Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2008 Oracle. All rights reserved. */ #ifndef BTRFS_LOCKING_H #define BTRFS_LOCKING_H #include <linux/atomic.h> #include <linux/wait.h> #include <linux/percpu_counter.h> #include "extent_io.h" #define BTRFS_WRITE_LOCK 1 #define BTRFS_READ_LOCK 2 #define BTRFS_WRITE_LOCK_BLOCKING 3 #define BTRFS_READ_LOCK_BLOCKING 4 /* * We are limited in number of subclasses by MAX_LOCKDEP_SUBCLASSES, which at * the time of this patch is 8, which is how many we use. Keep this in mind if * you decide you want to add another subclass. */ enum btrfs_lock_nesting { BTRFS_NESTING_NORMAL, /* * When we COW a block we are holding the lock on the original block, * and since our lockdep maps are rootid+level, this confuses lockdep * when we lock the newly allocated COW'd block. Handle this by having * a subclass for COW'ed blocks so that lockdep doesn't complain. */ BTRFS_NESTING_COW, /* * Oftentimes we need to lock adjacent nodes on the same level while * still holding the lock on the original node we searched to, such as * for searching forward or for split/balance. * * Because of this we need to indicate to lockdep that this is * acceptable by having a different subclass for each of these * operations. */ BTRFS_NESTING_LEFT, BTRFS_NESTING_RIGHT, /* * When splitting we will be holding a lock on the left/right node when * we need to cow that node, thus we need a new set of subclasses for * these two operations. */ BTRFS_NESTING_LEFT_COW, BTRFS_NESTING_RIGHT_COW, /* * When splitting we may push nodes to the left or right, but still use * the subsequent nodes in our path, keeping our locks on those adjacent * blocks. Thus when we go to allocate a new split block we've already * used up all of our available subclasses, so this subclass exists to * handle this case where we need to allocate a new split block. */ BTRFS_NESTING_SPLIT, /* * When promoting a new block to a root we need to have a special * subclass so we don't confuse lockdep, as it will appear that we are * locking a higher level node before a lower level one. Copying also * has this problem as it appears we're locking the same block again * when we make a snapshot of an existing root. */ BTRFS_NESTING_NEW_ROOT, /* * We are limited to MAX_LOCKDEP_SUBLCLASSES number of subclasses, so * add this in here and add a static_assert to keep us from going over * the limit. As of this writing we're limited to 8, and we're * definitely using 8, hence this check to keep us from messing up in * the future. */ BTRFS_NESTING_MAX, }; static_assert(BTRFS_NESTING_MAX <= MAX_LOCKDEP_SUBCLASSES, "too many lock subclasses defined"); struct btrfs_path; void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest); void btrfs_tree_lock(struct extent_buffer *eb); void btrfs_tree_unlock(struct extent_buffer *eb); void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest, bool recurse); void btrfs_tree_read_lock(struct extent_buffer *eb); void btrfs_tree_read_unlock(struct extent_buffer *eb); void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb); void btrfs_set_lock_blocking_read(struct extent_buffer *eb); void btrfs_set_lock_blocking_write(struct extent_buffer *eb); int btrfs_try_tree_read_lock(struct extent_buffer *eb); int btrfs_try_tree_write_lock(struct extent_buffer *eb); int btrfs_tree_read_lock_atomic(struct extent_buffer *eb); struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); struct extent_buffer *__btrfs_read_lock_root_node(struct btrfs_root *root, bool recurse); static inline struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) { return __btrfs_read_lock_root_node(root, false); } #ifdef CONFIG_BTRFS_DEBUG static inline void btrfs_assert_tree_locked(struct extent_buffer *eb) { BUG_ON(!eb->write_locks); } #else static inline void btrfs_assert_tree_locked(struct extent_buffer *eb) { } #endif void btrfs_set_path_blocking(struct btrfs_path *p); void btrfs_unlock_up_safe(struct btrfs_path *path, int level); static inline void btrfs_tree_unlock_rw(struct extent_buffer *eb, int rw) { if (rw == BTRFS_WRITE_LOCK || rw == BTRFS_WRITE_LOCK_BLOCKING) btrfs_tree_unlock(eb); else if (rw == BTRFS_READ_LOCK_BLOCKING) btrfs_tree_read_unlock_blocking(eb); else if (rw == BTRFS_READ_LOCK) btrfs_tree_read_unlock(eb); else BUG(); } struct btrfs_drew_lock { atomic_t readers; struct percpu_counter writers; wait_queue_head_t pending_writers; wait_queue_head_t pending_readers; }; int btrfs_drew_lock_init(struct btrfs_drew_lock *lock); void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock); void btrfs_drew_write_lock(struct btrfs_drew_lock *lock); bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock); void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock); void btrfs_drew_read_lock(struct btrfs_drew_lock *lock); void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock); #endif |