Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 | /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/arch/x86_64/entry.S * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> * * entry.S contains the system-call and fault low-level handling routines. * * Some of this is documented in Documentation/x86/entry_64.rst * * A note on terminology: * - iret frame: Architecture defined interrupt frame from SS to RIP * at the top of the kernel process stack. * * Some macro usage: * - SYM_FUNC_START/END:Define functions in the symbol table. * - idtentry: Define exception entry points. */ #include <linux/linkage.h> #include <asm/segment.h> #include <asm/cache.h> #include <asm/errno.h> #include <asm/asm-offsets.h> #include <asm/msr.h> #include <asm/unistd.h> #include <asm/thread_info.h> #include <asm/hw_irq.h> #include <asm/page_types.h> #include <asm/irqflags.h> #include <asm/paravirt.h> #include <asm/percpu.h> #include <asm/asm.h> #include <asm/smap.h> #include <asm/pgtable_types.h> #include <asm/export.h> #include <asm/frame.h> #include <asm/trapnr.h> #include <asm/nospec-branch.h> #include <asm/fsgsbase.h> #include <linux/err.h> #include "calling.h" .code64 .section .entry.text, "ax" /* * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. * * This is the only entry point used for 64-bit system calls. The * hardware interface is reasonably well designed and the register to * argument mapping Linux uses fits well with the registers that are * available when SYSCALL is used. * * SYSCALL instructions can be found inlined in libc implementations as * well as some other programs and libraries. There are also a handful * of SYSCALL instructions in the vDSO used, for example, as a * clock_gettimeofday fallback. * * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, * then loads new ss, cs, and rip from previously programmed MSRs. * rflags gets masked by a value from another MSR (so CLD and CLAC * are not needed). SYSCALL does not save anything on the stack * and does not change rsp. * * Registers on entry: * rax system call number * rcx return address * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) * rdi arg0 * rsi arg1 * rdx arg2 * r10 arg3 (needs to be moved to rcx to conform to C ABI) * r8 arg4 * r9 arg5 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) * * Only called from user space. * * When user can change pt_regs->foo always force IRET. That is because * it deals with uncanonical addresses better. SYSRET has trouble * with them due to bugs in both AMD and Intel CPUs. */ SYM_CODE_START(entry_SYSCALL_64) UNWIND_HINT_EMPTY swapgs /* tss.sp2 is scratch space. */ movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) /* Construct struct pt_regs on stack */ pushq $__USER_DS /* pt_regs->ss */ pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ pushq %r11 /* pt_regs->flags */ pushq $__USER_CS /* pt_regs->cs */ pushq %rcx /* pt_regs->ip */ SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) pushq %rax /* pt_regs->orig_ax */ PUSH_AND_CLEAR_REGS rax=$-ENOSYS /* IRQs are off. */ movq %rax, %rdi movq %rsp, %rsi call do_syscall_64 /* returns with IRQs disabled */ /* * Try to use SYSRET instead of IRET if we're returning to * a completely clean 64-bit userspace context. If we're not, * go to the slow exit path. * In the Xen PV case we must use iret anyway. */ ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ X86_FEATURE_XENPV movq RCX(%rsp), %rcx movq RIP(%rsp), %r11 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ jne swapgs_restore_regs_and_return_to_usermode /* * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP * in kernel space. This essentially lets the user take over * the kernel, since userspace controls RSP. * * If width of "canonical tail" ever becomes variable, this will need * to be updated to remain correct on both old and new CPUs. * * Change top bits to match most significant bit (47th or 56th bit * depending on paging mode) in the address. */ #ifdef CONFIG_X86_5LEVEL ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 #else shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx #endif /* If this changed %rcx, it was not canonical */ cmpq %rcx, %r11 jne swapgs_restore_regs_and_return_to_usermode cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ jne swapgs_restore_regs_and_return_to_usermode movq R11(%rsp), %r11 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ jne swapgs_restore_regs_and_return_to_usermode /* * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot * restore RF properly. If the slowpath sets it for whatever reason, we * need to restore it correctly. * * SYSRET can restore TF, but unlike IRET, restoring TF results in a * trap from userspace immediately after SYSRET. This would cause an * infinite loop whenever #DB happens with register state that satisfies * the