Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 | // SPDX-License-Identifier: GPL-2.0 /* * Functions related to segment and merge handling */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/scatterlist.h> #include <linux/blk-cgroup.h> #include <trace/events/block.h> #include "blk.h" #include "blk-rq-qos.h" static inline bool bio_will_gap(struct request_queue *q, struct request *prev_rq, struct bio *prev, struct bio *next) { struct bio_vec pb, nb; if (!bio_has_data(prev) || !queue_virt_boundary(q)) return false; /* * Don't merge if the 1st bio starts with non-zero offset, otherwise it * is quite difficult to respect the sg gap limit. We work hard to * merge a huge number of small single bios in case of mkfs. */ if (prev_rq) bio_get_first_bvec(prev_rq->bio, &pb); else bio_get_first_bvec(prev, &pb); if (pb.bv_offset & queue_virt_boundary(q)) return true; /* * We don't need to worry about the situation that the merged segment * ends in unaligned virt boundary: * * - if 'pb' ends aligned, the merged segment ends aligned * - if 'pb' ends unaligned, the next bio must include * one single bvec of 'nb', otherwise the 'nb' can't * merge with 'pb' */ bio_get_last_bvec(prev, &pb); bio_get_first_bvec(next, &nb); if (biovec_phys_mergeable(q, &pb, &nb)) return false; return __bvec_gap_to_prev(q, &pb, nb.bv_offset); } static inline bool req_gap_back_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, req, req->biotail, bio); } static inline bool req_gap_front_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, NULL, bio, req->bio); } static struct bio *blk_bio_discard_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { unsigned int max_discard_sectors, granularity; int alignment; sector_t tmp; unsigned split_sectors; *nsegs = 1; /* Zero-sector (unknown) and one-sector granularities are the same. */ granularity = max(q->limits.discard_granularity >> 9, 1U); max_discard_sectors = min(q->limits.max_discard_sectors, bio_allowed_max_sectors(q)); max_discard_sectors -= max_discard_sectors % granularity; if (unlikely(!max_discard_sectors)) { /* XXX: warn */ return NULL; } if (bio_sectors(bio) <= max_discard_sectors) return NULL; split_sectors = max_discard_sectors; /* * If the next starting sector would be misaligned, stop the discard at * the previous aligned sector. */ alignment = (q->limits.discard_alignment >> 9) % granularity; tmp = bio->bi_iter.bi_sector + split_sectors - alignment; tmp = sector_div(tmp, granularity); if (split_sectors > tmp) split_sectors -= tmp; return bio_split(bio, split_sectors, GFP_NOIO, bs); } static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { *nsegs = 0; if (!q->limits.max_write_zeroes_sectors) return NULL; if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) return NULL; return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); } static struct bio *blk_bio_write_same_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *nsegs) { *nsegs = 1; if (!q->limits.max_write_same_sectors) return NULL; if (bio_sectors(bio) <= q->limits.max_write_same_sectors) return NULL; return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); } /* * Return the maximum number of sectors from the start of a bio that may be * submitted as a single request to a block device. If enough sectors remain, * align the end to the physical block size. Otherwise align the end to the * logical block size. This approach minimizes the number of non-aligned * requests that are submitted to a block device if the start of a bio is not * aligned to a physical block boundary. */ static inline unsigned get_max_io_size(struct request_queue *q, struct bio *bio) { unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); unsigned max_sectors = sectors; unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); max_sectors += start_offset; max_sectors &= ~(pbs - 1); if (max_sectors > start_offset) return max_sectors - start_offset; return sectors & ~(lbs - 1); } static inline unsigned get_max_segment_size(const struct request_queue *q, struct page *start_page, unsigned long offset) { unsigned long mask = queue_segment_boundary(q); offset = mask & (page_to_phys(start_page) + offset); /* * overflow may be triggered in case of zero page physical address * on 32bit arch, use queue's max segment size when that happens. */ return min_not_zero(mask - offset + 1, (unsigned long)queue_max_segment_size(q)); } /** * bvec_split_segs - verify whether or not a bvec should be split in the middle * @q: [in] request queue associated with the bio associated with @bv * @bv: [in] bvec to examine * @nsegs: [in,out] Number of segments in the bio being built. Incremented * by the number of segments from @bv that may be appended to that * bio without exceeding @max_segs * @sectors: [in,out] Number of sectors in the bio being built. Incremented * by the number of sectors from @bv that may be appended to that * bio without exceeding @max_sectors * @max_segs: [in] upper bound for *@nsegs * @max_sectors: [in] upper bound for *@sectors * * When splitting a bio, it can happen that a bvec is encountered that is too * big to fit in a single segment and hence that it has to be split in the * middle. This function verifies whether or not that should happen. The value * %true is returned if and only if appending the entire @bv to a bio with * *@nsegs segments and *@sectors sectors would make that bio unacceptable for * the block driver. */ static bool bvec_split_segs(const struct request_queue *q, const struct bio_vec *bv, unsigned *nsegs, unsigned *sectors, unsigned max_segs, unsigned max_sectors) { unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; unsigned len = min(bv->bv_len, max_len); unsigned total_len = 0; unsigned seg_size = 0; while (len && *nsegs < max_segs) { seg_size = get_max_segment_size(q, bv->bv_page, bv->bv_offset + total_len); seg_size = min(seg_size, len); (*nsegs)++; total_len += seg_size; len -= seg_size; if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) break; } *sectors += total_len >> 9; /* tell the caller to split the bvec if it is too big to fit */ return len > 0 || bv->bv_len > max_len; } /** * blk_bio_segment_split - split a bio in two bios * @q: [in] request queue pointer * @bio: [in] bio to be split * @bs: [in] bio set to allocate the clone from * @segs: [out] number of segments in the bio with the first half of the sectors * * Clone @bio, update the bi_iter of the clone to represent the first sectors * of @bio and update @bio->bi_iter to represent the remaining sectors. The * following is guaranteed for the cloned bio: * - That it has at most get_max_io_size(@q, @bio) sectors. * - That it has at most queue_max_segments(@q) segments. * * Except for discard requests the cloned bio will point at the bi_io_vec of * the original bio. It is the responsibility of the caller to ensure that the * original bio is not freed before the cloned bio. The caller is also * responsible for ensuring that @bs is only destroyed after processing of the * split bio has finished. */ static struct bio *blk_bio_segment_split(struct request_queue *q, struct bio *bio, struct bio_set *bs, unsigned *segs) { struct bio_vec bv, bvprv, *bvprvp = NULL; struct bvec_iter iter; unsigned nsegs = 0, sectors = 0; const unsigned max_sectors = get_max_io_size(q, bio); const unsigned max_segs = queue_max_segments(q); bio_for_each_bvec(bv, bio, iter) { /* * If the queue doesn't support SG gaps and adding this * offset would create a gap, disallow it. */ if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) goto split; if (nsegs < max_segs && sectors + (bv.bv_len >> 9) <= max_sectors && bv.bv_offset + bv.bv_len <= PAGE_SIZE) { nsegs++; sectors += bv.bv_len >> 9; } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, max_sectors)) { goto split; } bvprv = bv; bvprvp = &bvprv; } *segs = nsegs; return NULL; split: *segs = nsegs; return bio_split(bio, sectors, GFP_NOIO, bs); } /** * __blk_queue_split - split a bio and submit the second half * @bio: [in, out] bio to be split * @nr_segs: [out] number of segments in the first bio * * Split a bio into two bios, chain the two bios, submit the second half and * store a pointer to the first half in *@bio. If the second bio is still too * big it will be split by a recursive call to this function. Since this * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is * the responsibility of the caller to ensure that * @bio->bi_disk->queue->bio_split is only released after processing of the * split bio has finished. */ void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) { struct request_queue *q = (*bio)->bi_disk->queue; struct bio *split = NULL; switch (bio_op(*bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); break; case REQ_OP_WRITE_ZEROES: split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, nr_segs); break; case