Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2012 - 2014 Allwinner Tech
 * Pan Nan <pannan@allwinnertech.com>
 *
 * Copyright (C) 2014 Maxime Ripard
 * Maxime Ripard <maxime.ripard@free-electrons.com>
 */

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>

#include <linux/spi/spi.h>

#define SUN6I_FIFO_DEPTH		128
#define SUN8I_FIFO_DEPTH		64

#define SUN6I_GBL_CTL_REG		0x04
#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
#define SUN6I_GBL_CTL_MASTER			BIT(1)
#define SUN6I_GBL_CTL_TP			BIT(7)
#define SUN6I_GBL_CTL_RST			BIT(31)

#define SUN6I_TFR_CTL_REG		0x08
#define SUN6I_TFR_CTL_CPHA			BIT(0)
#define SUN6I_TFR_CTL_CPOL			BIT(1)
#define SUN6I_TFR_CTL_SPOL			BIT(2)
#define SUN6I_TFR_CTL_CS_MASK			0x30
#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
#define SUN6I_TFR_CTL_DHB			BIT(8)
#define SUN6I_TFR_CTL_FBS			BIT(12)
#define SUN6I_TFR_CTL_XCH			BIT(31)

#define SUN6I_INT_CTL_REG		0x10
#define SUN6I_INT_CTL_RF_RDY			BIT(0)
#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
#define SUN6I_INT_CTL_RF_OVF			BIT(8)
#define SUN6I_INT_CTL_TC			BIT(12)

#define SUN6I_INT_STA_REG		0x14

#define SUN6I_FIFO_CTL_REG		0x18
#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
#define SUN6I_FIFO_CTL_TF_RST			BIT(31)

#define SUN6I_FIFO_STA_REG		0x1c
#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)

#define SUN6I_CLK_CTL_REG		0x24
#define SUN6I_CLK_CTL_CDR2_MASK			0xff
#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
#define SUN6I_CLK_CTL_CDR1_MASK			0xf
#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
#define SUN6I_CLK_CTL_DRS			BIT(12)

#define SUN6I_MAX_XFER_SIZE		0xffffff

#define SUN6I_BURST_CNT_REG		0x30

#define SUN6I_XMIT_CNT_REG		0x34

#define SUN6I_BURST_CTL_CNT_REG		0x38

#define SUN6I_TXDATA_REG		0x200
#define SUN6I_RXDATA_REG		0x300

struct sun6i_spi {
	struct spi_master	*master;
	void __iomem		*base_addr;
	struct clk		*hclk;
	struct clk		*mclk;
	struct reset_control	*rstc;

	struct completion	done;

	const u8		*tx_buf;
	u8			*rx_buf;
	int			len;
	unsigned long		fifo_depth;
};

static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
{
	return readl(sspi->base_addr + reg);
}

static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
{
	writel(value, sspi->base_addr + reg);
}

static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
{
	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);

	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
}

static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
{
	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);

	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
}

static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
{
	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);

	reg &= ~mask;
	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
}

static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
{
	u32 len;
	u8 byte;

	/* See how much data is available */
	len = sun6i_spi_get_rx_fifo_count(sspi);

	while (len--) {
		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
		if (sspi->rx_buf)
			*sspi->rx_buf++ = byte;
	}
}

static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
{
	u32 cnt;
	int len;
	u8 byte;

	/* See how much data we can fit */
	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);

	len = min((int)cnt, sspi->len);

	while (len--) {
		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
		sspi->len--;
	}
}

static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
{
	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
	u32 reg;

	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
	reg &= ~SUN6I_TFR_CTL_CS_MASK;
	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);

	if (enable)
		reg |= SUN6I_TFR_CTL_CS_LEVEL;
	else
		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;

	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
}

static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
{
	return SUN6I_MAX_XFER_SIZE - 1;
}

static int sun6i_spi_transfer_one(struct spi_master *master,
				  struct spi_device *spi,
				  struct spi_transfer *tfr)
{
	struct sun6i_spi *sspi = spi_master_get_devdata(master);
	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
	unsigned int start, end, tx_time;
	unsigned int trig_level;
	unsigned int tx_len = 0, rx_len = 0;
	int ret = 0;
	u32 reg;

	if (tfr->len > SUN6I_MAX_XFER_SIZE)
		return -EINVAL;

	reinit_completion(&sspi->done);
	sspi->tx_buf = tfr->tx_buf;
	sspi->rx_buf = tfr->rx_buf;
	sspi->len = tfr->len;