opportunistic SYSRET conditions. For example, single-stepping * this user code: * * movq $stuck_here, %rcx * pushfq * popq %r11 * stuck_here: * * would never get past 'stuck_here'. */ testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 jnz swapgs_restore_regs_and_return_to_usermode /* nothing to check for RSP */ cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ jne swapgs_restore_regs_and_return_to_usermode /* * We win! This label is here just for ease of understanding * perf profiles. Nothing jumps here. */ syscall_return_via_sysret: /* rcx and r11 are already restored (see code above) */ POP_REGS pop_rdi=0 skip_r11rcx=1 /* * Now all regs are restored except RSP and RDI. * Save old stack pointer and switch to trampoline stack. */ movq %rsp, %rdi movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp UNWIND_HINT_EMPTY pushq RSP-RDI(%rdi) /* RSP */ pushq (%rdi) /* RDI */ /* * We are on the trampoline stack. All regs except RDI are live. * We can do future final exit work right here. */ STACKLEAK_ERASE_NOCLOBBER SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi popq %rdi popq %rsp swapgs sysretq SYM_CODE_END(entry_SYSCALL_64) /* * %rdi: prev task * %rsi: next task */ .pushsection .text, "ax" SYM_FUNC_START(__switch_to_asm) /* * Save callee-saved registers * This must match the order in inactive_task_frame */ pushq %rbp pushq %rbx pushq %r12 pushq %r13 pushq %r14 pushq %r15 /* switch stack */ movq %rsp, TASK_threadsp(%rdi) movq TASK_threadsp(%rsi), %rsp #ifdef CONFIG_STACKPROTECTOR movq TASK_stack_canary(%rsi), %rbx movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset #endif #ifdef CONFIG_RETPOLINE /* * When switching from a shallower to a deeper call stack * the RSB may either underflow or use entries populated * with userspace addresses. On CPUs where those concerns * exist, overwrite the RSB with entries which capture * speculative execution to prevent attack. */ FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW #endif /* restore callee-saved registers */ popq %r15 popq %r14 popq %r13 popq %r12 popq %rbx popq %rbp jmp __switch_to SYM_FUNC_END(__switch_to_asm) .popsection /* * A newly forked process directly context switches into this address. * * rax: prev task we switched from * rbx: kernel thread func (NULL for user thread) * r12: kernel thread arg */ .pushsection .text, "ax" SYM_CODE_START(ret_from_fork) UNWIND_HINT_EMPTY movq %rax, %rdi call schedule_tail /* rdi: 'prev' task parameter */ testq %rbx, %rbx /* from kernel_thread? */ jnz 1f /* kernel threads are uncommon */ 2: UNWIND_HINT_REGS movq %rsp, %rdi call syscall_exit_to_user_mode /* returns with IRQs disabled */ jmp swapgs_restore_regs_and_return_to_usermode 1: /* kernel thread */ UNWIND_HINT_EMPTY movq %r12, %rdi CALL_NOSPEC rbx /* * A kernel thread is allowed to return here after successfully * calling kernel_execve(). Exit to userspace to complete the execve() * syscall. */ movq $0, RAX(%rsp) jmp 2b SYM_CODE_END(ret_from_fork) .popsection .macro DEBUG_ENTRY_ASSERT_IRQS_OFF #ifdef CONFIG_DEBUG_ENTRY pushq %rax SAVE_FLAGS(CLBR_RAX) testl $X86_EFLAGS_IF, %eax jz .Lokay_\@ ud2 .Lokay_\@: popq %rax #endif .endm /** * idtentry_body - Macro to emit code calling the C function * @cfunc: C function to be called * @has_error_code: Hardware pushed error code on stack */ .macro idtentry_body cfunc has_error_code:req call error_entry UNWIND_HINT_REGS movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ .if \has_error_code == 1 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ .endif call \cfunc jmp error_return .endm /** * idtentry - Macro to generate entry stubs for simple IDT entries * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * @has_error_code: Hardware pushed error code on stack * * The macro emits code to set up the kernel context for straight forward * and simple IDT entries. No IST stack, no paranoid entry checks. */ .macro idtentry vector asmsym cfunc has_error_code:req SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS offset=\has_error_code*8 ASM_CLAC .if \has_error_code == 0 pushq $-1 /* ORIG_RAX: no syscall to restart */ .endif .if \vector == X86_TRAP_BP /* * If coming from kernel space, create a 6-word gap to allow the * int3 handler to emulate a call instruction. */ testb $3, CS-ORIG_RAX(%rsp) jnz .Lfrom_usermode_no_gap_\@ .rept 6 pushq 5*8(%rsp) .endr UNWIND_HINT_IRET_REGS offset=8 .Lfrom_usermode_no_gap_\@: .endif idtentry_body \cfunc \has_error_code _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm /* * Interrupt entry/exit. * + The interrupt stubs push (vector) onto the stack, which is the error_code * position of idtentry exceptions, and jump to one of the two idtentry points * (common/spurious). * * common_interrupt is a hotpath, align it to a cache line */ .macro idtentry_irq vector cfunc .p2align CONFIG_X86_L1_CACHE_SHIFT