Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// SPDX-License-Identifier: GPL-2.0
/*
 *    Copyright IBM Corp. 2006
 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
 */

#include <linux/memblock.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/set_memory.h>

static DEFINE_MUTEX(vmem_mutex);

static void __ref *vmem_alloc_pages(unsigned int order)
{
	unsigned long size = PAGE_SIZE << order;

	if (slab_is_available())
		return (void *)__get_free_pages(GFP_KERNEL, order);
	return (void *) memblock_phys_alloc(size, size);
}

static void vmem_free_pages(unsigned long addr, int order)
{
	/* We don't expect boot memory to be removed ever. */
	if (!slab_is_available() ||
	    WARN_ON_ONCE(PageReserved(phys_to_page(addr))))
		return;
	free_pages(addr, order);
}

void *vmem_crst_alloc(unsigned long val)
{
	unsigned long *table;

	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
	if (table)
		crst_table_init(table, val);
	return table;
}

pte_t __ref *vmem_pte_alloc(void)
{
	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
	pte_t *pte;

	if (slab_is_available())
		pte = (pte_t *) page_table_alloc(&init_mm);
	else
		pte = (pte_t *) memblock_phys_alloc(size, size);
	if (!pte)
		return NULL;
	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
	return pte;
}

static void vmem_pte_free(unsigned long *table)
{
	/* We don't expect boot memory to be removed ever. */
	if (!slab_is_available() ||
	    WARN_ON_ONCE(PageReserved(virt_to_page(table))))
		return;
	page_table_free(&init_mm, table);
}

#define PAGE_UNUSED 0xFD

/*
 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges
 * from unused_pmd_start to next PMD_SIZE boundary.
 */
static unsigned long unused_pmd_start;

static void vmemmap_flush_unused_pmd(void)
{
	if (!unused_pmd_start)
		return;
	memset(__va(unused_pmd_start), PAGE_UNUSED,
	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
	unused_pmd_start = 0;
}

static void __vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
{
	/*
	 * As we expect to add in the same granularity as we remove, it's
	 * sufficient to mark only some piece used to block the memmap page from
	 * getting removed (just in case the memmap never gets initialized,
	 * e.g., because the memory block never gets onlined).
	 */
	memset(__va(start), 0, sizeof(struct page));
}

static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
{
	/*
	 * We only optimize if the new used range directly follows the
	 * previously unused range (esp., when populating consecutive sections).
	 */
	if (unused_pmd_start == start) {
		unused_pmd_start = end;
		if (likely(IS_ALIGNED(unused_pmd_start, PMD_SIZE)))
			unused_pmd_start = 0;
		return;
	}
	vmemmap_flush_unused_pmd();
	__vmemmap_use_sub_pmd(start, end);
}

static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
{
	void *page = __va(ALIGN_DOWN(start, PMD_SIZE));

	vmemmap_flush_unused_pmd();

	/* Could be our memmap page is filled with PAGE_UNUSED already ... */
	__vmemmap_use_sub_pmd(start, end);

	/* Mark the unused parts of the new memmap page PAGE_UNUSED. */
	if (!IS_ALIGNED(start, PMD_SIZE))
		memset(page, PAGE_UNUSED, start - __pa(page));
	/*
	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
	 * consecutive sections. Remember for the last added PMD the last
	 * unused range in the populated PMD.
	 */
	if (!IS_ALIGNED(end, PMD_SIZE))
		unused_pmd_start = end;
}

/* Returns true if the PMD is completely unused and can be freed. */
static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end)
{
	void *page = __va(ALIGN_DOWN(start, PMD_SIZE));

	vmemmap_flush_unused_pmd();
	memset(__va(start), PAGE_UNUSED, end - start);
	return !memchr_inv(page, PAGE_UNUSED, PMD_SIZE);
}

