Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_buf_item.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_quota.h" #include "xfs_dquot_item.h" #include "xfs_dquot.h" #include "xfs_trace.h" #include "xfs_log.h" kmem_zone_t *xfs_buf_item_zone; static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_buf_log_item, bli_item); } /* Is this log iovec plausibly large enough to contain the buffer log format? */ bool xfs_buf_log_check_iovec( struct xfs_log_iovec *iovec) { struct xfs_buf_log_format *blfp = iovec->i_addr; char *bmp_end; char *item_end; if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len) return false; item_end = (char *)iovec->i_addr + iovec->i_len; bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size]; return bmp_end <= item_end; } static inline int xfs_buf_log_format_size( struct xfs_buf_log_format *blfp) { return offsetof(struct xfs_buf_log_format, blf_data_map) + (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); } /* * This returns the number of log iovecs needed to log the * given buf log item. * * It calculates this as 1 iovec for the buf log format structure * and 1 for each stretch of non-contiguous chunks to be logged. * Contiguous chunks are logged in a single iovec. * * If the XFS_BLI_STALE flag has been set, then log nothing. */ STATIC void xfs_buf_item_size_segment( struct xfs_buf_log_item *bip, struct xfs_buf_log_format *blfp, int *nvecs, int *nbytes) { struct xfs_buf *bp = bip->bli_buf; int next_bit; int last_bit; last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); if (last_bit == -1) return; /* * initial count for a dirty buffer is 2 vectors - the format structure * and the first dirty region. */ *nvecs += 2; *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; while (last_bit != -1) { /* * This takes the bit number to start looking from and * returns the next set bit from there. It returns -1 * if there are no more bits set or the start bit is * beyond the end of the bitmap. */ next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, last_bit + 1); /* * If we run out of bits, leave the loop, * else if we find a new set of bits bump the number of vecs, * else keep scanning the current set of bits. */ if (next_bit == -1) { break; } else if (next_bit != last_bit + 1) { last_bit = next_bit; (*nvecs)++; } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + XFS_BLF_CHUNK)) { last_bit = next_bit; (*nvecs)++; } else { last_bit++; } *nbytes += XFS_BLF_CHUNK; } } /* * This returns the number of log iovecs needed to log the given buf log item. * * It calculates this as 1 iovec for the buf log format structure and 1 for each * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged * in a single iovec. * * Discontiguous buffers need a format structure per region that is being * logged. This makes the changes in the buffer appear to log recovery as though * they came from separate buffers, just like would occur if multiple buffers * were used instead of a single discontiguous buffer. This enables * discontiguous buffers to be in-memory constructs, completely transparent to * what ends up on disk. * * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log * format structures. */ STATIC void xfs_buf_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); int i; ASSERT(atomic_read(&bip->bli_refcount) > 0); if (bip->bli_flags & XFS_BLI_STALE) { /* * The buffer is stale, so all we need to log * is the buf log format structure with the * cancel flag in it. */ trace_xfs_buf_item_size_stale(bip); ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); *nvecs += bip->bli_format_count; for (i = 0; i < bip->bli_format_count; i++) { *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); } return; } ASSERT(bip->bli_flags & XFS_BLI_LOGGED); if (bip->bli_flags & XFS_BLI_ORDERED) { /* * The buffer has been logged just to order it. * It is not being included in the transaction * commit, so no vectors are used at all. */ trace_xfs_buf_item_size_ordered(bip); *nvecs = XFS_LOG_VEC_ORDERED; return; } /* * the vector count is based on the number of buffer vectors we have * dirty bits in. This will only be greater