idtentry \vector asm_\cfunc \cfunc has_error_code=1 .endm /* * System vectors which invoke their handlers directly and are not * going through the regular common device interrupt handling code. */ .macro idtentry_sysvec vector cfunc idtentry \vector asm_\cfunc \cfunc has_error_code=0 .endm /** * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * * The macro emits code to set up the kernel context for #MC and #DB * * If the entry comes from user space it uses the normal entry path * including the return to user space work and preemption checks on * exit. * * If hits in kernel mode then it needs to go through the paranoid * entry as the exception can hit any random state. No preemption * check on exit to keep the paranoid path simple. */ .macro idtentry_mce_db vector asmsym cfunc SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS ASM_CLAC pushq $-1 /* ORIG_RAX: no syscall to restart */ /* * If the entry is from userspace, switch stacks and treat it as * a normal entry. */ testb $3, CS-ORIG_RAX(%rsp) jnz .Lfrom_usermode_switch_stack_\@ /* paranoid_entry returns GS information for paranoid_exit in EBX. */ call paranoid_entry UNWIND_HINT_REGS movq %rsp, %rdi /* pt_regs pointer */ call \cfunc jmp paranoid_exit /* Switch to the regular task stack and use the noist entry point */ .Lfrom_usermode_switch_stack_\@: idtentry_body noist_\cfunc, has_error_code=0 _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm #ifdef CONFIG_AMD_MEM_ENCRYPT /** * idtentry_vc - Macro to generate entry stub for #VC * @vector: Vector number * @asmsym: ASM symbol for the entry point * @cfunc: C function to be called * * The macro emits code to set up the kernel context for #VC. The #VC handler * runs on an IST stack and needs to be able to cause nested #VC exceptions. * * To make this work the #VC entry code tries its best to pretend it doesn't use * an IST stack by switching to the task stack if coming from user-space (which * includes early SYSCALL entry path) or back to the stack in the IRET frame if * entered from kernel-mode. * * If entered from kernel-mode the return stack is validated first, and if it is * not safe to use (e.g. because it points to the entry stack) the #VC handler * will switch to a fall-back stack (VC2) and call a special handler function. * * The macro is only used for one vector, but it is planned to be extended in * the future for the #HV exception. */ .macro idtentry_vc vector asmsym cfunc SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS ASM_CLAC /* * If the entry is from userspace, switch stacks and treat it as * a normal entry. */ testb $3, CS-ORIG_RAX(%rsp) jnz .Lfrom_usermode_switch_stack_\@ /* * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS */ call paranoid_entry UNWIND_HINT_REGS /* * Switch off the IST stack to make it free for nested exceptions. The * vc_switch_off_ist() function will switch back to the interrupted * stack if it is safe to do so. If not it switches to the VC fall-back * stack. */ movq %rsp, %rdi /* pt_regs pointer */ call vc_switch_off_ist movq %rax, %rsp /* Switch to new stack */ UNWIND_HINT_REGS /* Update pt_regs */ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ movq %rsp, %rdi /* pt_regs pointer */ call \cfunc /* * No need to switch back to the IST stack. The current stack is either * identical to the stack in the IRET frame or the VC fall-back stack, * so it is definitly mapped even with PTI enabled. */ jmp paranoid_exit /* Switch to the regular task stack */ .Lfrom_usermode_switch_stack_\@: idtentry_body safe_stack_\cfunc, has_error_code=1 _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm #endif /* * Double fault entry. Straight paranoid. No checks from which context * this comes because for the espfix induced #DF this would do the wrong * thing. */ .macro idtentry_df vector asmsym cfunc SYM_CODE_START(\asmsym) UNWIND_HINT_IRET_REGS offset=8 ASM_CLAC /* paranoid_entry returns GS information for paranoid_exit in EBX. */ call paranoid_entry UNWIND_HINT_REGS movq %rsp, %rdi /* pt_regs pointer into first argument */ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ call \cfunc jmp paranoid_exit _ASM_NOKPROBE(\asmsym) SYM_CODE_END(\asmsym) .endm /* * Include the defines which emit the idt entries which are shared * shared between 32 and 64 bit and emit the __irqentry_text_* markers * so the stacktrace boundary checks work. */ .align 16 .globl __irqentry_text_start __irqentry_text_start: #include <asm/idtentry.h> .align 16 .globl __irqentry_text_end __irqentry_text_end: SYM_CODE_START_LOCAL(common_interrupt_return) SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) #ifdef CONFIG_DEBUG_ENTRY /* Assert that pt_regs indicates user mode. */ testb $3, CS(%rsp) jnz 1f ud2 1: #endif POP_REGS pop_rdi=0 /* * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. * Save old stack