/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr,
				  unsigned long end, bool add, bool direct)
{
	unsigned long prot, pages = 0;
	int ret = -ENOMEM;
	pte_t *pte;

	prot = pgprot_val(PAGE_KERNEL);
	if (!MACHINE_HAS_NX)
		prot &= ~_PAGE_NOEXEC;

	pte = pte_offset_kernel(pmd, addr);
	for (; addr < end; addr += PAGE_SIZE, pte++) {
		if (!add) {
			if (pte_none(*pte))
				continue;
			if (!direct)
				vmem_free_pages(pfn_to_phys(pte_pfn(*pte)), 0);
			pte_clear(&init_mm, addr, pte);
		} else if (pte_none(*pte)) {
			if (!direct) {
				void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);

				if (!new_page)
					goto out;
				pte_val(*pte) = __pa(new_page) | prot;
			} else {
				pte_val(*pte) = addr | prot;
			}
		} else {
			continue;
		}
		pages++;
	}
	ret = 0;
out:
	if (direct)
		update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages);
	return ret;
}

static void try_free_pte_table(pmd_t *pmd, unsigned long start)
{
	pte_t *pte;
	int i;

	/* We can safely assume this is fully in 1:1 mapping & vmemmap area */
	pte = pte_offset_kernel(pmd, start);
	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
		if (!pte_none(*pte))
			return;
	}
	vmem_pte_free(__va(pmd_deref(*pmd)));
	pmd_clear(pmd);
}

/* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
static int __ref modify_pmd_table(pud_t *pud, unsigned long addr,
				  unsigned long end, bool add, bool direct)
{
	unsigned long next, prot, pages = 0;
	int ret = -ENOMEM;
	pmd_t *pmd;
	pte_t *pte;

	prot = pgprot_val(SEGMENT_KERNEL);
	if (!MACHINE_HAS_NX)
		prot &= ~_SEGMENT_ENTRY_NOEXEC;

	pmd = pmd_offset(pud, addr);
	for (; addr < end; addr = next, pmd++) {
		next = pmd_addr_end(addr, end);
		if (!add) {
			if (pmd_none(*pmd))
				continue;
			if (pmd_large(*pmd) && !add) {
				if (IS_ALIGNED(addr, PMD_SIZE) &&
				    IS_ALIGNED(next, PMD_SIZE)) {
					if (!direct)
						vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
					pmd_clear(pmd);
					pages++;
				} else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) {
					vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
					pmd_clear(pmd);
				}
				continue;
			}
		} else if (pmd_none(*pmd)) {
			if (IS_ALIGNED(addr, PMD_SIZE) &&
			    IS_ALIGNED(next, PMD_SIZE) &&
			    MACHINE_HAS_EDAT1 && addr && direct &&
			    !debug_pagealloc_enabled()) {
				pmd_val(*pmd) = addr | prot;
				pages++;
				continue;
			} else if (!direct && MACHINE_HAS_EDAT1) {
				void *new_page;

				/*
				 * Use 1MB frames for vmemmap if available. We
				 * always use large frames even if they are only
				 * partially used. Otherwise we would have also
				 * page tables since vmemmap_populate gets
				 * called for each section separately.
				 */
				new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE);
				if (new_page) {
					pmd_val(*pmd) = __pa(new_page) | prot;
					if (!IS_ALIGNED(addr, PMD_SIZE) ||
					    !IS_ALIGNED(next, PMD_SIZE)) {
						vmemmap_use_new_sub_pmd(addr, next);
					}
					continue;
				}
			}
			pte = vmem_pte_alloc();
			if (!pte)
				goto out;
			pmd_populate(&init_mm, pmd, pte);
		} else if (pmd_large(*pmd)) {
			if (!direct)
				vmemmap_use_sub_pmd(addr, next);
			continue;
		}
		ret = modify_pte_table(pmd, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_pte_table(pmd, addr & PMD_MASK);
	}
	ret = 0;
out:
	if (direct)
		update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages);
	return ret;
}

static void try_free_pmd_table(pud_t *pud, unsigned long start)
{
	const unsigned long end = start + PUD_SIZE;
	pmd_t *pmd;
	int i;