than one when we have a * compound buffer with more than one segment dirty. Hence for compound * buffers we need to track which segment the dirty bits correspond to, * and when we move from one segment to the next increment the vector * count for the extra buf log format structure that will need to be * written. */ for (i = 0; i < bip->bli_format_count; i++) { xfs_buf_item_size_segment(bip, &bip->bli_formats[i], nvecs, nbytes); } trace_xfs_buf_item_size(bip); } static inline void xfs_buf_item_copy_iovec( struct xfs_log_vec *lv, struct xfs_log_iovec **vecp, struct xfs_buf *bp, uint offset, int first_bit, uint nbits) { offset += first_bit * XFS_BLF_CHUNK; xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, xfs_buf_offset(bp, offset), nbits * XFS_BLF_CHUNK); } static inline bool xfs_buf_item_straddle( struct xfs_buf *bp, uint offset, int next_bit, int last_bit) { return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) != (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) + XFS_BLF_CHUNK); } static void xfs_buf_item_format_segment( struct xfs_buf_log_item *bip, struct xfs_log_vec *lv, struct xfs_log_iovec **vecp, uint offset, struct xfs_buf_log_format *blfp) { struct xfs_buf *bp = bip->bli_buf; uint base_size; int first_bit; int last_bit; int next_bit; uint nbits; /* copy the flags across from the base format item */ blfp->blf_flags = bip->__bli_format.blf_flags; /* * Base size is the actual size of the ondisk structure - it reflects * the actual size of the dirty bitmap rather than the size of the in * memory structure. */ base_size = xfs_buf_log_format_size(blfp); first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { /* * If the map is not be dirty in the transaction, mark * the size as zero and do not advance the vector pointer. */ return; } blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); blfp->blf_size = 1; if (bip->bli_flags & XFS_BLI_STALE) { /* * The buffer is stale, so all we need to log * is the buf log format structure with the * cancel flag in it. */ trace_xfs_buf_item_format_stale(bip); ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); return; } /* * Fill in an iovec for each set of contiguous chunks. */ last_bit = first_bit; nbits = 1; for (;;) { /* * This takes the bit number to start looking from and * returns the next set bit from there. It returns -1 * if there are no more bits set or the start bit is * beyond the end of the bitmap. */ next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, (uint)last_bit + 1); /* * If we run out of bits fill in the last iovec and get out of * the loop. Else if we start a new set of bits then fill in * the iovec for the series we were looking at and start * counting the bits in the new one. Else we're still in the * same set of bits so just keep counting and scanning. */ if (next_bit == -1) { xfs_buf_item_copy_iovec(lv, vecp, bp, offset, first_bit, nbits); blfp->blf_size++; break; } else if (next_bit != last_bit + 1 || xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { xfs_buf_item_copy_iovec(lv, vecp, bp, offset, first_bit, nbits); blfp->blf_size++; first_bit = next_bit; last_bit = next_bit; nbits = 1; } else { last_bit++; nbits++; } } } /* * This is called to fill in the vector of log iovecs for the * given log buf item. It fills the first entry with a buf log * format structure, and the rest point to contiguous chunks * within the buffer. */ STATIC void xfs_buf_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); struct xfs_buf *bp = bip->bli_buf; struct xfs_log_iovec *vecp = NULL; uint offset = 0; int i; ASSERT(atomic_read(&bip->bli_refcount) > 0); ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || (bip->bli_flags & XFS_BLI_STALE)); ASSERT((bip->bli_flags & XFS_BLI_STALE) || (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || (bip->bli_flags & XFS_BLI_STALE)); /* * If it is an inode buffer, transfer the in-memory state to the * format flags and clear the in-memory state. * * For buffer based inode allocation, we do not transfer * this state if the inode buffer allocation has not yet been committed * to the log as setting the XFS_BLI_INODE_BUF flag will prevent * correct replay of the inode allocation. * * For icreate item based inode allocation, the buffers aren't written * to the journal during allocation, and hence we should always tag the * buffer as an inode buffer so that the correct unlinked list replay * occurs during recovery. */ if (bip->bli_flags & XFS_BLI_INODE_BUF) { if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) || !