pointer and switch to trampoline stack. */ movq %rsp, %rdi movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp UNWIND_HINT_EMPTY /* Copy the IRET frame to the trampoline stack. */ pushq 6*8(%rdi) /* SS */ pushq 5*8(%rdi) /* RSP */ pushq 4*8(%rdi) /* EFLAGS */ pushq 3*8(%rdi) /* CS */ pushq 2*8(%rdi) /* RIP */ /* Push user RDI on the trampoline stack. */ pushq (%rdi) /* * We are on the trampoline stack. All regs except RDI are live. * We can do future final exit work right here. */ STACKLEAK_ERASE_NOCLOBBER SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi /* Restore RDI. */ popq %rdi SWAPGS INTERRUPT_RETURN SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) #ifdef CONFIG_DEBUG_ENTRY /* Assert that pt_regs indicates kernel mode. */ testb $3, CS(%rsp) jz 1f ud2 1: #endif POP_REGS addq $8, %rsp /* skip regs->orig_ax */ /* * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization * when returning from IPI handler. */ INTERRUPT_RETURN SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) UNWIND_HINT_IRET_REGS /* * Are we returning to a stack segment from the LDT? Note: in * 64-bit mode SS:RSP on the exception stack is always valid. */ #ifdef CONFIG_X86_ESPFIX64 testb $4, (SS-RIP)(%rsp) jnz native_irq_return_ldt #endif SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) /* * This may fault. Non-paranoid faults on return to userspace are * handled by fixup_bad_iret. These include #SS, #GP, and #NP. * Double-faults due to espfix64 are handled in exc_double_fault. * Other faults here are fatal. */ iretq #ifdef CONFIG_X86_ESPFIX64 native_irq_return_ldt: /* * We are running with user GSBASE. All GPRs contain their user * values. We have a percpu ESPFIX stack that is eight slots * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom * of the ESPFIX stack. * * We clobber RAX and RDI in this code. We stash RDI on the * normal stack and RAX on the ESPFIX stack. * * The ESPFIX stack layout we set up looks like this: * * --- top of ESPFIX stack --- * SS * RSP * RFLAGS * CS * RIP <-- RSP points here when we're done * RAX <-- espfix_waddr points here * --- bottom of ESPFIX stack --- */ pushq %rdi /* Stash user RDI */ swapgs /* to kernel GS */ SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ movq PER_CPU_VAR(espfix_waddr), %rdi movq %rax, (0*8)(%rdi) /* user RAX */ movq (1*8)(%rsp), %rax /* user RIP */ movq %rax, (1*8)(%rdi) movq (2*8)(%rsp), %rax /* user CS */ movq %rax, (2*8)(%rdi) movq (3*8)(%rsp), %rax /* user RFLAGS */ movq %rax, (3*8)(%rdi) movq (5*8)(%rsp), %rax /* user SS */ movq %rax, (5*8)(%rdi) movq (4*8)(%rsp), %rax /* user RSP */ movq %rax, (4*8)(%rdi) /* Now RAX == RSP. */ andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ /* * espfix_stack[31:16] == 0. The page tables are set up such that * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of * espfix_waddr for any X. That is, there are 65536 RO aliases of * the same page. Set up RSP so that RSP[31:16] contains the * respective 16 bits of the /userspace/ RSP and RSP nonetheless * still points to an RO alias of the ESPFIX stack. */ orq PER_CPU_VAR(espfix_stack), %rax SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi swapgs /* to user GS */ popq %rdi /* Restore user RDI */ movq %rax, %rsp UNWIND_HINT_IRET_REGS offset=8 /* * At this point, we cannot write to the stack any more, but we can * still read. */ popq %rax /* Restore user RAX */ /* * RSP now points to an ordinary IRET frame, except that the page * is read-only and RSP[31:16] are preloaded with the userspace * values. We can now IRET back to userspace. */ jmp native_irq_return_iret #endif SYM_CODE_END(common_interrupt_return) _ASM_NOKPROBE(common_interrupt_return) /* * Reload gs selector with exception handling * edi: new selector * * Is in entry.text as it shouldn't be instrumented. */ SYM_FUNC_START(asm_load_gs_index) FRAME_BEGIN swapgs .Lgs_change: movl %edi, %gs 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE swapgs FRAME_END ret SYM_FUNC_END(asm_load_gs_index) EXPORT_SYMBOL(asm_load_gs_index) _ASM_EXTABLE(.Lgs_change, .Lbad_gs) .section .fixup, "ax" /* running with kernelgs */ SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) swapgs /* switch back to user gs */ .macro ZAP_GS /* This can't be a string because the preprocessor needs to see it. */ movl $__USER_DS, %eax movl %eax, %gs .endm ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG xorl %eax, %eax movl %eax, %gs jmp 2b SYM_CODE_END(.Lbad_gs) .previous #ifdef CONFIG_XEN_PV /* * A note on the "critical region" in our callback handler. * We want to avoid stacking callback handlers due to events occurring * during handling of the last event. To do this, we keep events disabled * until we've done all processing. HOWEVER, we must enable events before * popping the stack frame (can't be done atomically) and so it would still * be possible to get enough handler activations to overflow the stack. * Although unlikely, bugs of that kind are hard to track down, so we'd * like to avoid the possibility. * So, on entry to the handler we detect whether we interrupted an * existing activation in its critical region -- if so, we pop the current * activation and restart the handler using the previous one. * * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) */ SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) /* * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will * see the correct pointer to the pt_regs */ UNWIND_HINT_FUNC movq %rdi, %rsp /* we don't return, adjust the stack frame */ UNWIND_HINT_REGS call xen_pv_evtchn_do_upcall jmp error_return SYM_CODE_END(exc_xen_hypervisor_callback) /* * Hypervisor uses this for application faults while it executes. * We get here for two reasons: * 1. Fault while reloading DS, ES, FS or GS * 2. Fault while executing IRET * Category 1 we do not need to fix up as Xen has already reloaded all segment * registers that could be reloaded and zeroed the others. * Category 2 we fix up by killing the current process. We cannot use the * normal Linux return path in this case because if we use the IRET hypercall * to pop the stack frame we end up in an infinite loop of failsafe callbacks. * We distinguish between categories by comparing each saved segment register * with its current contents: any discrepancy means we in category 1. */ SYM_CODE_START(xen_failsafe_callback) UNWIND_HINT_EMPTY movl %ds, %ecx cmpw %cx, 0x10(%rsp) jne 1f movl %es, %ecx cmpw %cx, 0x18(%rsp) jne 1f movl %fs, %ecx cmpw %cx, 0x20(%rsp) jne 1f movl %gs, %ecx cmpw %cx, 0x28(%rsp) jne 1f /* All segments match their saved values => Category 2 (Bad IRET). */ movq (%rsp), %rcx movq 8(%rsp), %r11 addq $0x30, %rsp pushq $0 /* RIP */ UNWIND_HINT_IRET_REGS offset=8 jmp asm_exc_general_protection 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ movq (%rsp), %rcx movq 8(%rsp), %r11 addq $0x30, %rsp UNWIND_HINT_IRET_REGS pushq $-1 /* orig_ax = -1 => not a system call */ PUSH_AND_CLEAR_REGS ENCODE_FRAME_POINTER jmp error_return SYM_CODE_END(xen_failsafe_callback) #endif /* CONFIG_XEN_PV */ /* * Save all registers in pt_regs. Return GSBASE related information * in EBX depending on the availability of the FSGSBASE instructions: * * FSGSBASE R/EBX * N 0 -> SWAPGS on exit * 1 -> no SWAPGS on exit * * Y GSBASE value at entry, must be restored in paranoid_exit */ SYM_CODE_START_LOCAL(paranoid_entry) UNWIND_HINT_FUNC cld PUSH_AND_CLEAR_REGS save_ret=1 ENCODE_FRAME_POINTER 8 /* * Always stash CR3 in %r14. This value will be restored, * verbatim, at exit. Needed if paranoid_entry interrupted * another entry that already switched to the user CR3 value * but has not yet returned to userspace. * * This is also why CS (stashed in the "iret frame" by the * hardware at entry) can not be used: this may be a return * to kernel code, but with a user CR3 value. * * Switching CR3 does not depend on kernel GSBASE so it can * be done before switching to the kernel GSBASE. This is * required for FSGSBASE because the kernel GSBASE has to * be retrieved from a kernel internal table. */ SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 /* * Handling GSBASE depends on the availability of FSGSBASE. * * Without FSGSBASE the kernel enforces that negative GSBASE * values indicate kernel GSBASE. With FSGSBASE no assumptions * can be made about the GSBASE value when entering from user * space. */ ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE /* * Read the current GSBASE and store it in %rbx unconditionally, * retrieve and set the current CPUs kernel GSBASE. The stored value * has to be restored in paranoid_exit unconditionally. * * The unconditional write to GS base below ensures that no subsequent * loads based on a mispredicted GS base can happen, therefore no LFENCE * is needed here. */ SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx ret .Lparanoid_entry_checkgs: /* EBX = 1 -> kernel GSBASE active, no restore required */ movl $1, %ebx /* * The kernel-enforced convention is a negative GSBASE indicates * a kernel value. No SWAPGS needed on entry and exit. */ movl $MSR_GS_BASE, %ecx rdmsr testl %edx, %edx jns .Lparanoid_entry_swapgs ret .Lparanoid_entry_swapgs: swapgs /* * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an * unconditional CR3 write, even in the PTI case. So do an lfence * to prevent GS speculation, regardless of whether PTI is enabled. */ FENCE_SWAPGS_KERNEL_ENTRY /* EBX = 0 -> SWAPGS required on exit */ xorl %ebx, %ebx ret SYM_CODE_END(paranoid_entry) /* * "Paranoid" exit path from exception stack. This is invoked * only on return from non-NMI IST interrupts that came * from kernel space. * * We may be returning to very strange contexts (e.g. very early * in syscall entry), so checking for preemption here would * be complicated. Fortunately, there's no good reason to try * to handle preemption here. * * R/EBX contains the GSBASE related information depending on the * availability of the FSGSBASE instructions: * * FSGSBASE R/EBX * N 0 -> SWAPGS on exit * 1 -> no SWAPGS on exit * * Y User space GSBASE, must be restored unconditionally */ SYM_CODE_START_LOCAL(paranoid_exit) UNWIND_HINT_REGS /* * The order of operations is important. RESTORE_CR3 requires * kernel GSBASE. * * NB to anyone to try to optimize this code: this code does * not execute at all for exceptions from user mode. Those * exceptions go through error_exit instead. */ RESTORE_CR3 scratch_reg=%rax save_reg=%r14 /* Handle the three GSBASE cases */ ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE /* With FSGSBASE enabled, unconditionally restore GSBASE */ wrgsbase %rbx jmp restore_regs_and_return_to_kernel .Lparanoid_exit_checkgs: /* On non-FSGSBASE systems, conditionally do SWAPGS */ testl %ebx, %ebx jnz restore_regs_and_return_to_kernel /* We are returning to a context with user GSBASE */ swapgs jmp restore_regs_and_return_to_kernel SYM_CODE_END(paranoid_exit) /* * Save all registers in pt_regs, and switch GS if needed. */ SYM_CODE_START_LOCAL(error_entry) UNWIND_HINT_FUNC cld PUSH_AND_CLEAR_REGS save_ret=1 ENCODE_FRAME_POINTER 8 testb $3, CS+8(%rsp) jz .Lerror_kernelspace /* * We entered from user mode or we're pretending to have entered * from user mode due to an IRET fault. */ SWAPGS FENCE_SWAPGS_USER_ENTRY /* We have user CR3. Change to kernel CR3. */ SWITCH_TO_KERNEL_CR3 scratch_reg=%rax .Lerror_entry_from_usermode_after_swapgs: /* Put us onto the real thread stack. */ popq %r12 /* save return addr in %12 */ movq %rsp, %rdi /* arg0 = pt_regs pointer */ call sync_regs movq %rax, %rsp /* switch stack */ ENCODE_FRAME_POINTER pushq %r12 ret .Lerror_entry_done_lfence: FENCE_SWAPGS_KERNEL_ENTRY .Lerror_entry_done: ret /* * There are two places in the kernel that can potentially fault with * usergs. Handle them here. B stepping K8s sometimes report a * truncated RIP for IRET exceptions returning to compat mode. Check * for these here too. */ .Lerror_kernelspace: leaq native_irq_return_iret(%rip), %rcx cmpq %rcx, RIP+8(%rsp) je .Lerror_bad_iret movl %ecx, %eax /* zero extend */ cmpq %rax, RIP+8(%rsp) je .Lbstep_iret cmpq $.Lgs_change, RIP+8(%rsp) jne .Lerror_entry_done_lfence /* * hack: .Lgs_change can fail with user gsbase. If this happens, fix up * gsbase and proceed. We'll fix up the exception and land in * .Lgs_change's error handler with kernel gsbase. */ SWAPGS FENCE_SWAPGS_USER_ENTRY jmp .Lerror_entry_done .Lbstep_iret: /* Fix truncated RIP */ movq %rcx, RIP+8(%rsp) /* fall through */ .Lerror_bad_iret: /* * We came from an IRET to user mode, so we have user * gsbase and CR3. Switch to kernel gsbase and CR3: */ SWAPGS FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rax /* * Pretend that the exception came from user mode: set up pt_regs * as if we faulted immediately after IRET. */ mov %rsp, %rdi call fixup_bad_iret mov %rax, %rsp jmp .Lerror_entry_from_usermode_after_swapgs SYM_CODE_END(error_entry) SYM_CODE_START_LOCAL(error_return) UNWIND_HINT_REGS DEBUG_ENTRY_ASSERT_IRQS_OFF testb $3, CS(%rsp) jz restore_regs_and_return_to_kernel jmp swapgs_restore_regs_and_return_to_usermode SYM_CODE_END(error_return) /* * Runs on exception stack. Xen PV does not go through this path at all, * so we can use real assembly here. * * Registers: * %r14: Used to save/restore the CR3 of the interrupted context * when PAGE_TABLE_ISOLATION is in use. Do not clobber. */ SYM_CODE_START(asm_exc_nmi) UNWIND_HINT_IRET_REGS /* * We allow breakpoints in NMIs. If a breakpoint occurs, then * the iretq it performs will take us out of NMI context. * This means that we can have nested NMIs where the next * NMI is using the top of the stack of the previous NMI. We * can't let it execute because the nested NMI will corrupt the * stack of the previous NMI. NMI handlers are not re-entrant * anyway. * * To handle this case we do the following: * Check the a special location on the stack that contains * a variable that is set when NMIs are executing. * The interrupted task's stack is also checked to see if it * is an NMI stack. * If the variable is not set and the stack is not the NMI * stack then: * o Set the special variable on the stack * o Copy the interrupt frame into an "outermost" location on the * stack * o Copy the interrupt frame into an "iret" location on the stack * o Continue processing the NMI * If the variable is set or the previous stack is the NMI stack: * o Modify the "iret" location to jump to the repeat_nmi * o return back to the first NMI * * Now on exit of the first NMI, we first clear the stack variable * The NMI stack will tell