	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
	if (end > VMALLOC_START)
		return;
#ifdef CONFIG_KASAN
	if (start < KASAN_SHADOW_END && end > KASAN_SHADOW_START)
		return;
#endif
	pmd = pmd_offset(pud, start);
	for (i = 0; i < PTRS_PER_PMD; i++, pmd++)
		if (!pmd_none(*pmd))
			return;
	vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER);
	pud_clear(pud);
}

static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end,
			    bool add, bool direct)
{
	unsigned long next, prot, pages = 0;
	int ret = -ENOMEM;
	pud_t *pud;
	pmd_t *pmd;

	prot = pgprot_val(REGION3_KERNEL);
	if (!MACHINE_HAS_NX)
		prot &= ~_REGION_ENTRY_NOEXEC;
	pud = pud_offset(p4d, addr);
	for (; addr < end; addr = next, pud++) {
		next = pud_addr_end(addr, end);
		if (!add) {
			if (pud_none(*pud))
				continue;
			if (pud_large(*pud)) {
				if (IS_ALIGNED(addr, PUD_SIZE) &&
				    IS_ALIGNED(next, PUD_SIZE)) {
					pud_clear(pud);
					pages++;
				}
				continue;
			}
		} else if (pud_none(*pud)) {
			if (IS_ALIGNED(addr, PUD_SIZE) &&
			    IS_ALIGNED(next, PUD_SIZE) &&
			    MACHINE_HAS_EDAT2 && addr && direct &&
			    !debug_pagealloc_enabled()) {
				pud_val(*pud) = addr | prot;
				pages++;
				continue;
			}
			pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
			if (!pmd)
				goto out;
			pud_populate(&init_mm, pud, pmd);
		} else if (pud_large(*pud)) {
			continue;
		}
		ret = modify_pmd_table(pud, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_pmd_table(pud, addr & PUD_MASK);
	}
	ret = 0;
out:
	if (direct)
		update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages);
	return ret;
}

static void try_free_pud_table(p4d_t *p4d, unsigned long start)
{
	const unsigned long end = start + P4D_SIZE;
	pud_t *pud;
	int i;

	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
	if (end > VMALLOC_START)
		return;
#ifdef CONFIG_KASAN
	if (start < KASAN_SHADOW_END && end > KASAN_SHADOW_START)
		return;
#endif

	pud = pud_offset(p4d, start);
	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
		if (!pud_none(*pud))
			return;
	}
	vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER);
	p4d_clear(p4d);
}

static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end,
			    bool add, bool direct)
{
	unsigned long next;
	int ret = -ENOMEM;
	p4d_t *p4d;
	pud_t *pud;

	p4d = p4d_offset(pgd, addr);
	for (; addr < end; addr = next, p4d++) {
		next = p4d_addr_end(addr, end);
		if (!add) {
			if (p4d_none(*p4d))
				continue;
		} else if (p4d_none(*p4d)) {
			pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
			if (!pud)
				goto out;
			p4d_populate(&init_mm, p4d, pud);
		}
		ret = modify_pud_table(p4d, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_pud_table(p4d, addr & P4D_MASK);
	}
	ret = 0;
out:
	return ret;
}

static void try_free_p4d_table(pgd_t *pgd, unsigned long start)
{
	const unsigned long end = start + PGDIR_SIZE;
	p4d_t *p4d;
	int i;

