Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/uaccess.h>

#include <clocksource/arm_arch_timer.h>
#include <asm/arch_timer.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>

#include "trace.h"

static struct timecounter *timecounter;
static unsigned int host_vtimer_irq;
static unsigned int host_ptimer_irq;
static u32 host_vtimer_irq_flags;
static u32 host_ptimer_irq_flags;

static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);

static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
				struct arch_timer_context *timer,
				enum kvm_arch_timer_regs treg,
				u64 val);
static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
			      struct arch_timer_context *timer,
			      enum kvm_arch_timer_regs treg);

u32 timer_get_ctl(struct arch_timer_context *ctxt)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch(arch_timer_ctx_index(ctxt)) {
	case TIMER_VTIMER:
		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
	case TIMER_PTIMER:
		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
	default:
		WARN_ON(1);
		return 0;
	}
}

u64 timer_get_cval(struct arch_timer_context *ctxt)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch(arch_timer_ctx_index(ctxt)) {
	case TIMER_VTIMER:
		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
	case TIMER_PTIMER:
		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
	default:
		WARN_ON(1);
		return 0;
	}
}

static u64 timer_get_offset(struct arch_timer_context *ctxt)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch(arch_timer_ctx_index(ctxt)) {
	case TIMER_VTIMER:
		return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
	default:
		return 0;
	}
}

static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch(arch_timer_ctx_index(ctxt)) {
	case TIMER_VTIMER:
		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
		break;
	case TIMER_PTIMER:
		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
		break;
	default:
		WARN_ON(1);
	}
}

static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch(arch_timer_ctx_index(ctxt)) {
	case TIMER_VTIMER:
		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
		break;
	case TIMER_PTIMER:
		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
		break;
	default:
		WARN_ON(1);
	}
}

static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch(arch_timer_ctx_index(ctxt)) {
	case TIMER_VTIMER:
		__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
		break;
	default:
		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
	}
}

u64 kvm_phys_timer_read(void)
{
	return timecounter->cc->read(timecounter->cc);
}

static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
{
	if (has_vhe()) {
		map->direct_vtimer = vcpu_vtimer(vcpu);
		map->direct_ptimer = vcpu_ptimer(vcpu);
		map->emul_ptimer = NULL;
	} else {
		map->direct_vtimer = vcpu_vtimer(vcpu);
		map->direct_ptimer = NULL;
		map->emul_ptimer = vcpu_ptimer(vcpu);
	}

	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
}

static inline bool userspace_irqchip(struct kvm *kvm)
{
	return static_branch_unlikely(&userspace_irqchip_in_use) &&
		unlikely(!irqchip_in_kernel(kvm));
}

static void soft_timer_start(struct hrtimer *hrt, u64 ns)
{
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS_HARD);
}

static void soft_timer_cancel(struct hrtimer *hrt)
{
	hrtimer_cancel(hrt);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *ctx;
	struct timer_map map;

	/*
	 * We may see a timer interrupt after vcpu_put() has been called which
	 * sets the CPU's vcpu pointer to NULL, because even though the timer
	 * has been disabled in timer_save_state(), the hardware interrupt
	 * signal may not have been retired from the interrupt controller yet.
	 */
	if (!vcpu)
		return IRQ_HANDLED;

	get_timer_map(vcpu, &map);

	if (irq == host_vtimer_irq)
		ctx = map.direct_vtimer;
	else
		ctx = map.direct_ptimer;

	if (kvm_timer_should_fire(ctx))
		kvm_timer_update_irq(vcpu, true, ctx);

	if (userspace_irqchip(vcpu->kvm) &&
	    !static_branch_unlikely(&has_gic_active_state))
		disable_percpu_irq(host_vtimer_irq);

	return IRQ_HANDLED;
}

static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
{
	u64 cval, now;

	cval = timer_get_cval(timer_ctx);
	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	WARN_ON(timer_ctx && timer_ctx->loaded);
	return timer_ctx &&
		((timer_get_ctl(timer_ctx) &
		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_delta = ULLONG_MAX;
	int i;

	for (i = 0; i < NR_KVM_TIMERS; i++) {
		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];

		WARN(ctx->loaded, "timer %d loaded\n", i);
		if (kvm_timer_irq_can_fire(ctx))
			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
	}

	/* If none of timers can fire, then return 0 */
	if (min_delta == ULLONG_MAX)
		return 0;

	return min_delta;
}

static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
	ns = kvm_timer_earliest_exp(vcpu);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_vcpu_wake_up(vcpu);
	return HRTIMER_NORESTART;
}

static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
{
	struct arch_timer_context *ctx;
	struct kvm_vcpu *vcpu;
	u64 ns;

