Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 | // SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include <linux/pci.h> #include <linux/tcp.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/ipv6.h> #include <linux/slab.h> #include <net/ipv6.h> #include <linux/if_ether.h> #include <linux/highmem.h> #include <linux/cache.h> #include "net_driver.h" #include "efx.h" #include "io.h" #include "nic.h" #include "tx.h" #include "workarounds.h" static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue, struct ef4_tx_buffer *buffer) { unsigned int index = ef4_tx_queue_get_insert_index(tx_queue); struct ef4_buffer *page_buf = &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)]; unsigned int offset = ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); if (unlikely(!page_buf->addr) && ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, GFP_ATOMIC)) return NULL; buffer->dma_addr = page_buf->dma_addr + offset; buffer->unmap_len = 0; return (u8 *)page_buf->addr + offset; } u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue, struct ef4_tx_buffer *buffer, size_t len) { if (len > EF4_TX_CB_SIZE) return NULL; return ef4_tx_get_copy_buffer(tx_queue, buffer); } static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue, struct ef4_tx_buffer *buffer, unsigned int *pkts_compl, unsigned int *bytes_compl) { if (buffer->unmap_len) { struct device *dma_dev = &tx_queue->efx->pci_dev->dev; dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; if (buffer->flags & EF4_TX_BUF_MAP_SINGLE) dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, DMA_TO_DEVICE); else dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, DMA_TO_DEVICE); buffer->unmap_len = 0; } if (buffer->flags & EF4_TX_BUF_SKB) { (*pkts_compl)++; (*bytes_compl) += buffer->skb->len; dev_consume_skb_any((struct sk_buff *)buffer->skb); netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, "TX queue %d transmission id %x complete\n", tx_queue->queue, tx_queue->read_count); } buffer->len = 0; buffer->flags = 0; } unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx) { /* This is probably too much since we don't have any TSO support; * it's a left-over from when we had Software TSO. But it's safer * to leave it as-is than try to determine a new bound. */ /* Header and payload descriptor for each output segment, plus * one for every input fragment boundary within a segment */ unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; /* Possibly one more per segment for the alignment workaround, * or for option descriptors */ if (EF4_WORKAROUND_5391(efx)) max_descs += EF4_TSO_MAX_SEGS; /* Possibly more for PCIe page boundaries within input fragments */ if (PAGE_SIZE > EF4_PAGE_SIZE) max_descs += max_t(unsigned int, MAX_SKB_FRAGS, DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE)); return max_descs; } static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1) { /* We need to consider both queues that the net core sees as one */ struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1); struct ef4_nic *efx = txq1->efx; unsigned int fill_level; fill_level = max(txq1->insert_count - txq1->old_read_count, txq2->insert_count - txq2->old_read_count); if (likely(fill_level < efx->txq_stop_thresh)) return; /* We used the stale old_read_count above, which gives us a * pessimistic estimate of the fill level (which may even * validly be >= efx->txq_entries). Now try again using * read_count (more likely to be a cache miss). * * If we read read_count and then conditionally stop the * queue, it is possible for the completion path to race with * us and complete all outstanding descriptors in the middle, * after which there will be no more completions to wake it. * Therefore we stop the queue first, then read read_count * (with a memory barrier to ensure the ordering), then * restart the queue if the fill level turns out to be low * enough. */ netif_tx_stop_queue(txq1->core_txq); smp_mb(); txq1->old_read_count = READ_ONCE(txq1->read_count); txq2->old_read_count = READ_ONCE(txq2->read_count); fill_level = max(txq1->insert_count - txq1->old_read_count, txq2->insert_count - txq2->old_read_count); EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries); if (likely(fill_level < efx->txq_stop_thresh)) { smp_mb(); if (likely(!efx->loopback_selftest)) netif_tx_start_queue(txq1->core_txq); } } static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) { unsigned int min_len = tx_queue->tx_min_size; unsigned int copy_len = skb->len; struct ef4_tx_buffer *buffer; u8 *copy_buffer; int rc; EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE); buffer = ef4_tx_queue_get_insert_buffer(tx_queue); copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer); if (unlikely(!copy_buffer)) return -ENOMEM; rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); EF4_WARN_ON_PARANOID(rc); if (unlikely(copy_len < min_len)) { memset(copy_buffer + copy_len, 0, min_len - copy_len); buffer->len = min_len; } else { buffer->len = copy_len; } buffer->skb = skb; buffer->flags = EF4_TX_BUF_SKB; ++tx_queue->insert_count; return rc; } static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue, dma_addr_t dma_addr, size_t len) { const struct ef4_nic_type *nic_type = tx_queue->efx->type; struct ef4_tx_buffer *buffer; unsigned int dma_len; /* Map the fragment taking account of NIC-dependent DMA limits. */ do { buffer = ef4_tx_queue_get_insert_buffer(tx_queue); dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); buffer->len = dma_len; buffer->dma_addr = dma_addr; buffer->flags = EF4_TX_BUF_CONT; len -= dma_len; dma_addr += dma_len; ++tx_queue->insert_count; } while (len); return buffer; } /* Map all data from an SKB for DMA and create descriptors on the queue. */ static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) { struct ef4_nic *efx = tx_queue->efx; struct device *dma_dev = &efx->pci_dev->dev; unsigned int frag_index, nr_frags; dma_addr_t dma_addr, unmap_addr; unsigned short dma_flags; size_t len, unmap_len; nr_frags = skb_shinfo(skb)->nr_frags; frag_index = 0; /* Map header data. */ len = skb_headlen(skb); dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); dma_flags = EF4_TX_BUF_MAP_SINGLE; unmap_len = len; unmap_addr = dma_addr; if (unlikely(dma_mapping_error(dma_dev, dma_addr))) return -EIO; /* Add descriptors for each fragment. */ do { struct ef4_tx_buffer *buffer; skb_frag_t *fragment; buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len); /* The final descriptor for a fragment is responsible for * unmapping the whole fragment. */ buffer->flags = EF4_TX_BUF_CONT | dma_flags; buffer->unmap_len = unmap_len; buffer->dma_offset = buffer->dma_addr - unmap_addr; if (frag_index >= nr_frags) { /* Store SKB details with the final buffer for * the completion. */ buffer->skb = skb; buffer->flags = EF4_TX_BUF_SKB | dma_flags; return 0; } /* Move on to the next fragment. */ fragment = &skb_shinfo(skb)->frags[frag_index++]; len = skb_frag_size(fragment); dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len, DMA_TO_DEVICE); dma_flags = 0; unmap_len = len; unmap_addr = dma_addr; if (unlikely(dma_mapping_error(dma_dev, dma_addr))) return -EIO; } while (1); } /* Remove buffers put into a tx_queue. None of the buffers must have * an skb attached. */ static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue) { struct ef4_tx_buffer *buffer; /* Work backwards until we hit the original insert pointer value */ while (tx_queue->insert_count != tx_queue->write_count) { --tx_queue->insert_count; buffer = __ef4_tx_queue_get_insert_buffer(tx_queue); ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL); } } /* * Add a socket buffer to a TX queue * * This maps all fragments of a socket buffer for DMA and adds them to * the TX queue. The queue's insert pointer will be incremented by * the number of fragments in the socket buffer. * * If any DMA mapping fails, any mapped fragments will be unmapped, * the queue's insert pointer will be restored to its original value. * * This function is split out from ef4_hard_start_xmit to allow the * loopback test to direct packets via specific TX queues. * * Returns NETDEV_TX_OK. * You must hold netif_tx_lock() to call this function. */ netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) { bool data_mapped = false; unsigned int skb_len; skb_len = skb->len; EF4_WARN_ON_PARANOID(skb_is_gso(skb)); if (skb_len < tx_queue->tx_min_size || (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) { /* Pad short packets or coalesce short fragmented packets. */ if (ef4_enqueue_skb_copy(tx_queue, skb)) goto err; tx_queue->cb_packets++; data_mapped = true; } /* Map for DMA and create descriptors if we haven't done so already. */ if (!data_mapped && (ef4_tx_map_data(tx_queue, skb))) goto err; /* Update BQL */ netdev_tx_sent_queue(tx_queue->core_txq, skb_len); /* Pass off to hardware */ if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) { struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue); /* There could be packets left on the partner queue if those * SKBs had skb->xmit_more set. If we do not push those they * could be left for a long time and cause a netdev watchdog. */ if (txq2->xmit_more_available) ef4_nic_push_buffers(txq2); ef4_nic_push_buffers(tx_queue); } else { tx_queue->xmit_more_available = netdev_xmit_more(); } tx_queue->tx_packets++; ef4_tx_maybe_stop_queue(tx_queue); return NETDEV_TX_OK; err: ef4_enqueue_unwind(tx_queue); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Remove packets from the TX queue * * This removes packets from the TX queue, up to and including the * specified index. */ static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue, unsigned int index, unsigned int *pkts_compl, unsigned int *bytes_compl) { struct ef4_nic *efx = tx_queue->efx; unsigned int stop_index, read_ptr; stop_index = (index + 1) & tx_queue->ptr_mask; read_ptr = tx_queue->read_count & tx_queue->ptr_mask; while (read_ptr != stop_index) { struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; if (!(buffer->flags & EF4_TX_BUF_OPTION) && unlikely(buffer->len == 0)) { netif_err(efx, tx_err, efx->net_dev, "TX queue %d spurious TX completion id %x\n", tx_queue->queue, read_ptr); ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP); return; } ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); ++tx_queue->read_count; read_ptr = tx_queue->read_count & tx_queue->ptr_mask; } } /* Initiate a packet transmission. We use one channel per CPU * (sharing when we have more CPUs than channels). On Falcon, the TX * completion events will be directed back to the CPU that transmitted * the packet, which should be cache-efficient. * * Context: non-blocking. * Note that returning anything other than NETDEV_TX_OK will cause the * OS to free the skb. */ netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); struct ef4_tx_queue *tx_queue; unsigned index, type; EF4_WARN_ON_PARANOID(!netif_device_present(net_dev)); index = skb_get_queue_mapping(skb); type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0; if (index >= efx->n_tx_channels) { index -= efx->n_tx_channels; type |= EF4_TXQ_TYPE_HIGHPRI; } tx_queue = ef4_get_tx_queue(efx, index, type); return ef4_enqueue_skb(tx_queue, skb); } void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; /* Must be inverse of queue lookup in ef4_hard_start_xmit() */ tx_queue->core_txq = netdev_get_tx_queue(efx->net_dev, tx_queue->queue / EF4_TXQ_TYPES + ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? efx->n_tx_channels : 0)); } int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type, void *type_data) { struct ef4_nic *efx = netdev_priv(net_dev); struct tc_mqprio_qopt *mqprio = type_data; struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; unsigned tc, num_tc; int rc; if (type != TC_SETUP_QDISC_MQPRIO) return -EOPNOTSUPP; num_tc = mqprio->num_tc; if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC) return -EINVAL; mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; if (num_tc == net_dev->num_tc) return 0; for (tc = 0; tc < num_tc; tc++) { net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; net_dev->tc_to_txq[tc].count = efx->n_tx_channels; } if (num_tc > net_dev->num_tc) { /* Initialise high-priority queues as necessary */ ef4_for_each_channel(channel, efx) { ef4_for_each_possible_channel_tx_queue(tx_queue, channel) { if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI)) continue; if (!tx_queue->buffer) { rc = ef4_probe_tx_queue(tx_queue); if (rc) return rc; } if (!tx_queue->initialised) ef4_init_tx_queue(tx_queue); ef4_init_tx_queue_core_txq(tx_queue); } } } else { /* Reduce number of classes before number of queues */ net_dev->num_tc = num_tc; } rc = netif_set_real_num_tx_queues(net_dev, max_t(int, num_tc, 1) * efx->n_tx_channels); if (rc) return rc; /* Do not destroy high-priority queues when they become * unused. We would have to flush them first, and it is * fairly difficult to flush a subset of TX queues. Leave * it to ef4_fini_channels(). */ net_dev->num_tc = num_tc; return 0; } void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index) { unsigned fill_level; struct ef4_nic *efx = tx_queue->efx; struct ef4_tx_queue *txq2; unsigned int pkts_compl = 0, bytes_compl = 0; EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask); ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); tx_queue->pkts_compl += pkts_compl; tx_queue->bytes_compl += bytes_compl; if (pkts_compl > 1) ++tx_queue->merge_events; /* See if we need to restart the netif queue. This memory * barrier ensures that we write read_count (inside * ef4_dequeue_buffers()) before reading the queue status. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && likely(efx->port_enabled) && likely(netif_device_present(efx->net_dev))) { txq2 = ef4_tx_queue_partner(tx_queue); fill_level = max(tx_queue->insert_count - tx_queue->read_count, txq2->insert_count - txq2->read_count); if (fill_level <= efx->txq_wake_thresh) netif_tx_wake_queue(tx_queue->core_txq); } /* Check whether the hardware queue is now empty */ if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); if (tx_queue->read_count == tx_queue->old_write_count) { smp_mb(); tx_queue->empty_read_count = tx_queue->read_count | EF4_EMPTY_COUNT_VALID; } } } static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue) { return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER); } int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE); EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); tx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating TX queue %d size %#x mask %#x\n", tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); /* Allocate software ring */ tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), GFP_KERNEL); if (!tx_queue->buffer) return -ENOMEM; tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue), sizeof(tx_queue->cb_page[0]), GFP_KERNEL); if (!tx_queue->cb_page) { rc = -ENOMEM; goto fail1; } /* Allocate hardware ring */ rc = ef4_nic_probe_tx(tx_queue); if (rc) goto fail2; return 0; fail2: kfree(tx_queue->cb_page); tx_queue->cb_page = NULL; fail1: kfree(tx_queue->buffer); tx_queue->buffer = NULL; return rc; } void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; netif_dbg(efx, drv, efx->net_dev, "initialising TX queue %d\n", tx_queue->queue); tx_queue->insert_count = 0; tx_queue->write_count = 0; tx_queue->old_write_count = 0; tx_queue->read_count = 0; tx_queue->old_read_count = 0; tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID; tx_queue->xmit_more_available = false; /* Some older hardware requires Tx writes larger than 32. */ tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0; /* Set up TX descriptor ring */ ef4_nic_init_tx(tx_queue); tx_queue->initialised = true; } void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_tx_buffer *buffer; netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, "shutting down TX queue %d\n", tx_queue->queue); if (!tx_queue->buffer) return; /* Free any buffers left in the ring */ while (tx_queue->read_count != tx_queue->write_count) { unsigned int pkts_compl = 0, bytes_compl = 0; buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); ++tx_queue->read_count; } tx_queue->xmit_more_available = false; netdev_tx_reset_queue(tx_queue->core_txq); } void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue) { int i; if (!tx_queue->buffer) return; netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, "destroying TX queue %d\n", tx_queue->queue); ef4_nic_remove_tx(tx_queue); if (tx_queue->cb_page) { for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++) ef4_nic_free_buffer(tx_queue->efx, &tx_queue->cb_page[i]); kfree(tx_queue->cb_page); tx_queue->cb_page = NULL; } kfree(tx_queue->buffer); tx_queue->buffer = NULL; } |