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && xfs_log_item_in_current_chkpt(lip))) bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; bip->bli_flags &= ~XFS_BLI_INODE_BUF; } for (i = 0; i < bip->bli_format_count; i++) { xfs_buf_item_format_segment(bip, lv, &vecp, offset, &bip->bli_formats[i]); offset += BBTOB(bp->b_maps[i].bm_len); } /* * Check to make sure everything is consistent. */ trace_xfs_buf_item_format(bip); } /* * This is called to pin the buffer associated with the buf log item in memory * so it cannot be written out. * * We also always take a reference to the buffer log item here so that the bli * is held while the item is pinned in memory. This means that we can * unconditionally drop the reference count a transaction holds when the * transaction is completed. */ STATIC void xfs_buf_item_pin( struct xfs_log_item *lip) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); ASSERT(atomic_read(&bip->bli_refcount) > 0); ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || (bip->bli_flags & XFS_BLI_ORDERED) || (bip->bli_flags & XFS_BLI_STALE)); trace_xfs_buf_item_pin(bip); atomic_inc(&bip->bli_refcount); atomic_inc(&bip->bli_buf->b_pin_count); } /* * This is called to unpin the buffer associated with the buf log * item which was previously pinned with a call to xfs_buf_item_pin(). * * Also drop the reference to the buf item for the current transaction. * If the XFS_BLI_STALE flag is set and we are the last reference, * then free up the buf log item and unlock the buffer. * * If the remove flag is set we are called from uncommit in the * forced-shutdown path. If that is true and the reference count on * the log item is going to drop to zero we need to free the item's * descriptor in the transaction. */ STATIC void xfs_buf_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); xfs_buf_t *bp = bip->bli_buf; int stale = bip->bli_flags & XFS_BLI_STALE; int freed; ASSERT(bp->b_log_item == bip); ASSERT(atomic_read(&bip->bli_refcount) > 0); trace_xfs_buf_item_unpin(bip); freed = atomic_dec_and_test(&bip->bli_refcount); if (atomic_dec_and_test(&bp->b_pin_count)) wake_up_all(&bp->b_waiters); if (freed && stale) { ASSERT(bip->bli_flags & XFS_BLI_STALE); ASSERT(xfs_buf_islocked(bp)); ASSERT(bp->b_flags & XBF_STALE); ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); trace_xfs_buf_item_unpin_stale(bip); if (remove) { /* * If we are in a transaction context, we have to * remove the log item from the transaction as we are * about to release our reference to the buffer. If we * don't, the unlock that occurs later in * xfs_trans_uncommit() will try to reference the * buffer which we no longer have a hold on. */ if (!list_empty(&lip->li_trans)) xfs_trans_del_item(lip); /* * Since the transaction no longer refers to the buffer, * the buffer should no longer refer to the transaction. */ bp->b_transp = NULL; } /* * If we get called here because of an IO error, we may or may * not have the item on the AIL. xfs_trans_ail_delete() will * take care of that situation. xfs_trans_ail_delete() drops * the AIL lock. */ if (bip->bli_flags & XFS_BLI_STALE_INODE) { xfs_buf_item_done(bp); xfs_buf_inode_iodone(bp); ASSERT(list_empty(&bp->b_li_list)); } else { xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); xfs_buf_item_relse(bp); ASSERT(bp->b_log_item == NULL); } xfs_buf_relse(bp); } else if (freed && remove) { /* * The buffer must be locked and held by the caller to simulate * an async I/O failure. */ xfs_buf_lock(bp); xfs_buf_hold(bp); bp->b_flags |= XBF_ASYNC; xfs_buf_ioend_fail(bp); } } STATIC uint xfs_buf_item_push( struct xfs_log_item *lip, struct list_head *buffer_list) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); struct xfs_buf *bp = bip->bli_buf; uint rval = XFS_ITEM_SUCCESS; if (xfs_buf_ispinned(bp)) return XFS_ITEM_PINNED; if (!xfs_buf_trylock(bp)) { /* * If we have just raced with a buffer being pinned and it has * been marked stale, we could end up stalling until someone else * issues a log force to unpin the stale buffer. Check for the * race condition here so xfsaild recognizes the buffer is pinned * and queues a log force to move it along. */ if (xfs_buf_ispinned(bp)) return XFS_ITEM_PINNED; return XFS_ITEM_LOCKED; } ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); trace_xfs_buf_item_push(bip); /* has a previous flush failed due to IO errors? */ if (bp->b_flags & XBF_WRITE_FAIL) { xfs_buf_alert_ratelimited(bp, "XFS: Failing async write", "Failing async write on buffer block 0x%llx. Retrying async write.", (long long)bp->b_bn); } if (!xfs_buf_delwri_queue(bp, buffer_list)) rval = XFS_ITEM_FLUSHING; xfs_buf_unlock(bp); return rval; } /* * Drop the buffer log item refcount and take appropriate action. This helper * determines whether the bli must be freed or not, since a decrement to zero * does not necessarily mean the bli is unused. * * Return true if the bli is freed, false otherwise. */ bool xfs_buf_item_put( struct xfs_buf_log_item *bip) { struct xfs_log_item *lip = &bip->bli_item; bool aborted; bool dirty; /* drop the bli ref and return if it wasn't the last one */ if (!atomic_dec_and_test(&bip->bli_refcount)) return false; /* * We dropped the last ref and must free the item if clean or aborted. * If the bli is dirty and non-aborted, the buffer was clean in the * transaction but still awaiting writeback from previous changes. In * that case, the bli is freed on buffer writeback completion. */ aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) || XFS_FORCED_SHUTDOWN(lip->li_mountp); dirty = bip->bli_flags & XFS_BLI_DIRTY; if (dirty && !aborted) return false; /* * The bli is aborted or clean. An aborted item may be in the AIL * regardless of dirty state. For example, consider an aborted * transaction that invalidated a dirty bli and cleared the dirty * state. */ if (aborted) xfs_trans_ail_delete(lip, 0); xfs_buf_item_relse(bip->bli_buf); return true; } /* * Release the buffer associated with the buf log item. If there is no dirty * logged data associated with the buffer recorded in the buf log item, then * free the buf log item and remove the reference to it in the buffer. * * This call ignores the recursion count. It is only called when the buffer * should REALLY be unlocked, regardless of the recursion count. * * We unconditionally drop the transaction's reference to the log item. If the * item was logged, then another reference was taken when it was pinned, so we * can safely drop the transaction reference now. This also allows us to avoid * potential races with the unpin code freeing the bli by not referencing the * bli after we've dropped the reference count. * * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item * if necessary but do not unlock the buffer. This is for support of * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't * free the item. */ STATIC void xfs_buf_item_release( struct xfs_log_item *lip) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); struct xfs_buf *bp = bip->bli_buf; bool released; bool hold = bip->bli_flags & XFS_BLI_HOLD; bool stale = bip->bli_flags & XFS_BLI_STALE; #if defined(DEBUG) || defined(XFS_WARN) bool ordered = bip->bli_flags & XFS_BLI_ORDERED; bool dirty = bip->bli_flags & XFS_BLI_DIRTY; bool aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags); #endif trace_xfs_buf_item_release(bip); /* * The bli dirty state should match whether the blf has logged segments * except for ordered buffers, where only the bli should be dirty. */ ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || (ordered && dirty && !xfs_buf_item_dirty_format(bip))); ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); /* * Clear the buffer's association with this transaction and * per-transaction state from the bli, which has been copied above. */ bp->b_transp = NULL; bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); /* * Unref