	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
	vcpu = ctx->vcpu;

	trace_kvm_timer_hrtimer_expire(ctx);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ctx);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ctx);
	return HRTIMER_NORESTART;
}

static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
{
	enum kvm_arch_timers index;
	u64 cval, now;

	if (!timer_ctx)
		return false;

	index = arch_timer_ctx_index(timer_ctx);

	if (timer_ctx->loaded) {
		u32 cnt_ctl = 0;

		switch (index) {
		case TIMER_VTIMER:
			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
			break;
		case TIMER_PTIMER:
			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
			break;
		case NR_KVM_TIMERS:
			/* GCC is braindead */
			cnt_ctl = 0;
			break;
		}

		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
	}

	if (!kvm_timer_irq_can_fire(timer_ctx))
		return false;

	cval = timer_get_cval(timer_ctx);
	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);

	return cval <= now;
}

bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
	struct timer_map map;

	get_timer_map(vcpu, &map);

	return kvm_timer_should_fire(map.direct_vtimer) ||
	       kvm_timer_should_fire(map.direct_ptimer) ||
	       kvm_timer_should_fire(map.emul_ptimer);
}

/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (kvm_timer_should_fire(vtimer))
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (kvm_timer_should_fire(ptimer))
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
{
	int ret;

	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);

	if (!userspace_irqchip(vcpu->kvm)) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
					  timer_ctx->irq.level,
					  timer_ctx);
		WARN_ON(ret);
	}
}

/* Only called for a fully emulated timer */
static void timer_emulate(struct arch_timer_context *ctx)
{
	bool should_fire = kvm_timer_should_fire(ctx);

	trace_kvm_timer_emulate(ctx, should_fire);

	if (should_fire != ctx->irq.level) {
		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
		return;
	}

	/*
	 * If the timer can fire now, we don't need to have a soft timer
	 * scheduled for the future.  If the timer cannot fire at all,
	 * then we also don't need a soft timer.
	 */
	if (!kvm_timer_irq_can_fire(ctx)) {
		soft_timer_cancel(&ctx->hrtimer);
		return;
	}

	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
}

static void timer_save_state(struct arch_timer_context *ctx)
{
	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
	unsigned long flags;

	if (!timer->enabled)
		return;

	local_irq_save(flags);

	if (!ctx->loaded)
		goto out;

	switch (index) {
	case TIMER_VTIMER:
		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));

		/* Disable the timer */
		write_sysreg_el0(0, SYS_CNTV_CTL);
		isb();

		break;
	case TIMER_PTIMER:
		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));

		/* Disable the timer */
		write_sysreg_el0(0, SYS_CNTP_CTL);
		isb();

		break;
	case NR_KVM_TIMERS:
		BUG();
	}

	trace_kvm_timer_save_state(ctx);

	ctx->loaded = false;
out:
	local_irq_restore(flags);
}

/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
	struct timer_map map;

	get_timer_map(vcpu, &map);

	/*
	 * If no timers are capable of raising interrupts (disabled or
	 * masked), then there's no more work for us to do.
	 */
	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
	    !kvm_timer_irq_can_fire(map.emul_ptimer))
		return;

	/*
	 * At least one guest time will expire. Schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
}

static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);

	soft_timer_cancel(&timer->bg_timer);
}

static void timer_restore_state(struct arch_timer_context *ctx)
{
	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
	unsigned long flags;

	if (!timer->enabled)
		return;

	local_irq_save(flags);

	if (ctx->loaded)
		goto out;

	switch (index) {
	case TIMER_VTIMER:
		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
		isb();
		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
		break;
	case TIMER_PTIMER:
		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
		isb();
		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
		break;
	case NR_KVM_TIMERS:
		BUG();
	}

	trace_kvm_timer_restore_state(ctx);

	ctx->loaded = true;
out:
	local_irq_restore(flags);
}

static void set_cntvoff(u64 cntvoff)
{
	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
}

static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
{
	int r;
	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
	WARN_ON(r);
}

static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
{
	struct kvm_vcpu *vcpu = ctx->vcpu;
	bool phys_active = false;

	/*
	 * Update the timer output so that it is likely to match the
	 * state we're about to restore. If the timer expires between
	 * this point and the register restoration, we'll take the
	 * interrupt anyway.
	 */
	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);

	if (irqchip_in_kernel(vcpu->kvm))
		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);

	phys_active |= ctx->irq.level;

	set_timer_irq_phys_active(ctx, phys_active);
}

static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	/*
	 * Update the timer output so that it is likely to match the
	 * state we're about to restore. If the timer expires between
	 * this point and the register restoration, we'll take the
	 * interrupt anyway.
	 */
	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);