REQ_OP_WRITE_SAME: split = blk_bio_write_same_split(q, *bio, &q->bio_split, nr_segs); break; default: /* * All drivers must accept single-segments bios that are <= * PAGE_SIZE. This is a quick and dirty check that relies on * the fact that bi_io_vec[0] is always valid if a bio has data. * The check might lead to occasional false negatives when bios * are cloned, but compared to the performance impact of cloned * bios themselves the loop below doesn't matter anyway. */ if (!q->limits.chunk_sectors && (*bio)->bi_vcnt == 1 && ((*bio)->bi_io_vec[0].bv_len + (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { *nr_segs = 1; break; } split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); break; } if (split) { /* there isn't chance to merge the splitted bio */ split->bi_opf |= REQ_NOMERGE; bio_chain(split, *bio); trace_block_split(q, split, (*bio)->bi_iter.bi_sector); submit_bio_noacct(*bio); *bio = split; blk_throtl_charge_bio_split(*bio); } } /** * blk_queue_split - split a bio and submit the second half * @bio: [in, out] bio to be split * * Split a bio into two bios, chains the two bios, submit the second half and * store a pointer to the first half in *@bio. Since this function may allocate * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of * the caller to ensure that @bio->bi_disk->queue->bio_split is only released * after processing of the split bio has finished. */ void blk_queue_split(struct bio **bio) { unsigned int nr_segs; __blk_queue_split(bio, &nr_segs); } EXPORT_SYMBOL(blk_queue_split); unsigned int blk_recalc_rq_segments(struct request *rq) { unsigned int nr_phys_segs = 0; unsigned int nr_sectors = 0; struct req_iterator iter; struct bio_vec bv; if (!rq->bio) return 0; switch (bio_op(rq->bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: if (queue_max_discard_segments(rq->q) > 1) { struct bio *bio = rq->bio; for_each_bio(bio) nr_phys_segs++; return nr_phys_segs; } return 1; case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; } rq_for_each_bvec(bv, rq, iter) bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, UINT_MAX, UINT_MAX); return nr_phys_segs; } static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, struct scatterlist *sglist) { if (!*sg) return sglist; /* * If the driver previously mapped a shorter list, we could see a * termination bit prematurely unless it fully inits the sg table * on each mapping. We KNOW that there must be more entries here * or the driver would be buggy, so force clear the termination bit * to avoid doing a full sg_init_table() in drivers for each command. */ sg_unmark_end(*sg); return sg_next(*sg); } static unsigned blk_bvec_map_sg(struct request_queue *q, struct bio_vec *bvec, struct scatterlist *sglist, struct scatterlist **sg) { unsigned nbytes = bvec->bv_len; unsigned nsegs = 0, total = 0; while (nbytes > 0) { unsigned offset = bvec->bv_offset + total; unsigned len = min(get_max_segment_size(q, bvec->bv_page, offset), nbytes); struct page *page = bvec->bv_page; /* * Unfortunately a fair number of drivers barf on scatterlists * that have an offset larger than PAGE_SIZE, despite other * subsystems dealing with that invariant just fine. For now * stick to the legacy format where we never present those from * the block layer, but the code below should be removed once * these offenders (mostly MMC/SD drivers) are fixed. */ page += (offset >> PAGE_SHIFT); offset &= ~PAGE_MASK; *sg = blk_next_sg(sg, sglist); sg_set_page(*sg, page, len, offset); total += len; nbytes -= len; nsegs++; } return nsegs; } static inline int __blk_bvec_map_sg(struct bio_vec bv, struct scatterlist *sglist, struct scatterlist **sg) { *sg = blk_next_sg(sg, sglist); sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); return 1; } /* only try to merge bvecs into one sg if they are from two bios */ static inline bool __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, struct bio_vec *bvprv, struct scatterlist **sg) { int nbytes = bvec->bv_len; if (!