any nested NMIs at that point that it is * nested. Then we pop the stack normally with iret, and if there was * a nested NMI that updated the copy interrupt stack frame, a * jump will be made to the repeat_nmi code that will handle the second * NMI. * * However, espfix prevents us from directly returning to userspace * with a single IRET instruction. Similarly, IRET to user mode * can fault. We therefore handle NMIs from user space like * other IST entries. */ ASM_CLAC /* Use %rdx as our temp variable throughout */ pushq %rdx testb $3, CS-RIP+8(%rsp) jz .Lnmi_from_kernel /* * NMI from user mode. We need to run on the thread stack, but we * can't go through the normal entry paths: NMIs are masked, and * we don't want to enable interrupts, because then we'll end * up in an awkward situation in which IRQs are on but NMIs * are off. * * We also must not push anything to the stack before switching * stacks lest we corrupt the "NMI executing" variable. */ swapgs cld FENCE_SWAPGS_USER_ENTRY SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx movq %rsp, %rdx movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp UNWIND_HINT_IRET_REGS base=%rdx offset=8 pushq 5*8(%rdx) /* pt_regs->ss */ pushq 4*8(%rdx) /* pt_regs->rsp */ pushq 3*8(%rdx) /* pt_regs->flags */ pushq 2*8(%rdx) /* pt_regs->cs */ pushq 1*8(%rdx) /* pt_regs->rip */ UNWIND_HINT_IRET_REGS pushq $-1 /* pt_regs->orig_ax */ PUSH_AND_CLEAR_REGS rdx=(%rdx) ENCODE_FRAME_POINTER /* * At this point we no longer need to worry about stack damage * due to nesting -- we're on the normal thread stack and we're * done with the NMI stack. */ movq %rsp, %rdi movq $-1, %rsi call exc_nmi /* * Return back to user mode. We must *not* do the normal exit * work, because we don't want to enable interrupts. */ jmp swapgs_restore_regs_and_return_to_usermode .Lnmi_from_kernel: /* * Here's what our stack frame will look like: * +---------------------------------------------------------+ * | original SS | * | original Return RSP | * | original RFLAGS | * | original CS | * | original RIP | * +---------------------------------------------------------+ * | temp storage for rdx | * +---------------------------------------------------------+ * | "NMI executing" variable | * +---------------------------------------------------------+ * | iret SS } Copied from "outermost" frame | * | iret Return RSP } on each loop iteration; overwritten | * | iret RFLAGS } by a nested NMI to force another | * | iret CS } iteration if needed. | * | iret RIP } | * +---------------------------------------------------------+ * | outermost SS } initialized in first_nmi; | * | outermost Return RSP } will not be changed before | * | outermost RFLAGS } NMI processing is done. | * | outermost CS } Copied to "iret" frame on each | * | outermost RIP } iteration. | * +---------------------------------------------------------+ * | pt_regs | * +---------------------------------------------------------+ * * The "original" frame is used by hardware. Before re-enabling * NMIs, we need to be done with it, and we need to leave enough * space for the asm code here. * * We return by executing IRET while RSP points to the "iret" frame. * That will either return for real or it will loop back into NMI * processing. * * The "outermost" frame is copied to the "iret" frame on each * iteration of the loop, so each iteration starts with the "iret" * frame pointing to the final return target. */ /* * Determine whether we're a nested NMI. * * If we interrupted kernel code between repeat_nmi and * end_repeat_nmi, then we are a nested NMI. We must not * modify the "iret" frame because it's being written by * the outer NMI. That's okay; the outer NMI handler is * about to about to call exc_nmi() anyway, so we can just * resume the outer NMI. */ movq $repeat_nmi, %rdx cmpq 8(%rsp), %rdx ja 1f movq $end_repeat_nmi, %rdx cmpq 8(%rsp), %rdx ja nested_nmi_out 1: /* * Now check "NMI executing". If it's set, then we're nested. * This will not detect if we interrupted an outer NMI just * before IRET. */ cmpl $1, -8(%rsp) je nested_nmi /* * Now test if the previous stack was an NMI stack. This covers * the case where we interrupt an outer NMI after it clears * "NMI executing" but before IRET. We need to be careful, though: * there is one case in which RSP could point to the NMI stack * despite there being no NMI active: naughty userspace controls * RSP at the very beginning of the SYSCALL targets. We can * pull a fast one on naughty userspace, though: we program * SYSCALL to mask DF, so userspace cannot cause DF to be set * if it controls the kernel's RSP. We set DF before we clear * "NMI executing". */ lea 6*8(%rsp), %rdx /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ cmpq %rdx, 4*8(%rsp) /* If the stack pointer is above the NMI stack, this is a normal NMI */ ja first_nmi