	/* Clear pending interrupts */
	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);

	/* Reset FIFO */
	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);

	/*
	 * Setup FIFO interrupt trigger level
	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
	 * value used in old generation of Allwinner SPI controller.
	 * (See spi-sun4i.c)
	 */
	trig_level = sspi->fifo_depth / 4 * 3;
	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));

	/*
	 * Setup the transfer control register: Chip Select,
	 * polarities, etc.
	 */
	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);

	if (spi->mode & SPI_CPOL)
		reg |= SUN6I_TFR_CTL_CPOL;
	else
		reg &= ~SUN6I_TFR_CTL_CPOL;

	if (spi->mode & SPI_CPHA)
		reg |= SUN6I_TFR_CTL_CPHA;
	else
		reg &= ~SUN6I_TFR_CTL_CPHA;

	if (spi->mode & SPI_LSB_FIRST)
		reg |= SUN6I_TFR_CTL_FBS;
	else
		reg &= ~SUN6I_TFR_CTL_FBS;

	/*
	 * If it's a TX only transfer, we don't want to fill the RX
	 * FIFO with bogus data
	 */
	if (sspi->rx_buf) {
		reg &= ~SUN6I_TFR_CTL_DHB;
		rx_len = tfr->len;
	} else {
		reg |= SUN6I_TFR_CTL_DHB;
	}

	/* We want to control the chip select manually */
	reg |= SUN6I_TFR_CTL_CS_MANUAL;

	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);

	/* Ensure that we have a parent clock fast enough */
	mclk_rate = clk_get_rate(sspi->mclk);
	if (mclk_rate < (2 * tfr->speed_hz)) {
		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
		mclk_rate = clk_get_rate(sspi->mclk);
	}

	/*
	 * Setup clock divider.
	 *
	 * We have two choices there. Either we can use the clock
	 * divide rate 1, which is calculated thanks to this formula:
	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
	 * Or we can use CDR2, which is calculated with the formula:
	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
	 * Wether we use the former or the latter is set through the
	 * DRS bit.
	 *
	 * First try CDR2, and if we can't reach the expected
	 * frequency, fall back to CDR1.
	 */
	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
	} else {
		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
		reg = SUN6I_CLK_CTL_CDR1(div);
		tfr->effective_speed_hz = mclk_rate / (1 << div);
	}

	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
	/* Finally enable the bus - doing so before might raise SCK to HIGH */
	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);

	/* Setup the transfer now... */
	if (sspi->tx_buf)
		tx_len = tfr->len;

	/* Setup the counters */
	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);

	/* Fill the TX FIFO */
	sun6i_spi_fill_fifo(sspi);

	/* Enable the interrupts */
	reg = SUN6I_INT_CTL_TC;

	if (rx_len > sspi->fifo_depth)
		reg |= SUN6I_INT_CTL_RF_RDY;
	if (tx_len > sspi->fifo_depth)
		reg |= SUN6I_INT_CTL_TF_ERQ;

	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);

	/* Start the transfer */
	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);

	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
	start = jiffies;
	timeout = wait_for_completion_timeout(&sspi->done,
					      msecs_to_jiffies(tx_time));
	end = jiffies;
	if (!timeout) {
		dev_warn(&master->dev,
			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
			 jiffies_to_msecs(end - start), tx_time);
		ret = -ETIMEDOUT;
	}

	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);

	return ret;
}

static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
{
	struct sun6i_spi *sspi = dev_id;
	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);

	/* Transfer complete */
	if (status & SUN6I_INT_CTL_TC) {
		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
		sun6i_spi_drain_fifo(sspi);
		complete(&sspi->done);
		return IRQ_HANDLED;
	}

	/* Receive FIFO 3/4 full */
	if (status & SUN6I_INT_CTL_RF_RDY) {
		sun6i_spi_drain_fifo(sspi);
		/* Only clear the interrupt _after_ draining the FIFO */
		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
		return IRQ_HANDLED;
	}

	/* Transmit FIFO 3/4 empty */
	if (status & SUN6I_INT_CTL_TF_ERQ) {
		sun6i_spi_fill_fifo(sspi);

		if (!sspi->len)
			/* nothing left to transmit */
			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);