	/*
	 * When using a userspace irqchip with the architected timers and a
	 * host interrupt controller that doesn't support an active state, we
	 * must still prevent continuously exiting from the guest, and
	 * therefore mask the physical interrupt by disabling it on the host
	 * interrupt controller when the virtual level is high, such that the
	 * guest can make forward progress.  Once we detect the output level
	 * being de-asserted, we unmask the interrupt again so that we exit
	 * from the guest when the timer fires.
	 */
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
	struct timer_map map;

	if (unlikely(!timer->enabled))
		return;

	get_timer_map(vcpu, &map);

	if (static_branch_likely(&has_gic_active_state)) {
		kvm_timer_vcpu_load_gic(map.direct_vtimer);
		if (map.direct_ptimer)
			kvm_timer_vcpu_load_gic(map.direct_ptimer);
	} else {
		kvm_timer_vcpu_load_nogic(vcpu);
	}

	set_cntvoff(timer_get_offset(map.direct_vtimer));

	kvm_timer_unblocking(vcpu);

	timer_restore_state(map.direct_vtimer);
	if (map.direct_ptimer)
		timer_restore_state(map.direct_ptimer);

	if (map.emul_ptimer)
		timer_emulate(map.emul_ptimer);
}

bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return kvm_timer_should_fire(vtimer) != vlevel ||
	       kvm_timer_should_fire(ptimer) != plevel;
}

void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
	struct timer_map map;
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);

	if (unlikely(!timer->enabled))
		return;

	get_timer_map(vcpu, &map);

	timer_save_state(map.direct_vtimer);
	if (map.direct_ptimer)
		timer_save_state(map.direct_ptimer);

	/*
	 * Cancel soft timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
	if (map.emul_ptimer)
		soft_timer_cancel(&map.emul_ptimer->hrtimer);

	if (rcuwait_active(wait))
		kvm_timer_blocking(vcpu);

	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
	 */
	set_cntvoff(0);
}

/*
 * With a userspace irqchip we have to check if the guest de-asserted the
 * timer and if so, unmask the timer irq signal on the host interrupt
 * controller to ensure that we see future timer signals.
 */
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (!kvm_timer_should_fire(vtimer)) {
		kvm_timer_update_irq(vcpu, false, vtimer);
		if (static_branch_likely(&has_gic_active_state))
			set_timer_irq_phys_active(vtimer, false);
		else
			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
	}
}

void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		unmask_vtimer_irq_user(vcpu);
}

int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
	struct timer_map map;

	get_timer_map(vcpu, &map);

	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
	timer_set_ctl(vcpu_vtimer(vcpu), 0);
	timer_set_ctl(vcpu_ptimer(vcpu), 0);

	if (timer->enabled) {
		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));

		if (irqchip_in_kernel(vcpu->kvm)) {
			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
			if (map.direct_ptimer)
				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
		}
	}

	if (map.emul_ptimer)
		soft_timer_cancel(&map.emul_ptimer->hrtimer);

	return 0;
}

/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		timer_set_offset(vcpu_vtimer(tmp), cntvoff);

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
	mutex_unlock(&kvm->lock);
}

void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	vtimer->vcpu = vcpu;
	ptimer->vcpu = vcpu;

	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
	timer_set_offset(ptimer, 0);

	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
	timer->bg_timer.function = kvm_bg_timer_expire;

	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
	vtimer->hrtimer.function = kvm_hrtimer_expire;
	ptimer->hrtimer.function = kvm_hrtimer_expire;

	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;

	vtimer->host_timer_irq = host_vtimer_irq;
	ptimer->host_timer_irq = host_ptimer_irq;

	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
}

static void kvm_timer_init_interrupt(void *info)
{
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
}

int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
	struct arch_timer_context *timer;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		timer = vcpu_vtimer(vcpu);
		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
		break;
	case KVM_REG_ARM_TIMER_CNT:
		timer = vcpu_vtimer(vcpu);
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
		break;
	case KVM_REG_ARM_TIMER_CVAL:
		timer = vcpu_vtimer(vcpu);
		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
		break;
	case KVM_REG_ARM_PTIMER_CTL:
		timer = vcpu_ptimer(vcpu);
		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		timer = vcpu_ptimer(vcpu);
		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
		break;

	default:
		return -1;
	}

	return 0;
}

static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	u32 ctl = timer_get_ctl(timer);

	if (!kvm_timer_compute_delta(timer))
		ctl |= ARCH_TIMER_CTRL_IT_STAT;

	return ctl;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		return kvm_arm_timer_read(vcpu,
					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
	case KVM_REG_ARM_TIMER_CNT:
		return kvm_arm_timer_read(vcpu,
					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
	case KVM_REG_ARM_TIMER_CVAL:
		return kvm_arm_timer_read(vcpu,
					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
	case KVM_REG_ARM_PTIMER_CTL:
		return kvm_arm_timer_read(vcpu,
					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_arm_timer_read(vcpu,
					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
	case KVM_REG_ARM_PTIMER_CVAL:
		return kvm_arm_timer_read(vcpu,
					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
	}
	return (u64)-1;
}

