #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ #else static inline void async_dmaengine_get(void) { } static inline void async_dmaengine_put(void) { } static inline struct dma_chan * async_dma_find_channel(enum dma_transaction_type type) { return NULL; } #endif /* CONFIG_ASYNC_TX_DMA */ void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, struct dma_chan *chan); static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) { tx->flags |= DMA_CTRL_ACK; } static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) { tx->flags &= ~DMA_CTRL_ACK; } static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) { return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; } #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) static inline void __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) { set_bit(tx_type, dstp->bits); } #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) static inline void __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) { clear_bit(tx_type, dstp->bits); } #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) static inline void __dma_cap_zero(dma_cap_mask_t *dstp) { bitmap_zero(dstp->bits, DMA_TX_TYPE_END); } #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) static inline int __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) { return test_bit(tx_type, srcp->bits); } #define for_each_dma_cap_mask(cap, mask) \ for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) /** * dma_async_issue_pending - flush pending transactions to HW * @chan: target DMA channel * * This allows drivers to push copies to HW in batches, * reducing MMIO writes where possible. */ static inline void dma_async_issue_pending(struct dma_chan *chan) { chan->device->device_issue_pending(chan); } /** * dma_async_is_tx_complete - poll for transaction completion * @chan: DMA channel * @cookie: transaction identifier to check status of * @last: returns last completed cookie, can be NULL * @used: returns last issued cookie, can be NULL * * If @last and @used are passed in, upon return they reflect the driver * internal state and can be used with dma_async_is_complete() to check * the status of multiple cookies without re-checking hardware state. */ static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) { struct dma_tx_state state; enum dma_status status; status = chan->device->device_tx_status(chan, cookie, &state); if (last) *last = state.last; if (used) *used = state.used; return status; } /** * dma_async_is_complete - test a cookie against chan state * @cookie: transaction identifier to test status of * @last_complete: last know completed transaction * @last_used: last cookie value handed out * * dma_async_is_complete() is used in dma_async_is_tx_complete() * the test logic is separated for lightweight testing of multiple cookies */ static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, dma_cookie_t last_complete, dma_cookie_t last_used) { if (last_complete <= last_used) { if ((cookie <= last_complete) || (cookie > last_used)) return DMA_COMPLETE; } else { if ((cookie <= last_complete) && (cookie > last_used)) return DMA_COMPLETE; } return DMA_IN_PROGRESS; } static inline void dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) { if (!st) return; st->last = last; st->used = used; st->residue = residue; } #ifdef CONFIG_DMA_ENGINE struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); void dma_issue_pending_all(void); struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param, struct device_node *np); struct dma_chan *dma_request_chan(struct device *dev, const char *name); struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); void dma_release_channel(struct dma_chan *chan); int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); #else static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) { return NULL; } static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) { return DMA_COMPLETE; } static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) { return DMA_COMPLETE; } static inline void dma_issue_pending_all(void) { } static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param, struct device_node *np) { return NULL; } static inline struct dma_chan *dma_request_chan(struct device *dev, const char *name) { return ERR_PTR(-ENODEV); } static inline struct dma_chan *dma_request_chan_by_mask( const dma_cap_mask_t *mask) { return ERR_PTR(-ENODEV); } static inline void dma_release_channel(struct dma_chan *chan) { } static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) { return -ENXIO; } #endif static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) { struct dma_slave_caps caps; int ret; ret = dma_get_slave_caps(tx->chan, &caps); if (ret) return ret; if (!caps.descriptor_reuse) return -EPERM; tx->flags |= DMA_CTRL_REUSE; return 0; } static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) { tx->flags &= ~DMA_CTRL_REUSE; } static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) { return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; } static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) { /* this is supported for reusable desc, so check that */ if (!dmaengine_desc_test_reuse(desc)) return -EPERM; return desc->desc_free(desc); } /* --- DMA device --- */ int dma_async_device_register(struct dma_device *device); int dmaenginem_async_device_register(struct dma_device *device); void dma_async_device_unregister(struct dma_device *device); int dma_async_device_channel_register(struct dma_device *device, struct dma_chan *chan); void dma_async_device_channel_unregister(struct dma_device *device, struct dma_chan *chan); void dma_run_dependencies(struct dma_async_tx_descriptor *tx); #define dma_request_channel(mask, x, y) \ __dma_request_channel(&(mask), x, y, NULL) /* Deprecated, please use dma_request_chan() directly */ static inline struct dma_chan * __deprecated dma_request_slave_channel(struct device *dev, const char *name) { struct dma_chan *ch = dma_request_chan(dev, name); return IS_ERR(ch) ? NULL : ch; } static inline struct dma_chan *dma_request_slave_channel_compat(const dma_cap_mask_t mask, dma_filter_fn fn, void *fn_param, struct device *dev, const char *name) { struct dma_chan *chan; chan = dma_request_slave_channel(dev, name); if (chan) return chan; if (!fn || !fn_param) return NULL; return __dma_request_channel(&mask, fn, fn_param, NULL); } static inline char * dmaengine_get_direction_text(enum dma_transfer_direction dir) { switch (dir) { case DMA_DEV_TO_MEM: return "DEV_TO_MEM"; case DMA_MEM_TO_DEV: return "MEM_TO_DEV"; case DMA_MEM_TO_MEM: return "MEM_TO_MEM"; case DMA_DEV_TO_DEV: return "DEV_TO_DEV"; default: return "invalid"; } } static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) { if (chan->dev->chan_dma_dev) return &chan->dev->device; return chan->device->dev; } #endif /* DMAENGINE_H */ |