*sg) return false; if ((*sg)->length + nbytes > queue_max_segment_size(q)) return false; if (!biovec_phys_mergeable(q, bvprv, bvec)) return false; (*sg)->length += nbytes; return true; } static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, struct scatterlist *sglist, struct scatterlist **sg) { struct bio_vec bvec, bvprv = { NULL }; struct bvec_iter iter; int nsegs = 0; bool new_bio = false; for_each_bio(bio) { bio_for_each_bvec(bvec, bio, iter) { /* * Only try to merge bvecs from two bios given we * have done bio internal merge when adding pages * to bio */ if (new_bio && __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) goto next_bvec; if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) nsegs += __blk_bvec_map_sg(bvec, sglist, sg); else nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); next_bvec: new_bio = false; } if (likely(bio->bi_iter.bi_size)) { bvprv = bvec; new_bio = true; } } return nsegs; } /* * map a request to scatterlist, return number of sg entries setup. Caller * must make sure sg can hold rq->nr_phys_segments entries */ int __blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg) { int nsegs = 0; if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); else if (rq->bio) nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); if (*last_sg) sg_mark_end(*last_sg); /* * Something must have been wrong if the figured number of * segment is bigger than number of req's physical segments */ WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); return nsegs; } EXPORT_SYMBOL(__blk_rq_map_sg); static inline unsigned int blk_rq_get_max_segments(struct request *rq) { if (req_op(rq) == REQ_OP_DISCARD) return queue_max_discard_segments(rq->q); return queue_max_segments(rq->q); } static inline int ll_new_hw_segment(struct request *req, struct bio *bio, unsigned int nr_phys_segs) { if (!blk_cgroup_mergeable(req, bio)) goto no_merge; if (blk_integrity_merge_bio(req->q, req, bio) == false) goto no_merge; /* discard request merge won't add new segment */ if (req_op(req) == REQ_OP_DISCARD) return 1; if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) goto no_merge; /* * This will form the start of a new hw segment. Bump both * counters. */ req->nr_phys_segments += nr_phys_segs; return 1; no_merge: req_set_nomerge(req->q, req); return 0; } int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_back_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_back_merge(req, bio)) return 0; if (!bio_crypt_ctx_back_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_front_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_front_merge(req, bio)) return 0; if (!bio_crypt_ctx_front_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, struct request *next) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(next->bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); return true; no_merge: req_set_nomerge(q, req); return false; } static int ll_merge_requests_fn(struct request_queue *q, struct request *req, struct request *next) { int total_phys_segments; if (req_gap_back_merge(req, next->bio)) return 0; /* * Will it become too large? */ if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) return 0; total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; if (total_phys_segments > blk_rq_get_max_segments(req)) return 0; if (!blk_cgroup_mergeable(req, next->bio)) return 0; if (blk_integrity_merge_rq(q, req, next) == false) return 0; if (!bio_crypt_ctx_merge_rq(req, next)) return 0; /* Merge is OK... */ req->nr_phys_segments = total_phys_segments; return 1; } /** * blk_rq_set_mixed_merge - mark a request as mixed merge * @rq: request to mark as mixed merge * * Description: * @rq is about to be mixed merged. Make sure the attributes * which can be mixed are set in each bio and mark @rq as mixed * merged. */ void blk_rq_set_mixed_merge(struct request *rq) { unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; struct bio *bio; if (rq->rq_flags & RQF_MIXED_MERGE) return; /* * @rq will no longer represent mixable attributes for all the * contained bios. It will just track those of the first one. * Distributes the attributs to each bio. */ for (bio = rq->bio; bio; bio = bio->bi_next) { WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && (bio->bi_opf & REQ_FAILFAST_MASK) != ff); bio->bi_opf |= ff; } rq->rq_flags |= RQF_MIXED_MERGE; } static void blk_account_io_merge_request(struct request *req) { if (blk_do_io_stat(req)) { part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_unlock(); hd_struct_put(req->part); } } static enum elv_merge blk_try_req_merge(struct request *req, struct request *next) { if (blk_discard_mergable(req)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) return ELEVATOR_BACK_MERGE; return ELEVATOR_NO_MERGE; } /* * For non-mq, this has