the item and unlock the buffer unless held or stale. Stale * buffers remain locked until final unpin unless the bli is freed by * the unref call. The latter implies shutdown because buffer * invalidation dirties the bli and transaction. */ released = xfs_buf_item_put(bip); if (hold || (stale && !released)) return; ASSERT(!stale || aborted); xfs_buf_relse(bp); } STATIC void xfs_buf_item_committing( struct xfs_log_item *lip, xfs_lsn_t commit_lsn) { return xfs_buf_item_release(lip); } /* * This is called to find out where the oldest active copy of the * buf log item in the on disk log resides now that the last log * write of it completed at the given lsn. * We always re-log all the dirty data in a buffer, so usually the * latest copy in the on disk log is the only one that matters. For * those cases we simply return the given lsn. * * The one exception to this is for buffers full of newly allocated * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF * flag set, indicating that only the di_next_unlinked fields from the * inodes in the buffers will be replayed during recovery. If the * original newly allocated inode images have not yet been flushed * when the buffer is so relogged, then we need to make sure that we * keep the old images in the 'active' portion of the log. We do this * by returning the original lsn of that transaction here rather than * the current one. */ STATIC xfs_lsn_t xfs_buf_item_committed( struct xfs_log_item *lip, xfs_lsn_t lsn) { struct xfs_buf_log_item *bip = BUF_ITEM(lip); trace_xfs_buf_item_committed(bip); if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) return lip->li_lsn; return lsn; } static const struct xfs_item_ops xfs_buf_item_ops = { .iop_size = xfs_buf_item_size, .iop_format = xfs_buf_item_format, .iop_pin = xfs_buf_item_pin, .iop_unpin = xfs_buf_item_unpin, .iop_release = xfs_buf_item_release, .iop_committing = xfs_buf_item_committing, .iop_committed = xfs_buf_item_committed, .iop_push = xfs_buf_item_push, }; STATIC void xfs_buf_item_get_format( struct xfs_buf_log_item *bip, int count) { ASSERT(bip->bli_formats == NULL); bip->bli_format_count = count; if (count == 1) { bip->bli_formats = &bip->__bli_format; return; } bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 0); } STATIC void xfs_buf_item_free_format( struct xfs_buf_log_item *bip) { if (bip->bli_formats != &bip->__bli_format) { kmem_free(bip->bli_formats); bip->bli_formats = NULL; } } /* * Allocate a new buf log item to go with the given buffer. * Set the buffer's b_log_item field to point to the new * buf log item. */ int xfs_buf_item_init( struct xfs_buf *bp, struct xfs_mount *mp) { struct xfs_buf_log_item *bip = bp->b_log_item; int chunks; int map_size; int i; /* * Check to see if there is already a buf log item for * this buffer. If we do already have one, there is * nothing to do here so return. */ ASSERT(bp->b_mount == mp); if (bip) { ASSERT(bip->bli_item.li_type == XFS_LI_BUF); ASSERT(!bp->b_transp); ASSERT(bip->bli_buf == bp); return 0; } bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL); xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); bip->bli_buf = bp; /* * chunks is the number of XFS_BLF_CHUNK size pieces the buffer * can be divided into. Make sure not to truncate any pieces. * map_size is the size of the bitmap needed to describe the * chunks of the buffer. * * Discontiguous buffer support follows the layout of the underlying * buffer. This makes the implementation as simple as possible. */ xfs_buf_item_get_format(bip, bp->b_map_count); for (i = 0; i < bip->bli_format_count; i++) { chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), XFS_BLF_CHUNK); map_size = DIV_ROUND_UP(chunks, NBWORD); if (map_size > XFS_BLF_DATAMAP_SIZE) { kmem_cache_free(xfs_buf_item_zone, bip); xfs_err(mp, "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!", map_size, BBTOB(bp->b_maps[i].bm_len)); return -EFSCORRUPTED; } bip->bli_formats[i].blf_type = XFS_LI_BUF; bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; bip->bli_formats[i].blf_map_size = map_size; } bp->b_log_item = bip; xfs_buf_hold(bp); return 