		/* Only clear the interrupt _after_ re-seeding the FIFO */
		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);

		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static int sun6i_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct sun6i_spi *sspi = spi_master_get_devdata(master);
	int ret;

	ret = clk_prepare_enable(sspi->hclk);
	if (ret) {
		dev_err(dev, "Couldn't enable AHB clock\n");
		goto out;
	}

	ret = clk_prepare_enable(sspi->mclk);
	if (ret) {
		dev_err(dev, "Couldn't enable module clock\n");
		goto err;
	}

	ret = reset_control_deassert(sspi->rstc);
	if (ret) {
		dev_err(dev, "Couldn't deassert the device from reset\n");
		goto err2;
	}

	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);

	return 0;

err2:
	clk_disable_unprepare(sspi->mclk);
err:
	clk_disable_unprepare(sspi->hclk);
out:
	return ret;
}

static int sun6i_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct sun6i_spi *sspi = spi_master_get_devdata(master);

	reset_control_assert(sspi->rstc);
	clk_disable_unprepare(sspi->mclk);
	clk_disable_unprepare(sspi->hclk);

	return 0;
}

static int sun6i_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct sun6i_spi *sspi;
	int ret = 0, irq;

	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);

	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(sspi->base_addr)) {
		ret = PTR_ERR(sspi->base_addr);
		goto err_free_master;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto err_free_master;
	}

	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
			       0, "sun6i-spi", sspi);
	if (ret) {
		dev_err(&pdev->dev, "Cannot request IRQ\n");
		goto err_free_master;
	}

	sspi->master = master;
	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);

	master->max_speed_hz = 100 * 1000 * 1000;
	master->min_speed_hz = 3 * 1000;
	master->use_gpio_descriptors = true;
	master->set_cs = sun6i_spi_set_cs;
	master->transfer_one = sun6i_spi_transfer_one;
	master->num_chipselect = 4;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
	master->bits_per_word_mask = SPI_BPW_MASK(8);
	master->dev.of_node = pdev->dev.of_node;
	master->auto_runtime_pm = true;
	master->max_transfer_size = sun6i_spi_max_transfer_size;

	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
	if (IS_ERR(sspi->hclk)) {
		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
		ret = PTR_ERR(sspi->hclk);
		goto err_free_master;
	}

	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
	if (IS_ERR(sspi->mclk)) {
		dev_err(&pdev->dev, "Unable to acquire module clock\n");
		ret = PTR_ERR(sspi->mclk);
		goto err_free_master;
	}

	init_completion(&sspi->done);

	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
	if (IS_ERR(sspi->rstc)) {
		dev_err(&pdev->dev, "Couldn't get reset controller\n");
		ret = PTR_ERR(sspi->rstc);
		goto err_free_master;
	}

	/*
	 * This wake-up/shutdown pattern is to be able to have the
	 * device woken up, even if runtime_pm is disabled
	 */
	ret = sun6i_spi_runtime_resume(&pdev->dev);
	if (ret) {
		dev_err(&pdev->dev, "Couldn't resume the device\n");
		goto err_free_master;
	}

	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);
	pm_runtime_idle(&pdev->dev);

	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "cannot register SPI master\n");
		goto err_pm_disable;
	}

	return 0;

err_pm_disable:
	pm_runtime_disable(&pdev->dev);
	sun6i_spi_runtime_suspend(&pdev->dev);
err_free_master:
	spi_master_put(master);
	return ret;
}

static int sun6i_spi_remove(struct platform_device *pdev)
{
	pm_runtime_force_suspend(&pdev->dev);

	return 0;
}

static const struct of_device_id sun6i_spi_match[] = {
	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
	{}
};
MODULE_DEVICE_TABLE(of, sun6i_spi_match);

static const struct dev_pm_ops sun6i_spi_pm_ops = {
	.runtime_resume		= sun6i_spi_runtime_resume,
	.runtime_suspend	= sun6i_spi_runtime_suspend,
};

static struct platform_driver sun6i_spi_driver = {
	.probe	= sun6i_spi_probe,
	.remove	= sun6i_spi_remove,
	.driver	= {
		.name		= "sun6i-spi",
		.of_match_table	= sun6i_spi_match,
		.pm		= &sun6i_spi_pm_ops,
	},
};
module_platform_driver(sun6i_spi_driver);

MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
MODULE_LICENSE("GPL");