to be called with the request spinlock acquired. * For mq with scheduling, the appropriate queue wide lock should be held. */ static struct request *attempt_merge(struct request_queue *q, struct request *req, struct request *next) { if (!rq_mergeable(req) || !rq_mergeable(next)) return NULL; if (req_op(req) != req_op(next)) return NULL; if (rq_data_dir(req) != rq_data_dir(next) || req->rq_disk != next->rq_disk) return NULL; if (req_op(req) == REQ_OP_WRITE_SAME && !blk_write_same_mergeable(req->bio, next->bio)) return NULL; /* * Don't allow merge of different write hints, or for a hint with * non-hint IO. */ if (req->write_hint != next->write_hint) return NULL; if (req->ioprio != next->ioprio) return NULL; /* * If we are allowed to merge, then append bio list * from next to rq and release next. merge_requests_fn * will have updated segment counts, update sector * counts here. Handle DISCARDs separately, as they * have separate settings. */ switch (blk_try_req_merge(req, next)) { case ELEVATOR_DISCARD_MERGE: if (!req_attempt_discard_merge(q, req, next)) return NULL; break; case ELEVATOR_BACK_MERGE: if (!ll_merge_requests_fn(q, req, next)) return NULL; break; default: return NULL; } /* * If failfast settings disagree or any of the two is already * a mixed merge, mark both as mixed before proceeding. This * makes sure that all involved bios have mixable attributes * set properly. */ if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || (req->cmd_flags & REQ_FAILFAST_MASK) != (next->cmd_flags & REQ_FAILFAST_MASK)) { blk_rq_set_mixed_merge(req); blk_rq_set_mixed_merge(next); } /* * At this point we have either done a back merge or front merge. We * need the smaller start_time_ns of the merged requests to be the * current request for accounting purposes. */ if (next->start_time_ns < req->start_time_ns) req->start_time_ns = next->start_time_ns; req->biotail->bi_next = next->bio; req->biotail = next->biotail; req->__data_len += blk_rq_bytes(next); if (!blk_discard_mergable(req)) elv_merge_requests(q, req, next); blk_crypto_rq_put_keyslot(next); /* * 'next' is going away, so update stats accordingly */ blk_account_io_merge_request(next); trace_block_rq_merge(next); /* * ownership of bio passed from next to req, return 'next' for * the caller to free */ next->bio = NULL; return next; } static struct request *attempt_back_merge(struct request_queue *q, struct request *rq) { struct request *next = elv_latter_request(q, rq); if (next) return attempt_merge(q, rq, next); return NULL; } static struct request *attempt_front_merge(struct request_queue *q, struct request *rq) { struct request *prev = elv_former_request(q, rq); if (prev) return attempt_merge(q, prev, rq); return NULL; } int blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next) { struct request *free; free = attempt_merge(q, rq, next); if (free) { blk_put_request(free); return 1; } return 0; } bool blk_rq_merge_ok(struct request *rq, struct bio *bio) { if (!rq_mergeable(rq) || !bio_mergeable(bio)) return false; if (req_op(rq) != bio_op(bio)) return false; /* different data direction or already started, don't merge */ if (bio_data_dir(bio) != rq_data_dir(rq)) return false; /* must be same device */ if (rq->rq_disk != bio->bi_disk) return false; /* don't merge across cgroup boundaries */ if (!blk_cgroup_mergeable(rq, bio)) return false; /* only merge integrity protected bio into ditto rq */ if (blk_integrity_merge_bio(rq->q, rq, bio) == false) return false; /* Only merge if the crypt contexts are compatible */ if (!bio_crypt_rq_ctx_compatible(rq, bio)) return false; /* must be using the same buffer */ if (req_op(rq) == REQ_OP_WRITE_SAME && !blk_write_same_mergeable(rq->bio, bio)) return false; /* * Don't allow merge of different write hints, or for a hint with * non-hint IO. */ if (rq->write_hint != bio->bi_write_hint) return false; if (rq->ioprio != bio_prio(bio)) return false; return true; } enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) { if (blk_discard_mergable(rq)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) return ELEVATOR_BACK_MERGE; else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) return ELEVATOR_FRONT_MERGE; return ELEVATOR_NO_MERGE; } static void blk_account_io_merge_bio(struct request *req) { if (!blk_do_io_stat(req)) return; part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_unlock(); } enum bio_merge_status { BIO_MERGE_OK, BIO_MERGE_NONE, BIO_MERGE_FAILED, }; static enum bio_merge_status bio_attempt_back_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const int ff = bio->bi_opf & REQ_FAILFAST_MASK; if (!ll_back_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_backmerge(req->q, req, bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; bio_crypt_free_ctx(bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_front_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const int ff = bio->bi_opf & REQ_FAILFAST_MASK; if (!ll_front_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_frontmerge(req->q, req, bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); bio->bi_next = req->bio; req->bio = bio; req->__sector = bio->bi_iter.bi_sector; req->__data_len += bio->bi_iter.bi_size; bio_crypt_do_front_merge(req, bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, struct request *req, struct bio *bio) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; rq_qos_merge(q, req, bio); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; req->nr_phys_segments = segments + 1; blk_account_io_merge_bio(req); return BIO_MERGE_OK; no_merge: req_set_nomerge(q, req); return BIO_MERGE_FAILED; } static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, struct request *rq, struct bio *bio, unsigned int nr_segs, bool sched_allow_merge) { if (!blk_rq_merge_ok(rq, bio)) return BIO_MERGE_NONE; switch (blk_try_merge(rq, bio)) { case ELEVATOR_BACK_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_back_merge(rq, bio, nr_segs); break; case ELEVATOR_FRONT_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_front_merge(rq, bio, nr_segs); break; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio); default: return BIO_MERGE_NONE; } return BIO_MERGE_FAILED; } /** * blk_attempt_plug_merge - try to merge with %current's plugged list * @q: request_queue new bio is being queued at * @bio: new bio being queued * @nr_segs: number of segments in @bio * @same_queue_rq: pointer to &struct request that gets filled in when * another request associated with @q is found on the plug list * (optional, may be %NULL) * * Determine whether @bio being queued on @q can be merged with a request * on %current's plugged list. Returns %true if merge was successful, * otherwise %false. * * Plugging coalesces IOs from the same issuer for the same purpose without * going through @q->queue_lock. As such it's more of an issuing mechanism * than scheduling, and the request, while may have elvpriv data, is not * added on the elevator at this point. In addition, we don't have * reliable access to the elevator outside queue lock. Only check basic * merging parameters without querying the elevator. * * Caller must ensure !blk_queue_nomerges(q) beforehand. */ bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **same_queue_rq) { struct blk_plug *plug; struct request *rq; struct list_head *plug_list; plug = blk_mq_plug(q, bio); if (!plug) return false; plug_list = &plug->mq_list; list_for_each_entry_reverse(rq, plug_list, queuelist) { if (rq->q == q && same_queue_rq) { /* * Only blk-mq multiple hardware queues case checks the * rq in the same queue, there should be only one such * rq in a queue **/ *same_queue_rq = rq; } if (rq->q != q) continue; if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == BIO_MERGE_OK) return true; } return false; } /* * Iterate list of requests and see if we can merge this bio with any * of them. */ bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs) { struct request *rq; int checked = 8; list_for_each_entry_reverse(rq, list, queuelist) { if (!checked--) break; switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { case BIO_MERGE_NONE: continue; case BIO_MERGE_OK: return true; case BIO_MERGE_FAILED: return false; } } return false; } EXPORT_SYMBOL_GPL(blk_bio_list_merge); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request) { struct request *rq; switch (elv_merge(q, &rq, bio)) { case ELEVATOR_BACK_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_back_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); return true; case ELEVATOR_FRONT_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_front_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); return true; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; default: return false; } } EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); |