0; } /* * Mark bytes first through last inclusive as dirty in the buf * item's bitmap. */ static void xfs_buf_item_log_segment( uint first, uint last, uint *map) { uint first_bit; uint last_bit; uint bits_to_set; uint bits_set; uint word_num; uint *wordp; uint bit; uint end_bit; uint mask; ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); /* * Convert byte offsets to bit numbers. */ first_bit = first >> XFS_BLF_SHIFT; last_bit = last >> XFS_BLF_SHIFT; /* * Calculate the total number of bits to be set. */ bits_to_set = last_bit - first_bit + 1; /* * Get a pointer to the first word in the bitmap * to set a bit in. */ word_num = first_bit >> BIT_TO_WORD_SHIFT; wordp = &map[word_num]; /* * Calculate the starting bit in the first word. */ bit = first_bit & (uint)(NBWORD - 1); /* * First set any bits in the first word of our range. * If it starts at bit 0 of the word, it will be * set below rather than here. That is what the variable * bit tells us. The variable bits_set tracks the number * of bits that have been set so far. End_bit is the number * of the last bit to be set in this word plus one. */ if (bit) { end_bit = min(bit + bits_to_set, (uint)NBWORD); mask = ((1U << (end_bit - bit)) - 1) << bit; *wordp |= mask; wordp++; bits_set = end_bit - bit; } else { bits_set = 0; } /* * Now set bits a whole word at a time that are between * first_bit and last_bit. */ while ((bits_to_set - bits_set) >= NBWORD) { *wordp = 0xffffffff; bits_set += NBWORD; wordp++; } /* * Finally, set any bits left to be set in one last partial word. */ end_bit = bits_to_set - bits_set; if (end_bit) { mask = (1U << end_bit) - 1; *wordp |= mask; } } /* * Mark bytes first through last inclusive as dirty in the buf * item's bitmap. */ void xfs_buf_item_log( struct xfs_buf_log_item *bip, uint first, uint last) { int i; uint start; uint end; struct xfs_buf *bp = bip->bli_buf; /* * walk each buffer segment and mark them dirty appropriately. */ start = 0; for (i = 0; i < bip->bli_format_count; i++) { if (start > last) break; end = start + BBTOB(bp->b_maps[i].bm_len) - 1; /* skip to the map that includes the first byte to log */ if (first > end) { start += BBTOB(bp->b_maps[i].bm_len); continue; } /* * Trim the range to this segment and mark it in the bitmap. * Note that we must convert buffer offsets to segment relative * offsets (e.g., the first byte of each segment is byte 0 of * that segment). */ if (first < start) first = start; if (end > last) end = last; xfs_buf_item_log_segment(first - start, end - start, &bip->bli_formats[i].blf_data_map[0]); start += BBTOB(bp->b_maps[i].bm_len); } } /* * Return true if the buffer has any ranges logged/dirtied by a transaction, * false otherwise. */ bool xfs_buf_item_dirty_format( struct xfs_buf_log_item *bip) { int i; for (i = 0; i < bip->bli_format_count; i++) { if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, bip->bli_formats[i].blf_map_size)) return true; } return false; } STATIC void xfs_buf_item_free( struct xfs_buf_log_item *bip) { xfs_buf_item_free_format(bip); kmem_free(bip->bli_item.li_lv_shadow); kmem_cache_free(xfs_buf_item_zone, bip); } /* * xfs_buf_item_relse() is called when the buf log item is no longer needed. */ void xfs_buf_item_relse( xfs_buf_t *bp) { struct xfs_buf_log_item *bip = bp->b_log_item; trace_xfs_buf_item_relse(bp, _RET_IP_); ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); bp->b_log_item = NULL; xfs_buf_rele(bp); xfs_buf_item_free(bip); } void xfs_buf_item_done( struct xfs_buf *bp) { /* * If we are forcibly shutting down, this may well be off the AIL * already. That's because we simulate the log-committed callbacks to * unpin these buffers. Or we may never have put this item on AIL * because of the transaction was aborted forcibly. * xfs_trans_ail_delete() takes care of these. * * Either way, AIL is useless if we're forcing a shutdown. * * Note that log recovery writes might have buffer items that are not on * the AIL even when the file system is not shut down. */ xfs_trans_ail_delete(&bp->b_log_item->bli_item, (bp->b_flags & _XBF_LOGRECOVERY) ? 0 : SHUTDOWN_CORRUPT_INCORE); xfs_buf_item_relse(bp); } |