static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
			      struct arch_timer_context *timer,
			      enum kvm_arch_timer_regs treg)
{
	u64 val;

	switch (treg) {
	case TIMER_REG_TVAL:
		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
		val = lower_32_bits(val);
		break;

	case TIMER_REG_CTL:
		val = read_timer_ctl(timer);
		break;

	case TIMER_REG_CVAL:
		val = timer_get_cval(timer);
		break;

	case TIMER_REG_CNT:
		val = kvm_phys_timer_read() - timer_get_offset(timer);
		break;

	default:
		BUG();
	}

	return val;
}

u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
			      enum kvm_arch_timers tmr,
			      enum kvm_arch_timer_regs treg)
{
	u64 val;

	preempt_disable();
	kvm_timer_vcpu_put(vcpu);

	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);

	kvm_timer_vcpu_load(vcpu);
	preempt_enable();

	return val;
}

static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
				struct arch_timer_context *timer,
				enum kvm_arch_timer_regs treg,
				u64 val)
{
	switch (treg) {
	case TIMER_REG_TVAL:
		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
		break;

	case TIMER_REG_CTL:
		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
		break;

	case TIMER_REG_CVAL:
		timer_set_cval(timer, val);
		break;

	default:
		BUG();
	}
}

void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
				enum kvm_arch_timers tmr,
				enum kvm_arch_timer_regs treg,
				u64 val)
{
	preempt_disable();
	kvm_timer_vcpu_put(vcpu);

	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);

	kvm_timer_vcpu_load(vcpu);
	preempt_enable();
}

static int kvm_timer_starting_cpu(unsigned int cpu)
{
	kvm_timer_init_interrupt(NULL);
	return 0;
}

static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}

int kvm_timer_hyp_init(bool has_gic)
{
	struct arch_timer_kvm_info *info;
	int err;

	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;

	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

	/* First, do the virtual EL1 timer irq */

	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
		return -ENODEV;
	}
	host_vtimer_irq = info->virtual_irq;

	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
				 "kvm guest vtimer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
			host_vtimer_irq, err);
		return err;
	}

	if (has_gic) {
		err = irq_set_vcpu_affinity(host_vtimer_irq,
					    kvm_get_running_vcpus());
		if (err) {
			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
			goto out_free_irq;
		}

		static_branch_enable(&has_gic_active_state);
	}

	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);

	/* Now let's do the physical EL1 timer irq */

	if (info->physical_irq > 0) {
		host_ptimer_irq = info->physical_irq;
		host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
		if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
		    host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
			kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
				host_ptimer_irq);
			host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
		}

		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
					 "kvm guest ptimer", kvm_get_running_vcpus());
		if (err) {
			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
				host_ptimer_irq, err);
			return err;
		}

		if (has_gic) {
			err = irq_set_vcpu_affinity(host_ptimer_irq,
						    kvm_get_running_vcpus());
			if (err) {
				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
				goto out_free_irq;
			}
		}

		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
	} else if (has_vhe()) {
		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
			info->physical_irq);
		err = -ENODEV;
		goto out_free_irq;
	}

	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
			  kvm_timer_dying_cpu);
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);

	soft_timer_cancel(&timer->bg_timer);
}

static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
{
	int vtimer_irq, ptimer_irq;
	int i, ret;

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;

	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
		return false;

	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

bool kvm_arch_timer_get_input_level(int vintid)
{
	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
	struct arch_timer_context *timer;

	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
		timer = vcpu_vtimer(vcpu);
	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
		timer = vcpu_ptimer(vcpu);
	else
		BUG();

	return kvm_timer_should_fire(timer);
}

int kvm_timer_enable(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
	struct timer_map map;
	int ret;

	if (timer->enabled)
		return 0;

	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

	if (!timer_irqs_are_valid(vcpu)) {
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

	get_timer_map(vcpu, &map);

	ret = kvm_vgic_map_phys_irq(vcpu,
				    map.direct_vtimer->host_timer_irq,
				    map.direct_vtimer->irq.irq,
				    kvm_arch_timer_get_input_level);
	if (ret)
		return ret;

	if (map.direct_ptimer) {
		ret = kvm_vgic_map_phys_irq(vcpu,
					    map.direct_ptimer->host_timer_irq,
					    map.direct_ptimer->irq.irq,
					    kvm_arch_timer_get_input_level);
	}

	if (ret)
		return ret;

no_vgic:
	timer->enabled = 1;
	return 0;
}

/*
 * On VHE system, we only need to configure the EL2 timer trap register once,
 * not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * VHE systems allow the guest direct access to the EL1 physical
	 * timer/counter.
	 */
	val = read_sysreg(cnthctl_el2);
	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}