Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | // SPDX-License-Identifier: GPL-2.0 #include <linux/atomic.h> #include <linux/mmu_context.h> #include <linux/percpu.h> #include <linux/spinlock.h> static DEFINE_RAW_SPINLOCK(cpu_mmid_lock); static atomic64_t mmid_version; static unsigned int num_mmids; static unsigned long *mmid_map; static DEFINE_PER_CPU(u64, reserved_mmids); static cpumask_t tlb_flush_pending; static bool asid_versions_eq(int cpu, u64 a, u64 b) { return ((a ^ b) & asid_version_mask(cpu)) == 0; } void get_new_mmu_context(struct mm_struct *mm) { unsigned int cpu; u64 asid; /* * This function is specific to ASIDs, and should not be called when * MMIDs are in use. */ if (WARN_ON(IS_ENABLED(CONFIG_DEBUG_VM) && cpu_has_mmid)) return; cpu = smp_processor_id(); asid = asid_cache(cpu); if (!((asid += cpu_asid_inc()) & cpu_asid_mask(&cpu_data[cpu]))) { if (cpu_has_vtag_icache) flush_icache_all(); local_flush_tlb_all(); /* start new asid cycle */ } set_cpu_context(cpu, mm, asid); asid_cache(cpu) = asid; } EXPORT_SYMBOL_GPL(get_new_mmu_context); void check_mmu_context(struct mm_struct *mm) { unsigned int cpu = smp_processor_id(); /* * This function is specific to ASIDs, and should not be called when * MMIDs are in use. */ if (WARN_ON(IS_ENABLED(CONFIG_DEBUG_VM) && cpu_has_mmid)) return; /* Check if our ASID is of an older version and thus invalid */ if (!asid_versions_eq(cpu, cpu_context(cpu, mm), asid_cache(cpu))) get_new_mmu_context(mm); } EXPORT_SYMBOL_GPL(check_mmu_context); static void flush_context(void) { u64 mmid; int cpu; /* Update the list of reserved MMIDs and the MMID bitmap */ bitmap_clear(mmid_map, 0, num_mmids); /* Reserve an MMID for kmap/wired entries */ __set_bit(MMID_KERNEL_WIRED, mmid_map); for_each_possible_cpu(cpu) { mmid = xchg_relaxed(&cpu_data[cpu].asid_cache, 0); /* * If this CPU has already been through a * rollover, but hasn't run another task in * the meantime, we must preserve its reserved * MMID, as this is the only trace we have of * the process it is still running. */ if (mmid == 0) mmid = per_cpu(reserved_mmids, cpu); __set_bit(mmid & cpu_asid_mask(&cpu_data[cpu]), mmid_map); per_cpu(reserved_mmids, cpu) = mmid; } /* * Queue a TLB invalidation for each CPU to perform on next * context-switch */ cpumask_setall(&tlb_flush_pending); } static bool check_update_reserved_mmid(u64 mmid, u64 newmmid) { bool hit; int cpu; /* * Iterate over the set of reserved MMIDs looking for a match. * If we find one, then we can update our mm to use newmmid * (i.e. the same MMID in the current generation) but we can't * exit the loop early, since we need to ensure that all copies * of the old MMID are updated to reflect the mm. Failure to do * so could result in us missing the reserved MMID in a future * generation. */ hit = false; for_each_possible_cpu(cpu) { if (per_cpu(reserved_mmids, cpu) == mmid) { hit = true; per_cpu(reserved_mmids, cpu) = newmmid; } } return hit; } static u64 get_new_mmid(struct mm_struct *mm) { static u32 cur_idx = MMID_KERNEL_WIRED + 1; u64 mmid, version, mmid_mask; mmid = cpu_context(0, mm); version = atomic64_read(&mmid_version); mmid_mask = cpu_asid_mask(&boot_cpu_data); if (!asid_versions_eq(0, mmid, 0)) { u64 newmmid = version | (mmid & mmid_mask); /* * If our current MMID was active during a rollover, we * can continue to use it and this was just a false alarm. */ if (check_update_reserved_mmid(mmid, newmmid)) { mmid = newmmid; goto set_context; } /* * We had a valid MMID in a previous life, so try to re-use * it if possible. */ if (!