subq $EXCEPTION_STKSZ, %rdx cmpq %rdx, 4*8(%rsp) /* If it is below the NMI stack, it is a normal NMI */ jb first_nmi /* Ah, it is within the NMI stack. */ testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) jz first_nmi /* RSP was user controlled. */ /* This is a nested NMI. */ nested_nmi: /* * Modify the "iret" frame to point to repeat_nmi, forcing another * iteration of NMI handling. */ subq $8, %rsp leaq -10*8(%rsp), %rdx pushq $__KERNEL_DS pushq %rdx pushfq pushq $__KERNEL_CS pushq $repeat_nmi /* Put stack back */ addq $(6*8), %rsp nested_nmi_out: popq %rdx /* We are returning to kernel mode, so this cannot result in a fault. */ iretq first_nmi: /* Restore rdx. */ movq (%rsp), %rdx /* Make room for "NMI executing". */ pushq $0 /* Leave room for the "iret" frame */ subq $(5*8), %rsp /* Copy the "original" frame to the "outermost" frame */ .rept 5 pushq 11*8(%rsp) .endr UNWIND_HINT_IRET_REGS /* Everything up to here is safe from nested NMIs */ #ifdef CONFIG_DEBUG_ENTRY /* * For ease of testing, unmask NMIs right away. Disabled by * default because IRET is very expensive. */ pushq $0 /* SS */ pushq %rsp /* RSP (minus 8 because of the previous push) */ addq $8, (%rsp) /* Fix up RSP */ pushfq /* RFLAGS */ pushq $__KERNEL_CS /* CS */ pushq $1f /* RIP */ iretq /* continues at repeat_nmi below */ UNWIND_HINT_IRET_REGS 1: #endif repeat_nmi: /* * If there was a nested NMI, the first NMI's iret will return * here. But NMIs are still enabled and we can take another * nested NMI. The nested NMI checks the interrupted RIP to see * if it is between repeat_nmi and end_repeat_nmi, and if so * it will just return, as we are about to repeat an NMI anyway. * This makes it safe to copy to the stack frame that a nested * NMI will update. * * RSP is pointing to "outermost RIP". gsbase is unknown, but, if * we're repeating an NMI, gsbase has the same value that it had on * the first iteration. paranoid_entry will load the kernel * gsbase if needed before we call exc_nmi(). "NMI executing" * is zero. */ movq $1, 10*8(%rsp) /* Set "NMI executing". */ /* * Copy the "outermost" frame to the "iret" frame. NMIs that nest * here must not modify the "iret" frame while we're writing to * it or it will end up containing garbage. */ addq $(10*8), %rsp .rept 5 pushq -6*8(%rsp) .endr subq $(5*8), %rsp end_repeat_nmi: /* * Everything below this point can be preempted by a nested NMI. * If this happens, then the inner NMI will change the "iret" * frame to point back to repeat_nmi. */ pushq $-1 /* ORIG_RAX: no syscall to restart */ /* * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit * as we should not be calling schedule in NMI context. * Even with normal interrupts enabled. An NMI should not be * setting NEED_RESCHED or anything that normal interrupts and * exceptions might do. */ call paranoid_entry UNWIND_HINT_REGS movq %rsp, %rdi movq $-1, %rsi call exc_nmi /* Always restore stashed CR3 value (see paranoid_entry) */ RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 /* * The above invocation of paranoid_entry stored the GSBASE * related information in R/EBX depending on the availability * of FSGSBASE. * * If FSGSBASE is enabled, restore the saved GSBASE value * unconditionally, otherwise take the conditional SWAPGS path. */ ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE wrgsbase %rbx jmp nmi_restore nmi_no_fsgsbase: /* EBX == 0 -> invoke SWAPGS */ testl %ebx, %ebx jnz nmi_restore nmi_swapgs: swapgs nmi_restore: POP_REGS /* * Skip orig_ax and the "outermost" frame to point RSP at the "iret" * at the "iret" frame. */ addq $6*8, %rsp /* * Clear "NMI executing". Set DF first so that we can easily * distinguish the remaining code between here and IRET from * the SYSCALL entry and exit paths. * * We arguably should just inspect RIP instead, but I (Andy) wrote * this code when I had the misapprehension that Xen PV supported * NMIs, and Xen PV would break that approach. */ std movq $0, 5*8(%rsp) /* clear "NMI executing" */ /* * iretq reads the "iret" frame and exits the NMI stack in a * single instruction. We are returning to kernel mode, so this * cannot result in a fault. Similarly, we don't need to worry * about espfix64 on the way back to kernel mode. */ iretq SYM_CODE_END(asm_exc_nmi) #ifndef CONFIG_IA32_EMULATION /* * This handles SYSCALL from 32-bit code. There is no way to program * MSRs to fully disable 32-bit SYSCALL. */ SYM_CODE_START(ignore_sysret) UNWIND_HINT_EMPTY mov $-ENOSYS, %eax sysretl SYM_CODE_END(ignore_sysret) #endif .pushsection .text, "ax" SYM_CODE_START(rewind_stack_do_exit) UNWIND_HINT_FUNC /* Prevent any naive code from trying to unwind to our caller. */ xorl %ebp, %ebp movq PER_CPU_VAR(cpu_current_top_of_stack), %rax leaq -PTREGS_SIZE(%rax), %rsp UNWIND_HINT_REGS call do_exit SYM_CODE_END(rewind_stack_do_exit) .popsection |