Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | // SPDX-License-Identifier: GPL-2.0-or-later /* bit search implementation * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * Copyright (C) 2008 IBM Corporation * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au> * (Inspired by David Howell's find_next_bit implementation) * * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease * size and improve performance, 2015. */ #include <linux/bitops.h> #include <linux/bitmap.h> #include <linux/export.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/swab.h> #if !defined(find_next_bit) || !defined(find_next_zero_bit) || \ !defined(find_next_bit_le) || !defined(find_next_zero_bit_le) || \ !defined(find_next_and_bit) /* * This is a common helper function for find_next_bit, find_next_zero_bit, and * find_next_and_bit. The differences are: * - The "invert" argument, which is XORed with each fetched word before * searching it for one bits. * - The optional "addr2", which is anded with "addr1" if present. */ static unsigned long _find_next_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start, unsigned long invert, unsigned long le) { unsigned long tmp, mask; if (unlikely(start >= nbits)) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; /* Handle 1st word. */ mask = BITMAP_FIRST_WORD_MASK(start); if (le) mask = swab(mask); tmp &= mask; start = round_down(start, BITS_PER_LONG); while (!tmp) { start += BITS_PER_LONG; if (start >= nbits) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; } if (le) tmp = swab(tmp); return min(start + __ffs(tmp), nbits); } #endif #ifndef find_next_bit /* * Find the next set bit in a memory region. */ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, 0UL, 0); } EXPORT_SYMBOL(find_next_bit); #endif #ifndef find_next_zero_bit unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, ~0UL, 0); } EXPORT_SYMBOL(find_next_zero_bit); #endif #if !defined(find_next_and_bit) unsigned long find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long size, unsigned long offset) { return _find_next_bit(addr1, addr2, size, offset, 0UL, 0); } EXPORT_SYMBOL(find_next_and_bit); #endif #ifndef find_first_bit /* * Find the first set bit in a memory region. */ unsigned long find_first_bit(const unsigned long *addr, unsigned long size) { unsigned long idx; for (idx = 0; idx * BITS_PER_LONG < size; idx++) { if (addr[idx]) return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size); } return size; } EXPORT_SYMBOL(find_first_bit); #endif #ifndef find_first_zero_bit /* * Find the first cleared bit in a memory region. */ unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size) { unsigned long idx; for (idx = 0; idx * BITS_PER_LONG < size; idx++) { if (addr[idx] != ~0UL) return min(idx * BITS_PER_LONG + ffz(addr[idx]), size); } return size; } EXPORT_SYMBOL(find_first_zero_bit); #endif #ifndef find_last_bit unsigned long find_last_bit(const unsigned long *addr, unsigned long size) { if (size) { unsigned long val = BITMAP_LAST_WORD_MASK(size); unsigned long idx = (size-1) / BITS_PER_LONG; do { val &= addr[idx]; if (val) return idx * BITS_PER_LONG + __fls(val); val = ~0ul; } while (idx--); } return size; } EXPORT_SYMBOL(find_last_bit); #endif #ifdef __BIG_ENDIAN #ifndef find_next_zero_bit_le unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, ~0UL, 1); } EXPORT_SYMBOL(find_next_zero_bit_le); #endif #ifndef find_next_bit_le unsigned long find_next_bit_le(const void *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, 0UL, 1); } EXPORT_SYMBOL(find_next_bit_le); #endif #endif /* __BIG_ENDIAN */ unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr, unsigned long size, unsigned long offset) { offset = find_next_bit(addr, size, offset); if (offset == size) return size; offset = round_down(offset, 8); *clump = bitmap_get_value8(addr, offset); return offset; } EXPORT_SYMBOL(find_next_clump8); |