__test_and_set_bit(mmid & mmid_mask, mmid_map)) { mmid = newmmid; goto set_context; } } /* Allocate a free MMID */ mmid = find_next_zero_bit(mmid_map, num_mmids, cur_idx); if (mmid != num_mmids) goto reserve_mmid; /* We're out of MMIDs, so increment the global version */ version = atomic64_add_return_relaxed(asid_first_version(0), &mmid_version); /* Note currently active MMIDs & mark TLBs as requiring flushes */ flush_context(); /* We have more MMIDs than CPUs, so this will always succeed */ mmid = find_first_zero_bit(mmid_map, num_mmids); reserve_mmid: __set_bit(mmid, mmid_map); cur_idx = mmid; mmid |= version; set_context: set_cpu_context(0, mm, mmid); return mmid; } void check_switch_mmu_context(struct mm_struct *mm) { unsigned int cpu = smp_processor_id(); u64 ctx, old_active_mmid; unsigned long flags; if (!cpu_has_mmid) { check_mmu_context(mm); write_c0_entryhi(cpu_asid(cpu, mm)); goto setup_pgd; } /* * MMID switch fast-path, to avoid acquiring cpu_mmid_lock when it's * unnecessary. * * The memory ordering here is subtle. If our active_mmids is non-zero * and the MMID matches the current version, then we update the CPU's * asid_cache with a relaxed cmpxchg. Racing with a concurrent rollover * means that either: * * - We get a zero back from the cmpxchg and end up waiting on * cpu_mmid_lock in check_mmu_context(). Taking the lock synchronises * with the rollover and so we are forced to see the updated * generation. * * - We get a valid MMID back from the cmpxchg, which means the * relaxed xchg in flush_context will treat us as reserved * because atomic RmWs are totally ordered for a given location. */ ctx = cpu_context(cpu, mm); old_active_mmid = READ_ONCE(cpu_data[cpu].asid_cache); if (!old_active_mmid || !asid_versions_eq(cpu, ctx, atomic64_read(&mmid_version)) || !cmpxchg_relaxed(&cpu_data[cpu].asid_cache, old_active_mmid, ctx)) { raw_spin_lock_irqsave(&cpu_mmid_lock, flags); ctx = cpu_context(cpu, mm); if (!asid_versions_eq(cpu, ctx, atomic64_read(&mmid_version))) ctx = get_new_mmid(mm); WRITE_ONCE(cpu_data[cpu].asid_cache, ctx); raw_spin_unlock_irqrestore(&cpu_mmid_lock, flags); } /* * Invalidate the local TLB if needed. Note that we must only clear our * bit in tlb_flush_pending after this is complete, so that the * cpu_has_shared_ftlb_entries case below isn't misled. */ if (cpumask_test_cpu(cpu, &tlb_flush_pending)) { if (cpu_has_vtag_icache) flush_icache_all(); local_flush_tlb_all(); cpumask_clear_cpu(cpu, &tlb_flush_pending); } write_c0_memorymapid(ctx & cpu_asid_mask(&boot_cpu_data)); /* * If this CPU shares FTLB entries with its siblings and one or more of * those siblings hasn't yet invalidated its TLB following a version * increase then we need to invalidate any TLB entries for our MMID * that we might otherwise pick up from a sibling. * * We ifdef on CONFIG_SMP because cpu_sibling_map isn't defined in * CONFIG_SMP=n kernels. */ #ifdef CONFIG_SMP if (cpu_has_shared_ftlb_entries && cpumask_intersects(&tlb_flush_pending, &cpu_sibling_map[cpu])) { /* Ensure we operate on the new MMID */ mtc0_tlbw_hazard(); /* * Invalidate all TLB entries associated with the new * MMID, and wait for the invalidation to complete. */ ginvt_mmid(); sync_ginv(); } #endif setup_pgd: TLBMISS_HANDLER_SETUP_PGD(mm->pgd); } EXPORT_SYMBOL_GPL(check_switch_mmu_context); static int mmid_init(void) { if (!cpu_has_mmid) return 0; /* * Expect allocation after rollover to fail if we don't have at least * one more MMID than CPUs. */ num_mmids = asid_first_version(0); WARN_ON(num_mmids <= num_possible_cpus()); atomic64_set(&mmid_version, asid_first_version(0)); mmid_map = kcalloc(BITS_TO_LONGS(num_mmids), sizeof(*mmid_map), GFP_KERNEL); if (!mmid_map) panic("Failed to allocate bitmap for %u MMIDs\n", num_mmids); /* Reserve an MMID for kmap/wired entries */ __set_bit(MMID_KERNEL_WIRED, mmid_map); pr_info("MMID allocator initialised with %u entries\n", num_mmids); return 0; } early_initcall(mmid_init); |