	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
	if (end > VMALLOC_START)
		return;
#ifdef CONFIG_KASAN
	if (start < KASAN_SHADOW_END && end > KASAN_SHADOW_START)
		return;
#endif

	p4d = p4d_offset(pgd, start);
	for (i = 0; i < PTRS_PER_P4D; i++, p4d++) {
		if (!p4d_none(*p4d))
			return;
	}
	vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER);
	pgd_clear(pgd);
}

static int modify_pagetable(unsigned long start, unsigned long end, bool add,
			    bool direct)
{
	unsigned long addr, next;
	int ret = -ENOMEM;
	pgd_t *pgd;
	p4d_t *p4d;

	if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end)))
		return -EINVAL;
	for (addr = start; addr < end; addr = next) {
		next = pgd_addr_end(addr, end);
		pgd = pgd_offset_k(addr);

		if (!add) {
			if (pgd_none(*pgd))
				continue;
		} else if (pgd_none(*pgd)) {
			p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
			if (!p4d)
				goto out;
			pgd_populate(&init_mm, pgd, p4d);
		}
		ret = modify_p4d_table(pgd, addr, next, add, direct);
		if (ret)
			goto out;
		if (!add)
			try_free_p4d_table(pgd, addr & PGDIR_MASK);
	}
	ret = 0;
out:
	if (!add)
		flush_tlb_kernel_range(start, end);
	return ret;
}

static int add_pagetable(unsigned long start, unsigned long end, bool direct)
{
	return modify_pagetable(start, end, true, direct);
}

static int remove_pagetable(unsigned long start, unsigned long end, bool direct)
{
	return modify_pagetable(start, end, false, direct);
}

/*
 * Add a physical memory range to the 1:1 mapping.
 */
static int vmem_add_range(unsigned long start, unsigned long size)
{
	return add_pagetable(start, start + size, true);
}

/*
 * Remove a physical memory range from the 1:1 mapping.
 */
static void vmem_remove_range(unsigned long start, unsigned long size)
{
	remove_pagetable(start, start + size, true);
}

/*
 * Add a backed mem_map array to the virtual mem_map array.
 */
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
			       struct vmem_altmap *altmap)
{
	int ret;

	mutex_lock(&vmem_mutex);
	/* We don't care about the node, just use NUMA_NO_NODE on allocations */
	ret = add_pagetable(start, end, false);
	if (ret)
		remove_pagetable(start, end, false);
	mutex_unlock(&vmem_mutex);
	return ret;
}

void vmemmap_free(unsigned long start, unsigned long end,
		  struct vmem_altmap *altmap)
{
	mutex_lock(&vmem_mutex);
	remove_pagetable(start, end, false);
	mutex_unlock(&vmem_mutex);
}

void vmem_remove_mapping(unsigned long start, unsigned long size)
{
	mutex_lock(&vmem_mutex);
	vmem_remove_range(start, size);
	mutex_unlock(&vmem_mutex);
}

int vmem_add_mapping(unsigned long start, unsigned long size)
{
	int ret;

	if (start + size > VMEM_MAX_PHYS ||
	    start + size < start)
		return -ERANGE;

	mutex_lock(&vmem_mutex);
	ret = vmem_add_range(start, size);
	if (ret)
		vmem_remove_range(start, size);
	mutex_unlock(&vmem_mutex);
	return ret;
}

/*
 * map whole physical memory to virtual memory (identity mapping)
 * we reserve enough space in the vmalloc area for vmemmap to hotplug
 * additional memory segments.
 */
void __init vmem_map_init(void)
{
	phys_addr_t base, end;
	u64 i;

	for_each_mem_range(i, &base, &end)
		vmem_add_range(base, end - base);
	__set_memory((unsigned long)_stext,
		     (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
		     SET_MEMORY_RO | SET_MEMORY_X);
	__set_memory((unsigned long)_etext,
		     (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
		     SET_MEMORY_RO);
	__set_memory((unsigned long)_sinittext,
		     (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
		     SET_MEMORY_RO | SET_MEMORY_X);
	__set_memory(__stext_dma, (__etext_dma - __stext_dma) >> PAGE_SHIFT,
		     SET_MEMORY_RO | SET_MEMORY_X);

	/* we need lowcore executable for our LPSWE instructions */
	set_memory_x(0, 1);

	pr_info("Write protected kernel read-only data: %luk\n",
		(unsigned long)(__end_rodata - _stext) >> 10);
}