Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// SPDX-License-Identifier: GPL-2.0-only
/*
 * rfd_ftl.c -- resident flash disk (flash translation layer)
 *
 * Copyright © 2005  Sean Young <sean@mess.org>
 *
 * This type of flash translation layer (FTL) is used by the Embedded BIOS
 * by General Software. It is known as the Resident Flash Disk (RFD), see:
 *
 *	http://www.gensw.com/pages/prod/bios/rfd.htm
 *
 * based on ftl.c
 */

#include <linux/hdreg.h>
#include <linux/init.h>
#include <linux/mtd/blktrans.h>
#include <linux/mtd/mtd.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/module.h>

#include <asm/types.h>

static int block_size = 0;
module_param(block_size, int, 0);
MODULE_PARM_DESC(block_size, "Block size to use by RFD, defaults to erase unit size");

#define PREFIX "rfd_ftl: "

/* This major has been assigned by device@lanana.org */
#ifndef RFD_FTL_MAJOR
#define RFD_FTL_MAJOR		256
#endif

/* Maximum number of partitions in an FTL region */
#define PART_BITS		4

/* An erase unit should start with this value */
#define RFD_MAGIC		0x9193

/* the second value is 0xffff or 0xffc8; function unknown */

/* the third value is always 0xffff, ignored */

/* next is an array of mapping for each corresponding sector */
#define HEADER_MAP_OFFSET	3
#define SECTOR_DELETED		0x0000
#define SECTOR_ZERO		0xfffe
#define SECTOR_FREE		0xffff

#define SECTOR_SIZE		512

#define SECTORS_PER_TRACK	63

struct block {
	enum {
		BLOCK_OK,
		BLOCK_ERASING,
		BLOCK_ERASED,
		BLOCK_UNUSED,
		BLOCK_FAILED
	} state;
	int free_sectors;
	int used_sectors;
	int erases;
	u_long offset;
};

struct partition {
	struct mtd_blktrans_dev mbd;

	u_int block_size;		/* size of erase unit */
	u_int total_blocks;		/* number of erase units */
	u_int header_sectors_per_block;	/* header sectors in erase unit */
	u_int data_sectors_per_block;	/* data sectors in erase unit */
	u_int sector_count;		/* sectors in translated disk */
	u_int header_size;		/* bytes in header sector */
	int reserved_block;		/* block next up for reclaim */
	int current_block;		/* block to write to */
	u16 *header_cache;		/* cached header */

	int is_reclaiming;
	int cylinders;
	int errors;
	u_long *sector_map;
	struct block *blocks;
};

static int rfd_ftl_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf);

static int build_block_map(struct partition *part, int block_no)
{
	struct block *block = &part->blocks[block_no];
	int i;

	block->offset = part->block_size * block_no;

	if (le16_to_cpu(part->header_cache[0]) != RFD_MAGIC) {
		block->state = BLOCK_UNUSED;
		return -ENOENT;
	}

	block->state = BLOCK_OK;

	for (i=0; i<part->data_sectors_per_block; i++) {
		u16 entry;

		entry = le16_to_cpu(part->header_cache[HEADER_MAP_OFFSET + i]);

		if (entry == SECTOR_DELETED)
			continue;

		if (entry == SECTOR_FREE) {
			block->free_sectors++;
			continue;
		}

		if (entry == SECTOR_ZERO)
			entry = 0;

		if (entry >= part->sector_count) {
			printk(KERN_WARNING PREFIX
				"'%s': unit #%d: entry %d corrupt, "
				"sector %d out of range\n",
				part->mbd.mtd->name, block_no, i, entry);
			continue;
		}

		if (part->sector_map[entry] != -1) {
			printk(KERN_WARNING PREFIX
				"'%s': more than one entry for sector %d\n",
				part->mbd.mtd->name, entry);
			part->errors = 1;
			continue;
		}

		part->sector_map[entry] = block->offset +
			(i + part->header_sectors_per_block) * SECTOR_SIZE;

		block->used_sectors++;
	}

	if (block->free_sectors == part->data_sectors_per_block)
		part->reserved_block = block_no;

	return 0;
}

static int scan_header(struct partition *part)
{
	int sectors_per_block;
	int i, rc = -ENOMEM;
	int blocks_found;
	size_t retlen;

	sectors_per_block = part->block_size / SECTOR_SIZE;
	part->total_blocks = (u32)part->mbd.mtd->size / part->block_size;

	if (part->total_blocks < 2)
		return -ENOENT;

	/* each erase block has three bytes header, followed by the map */
	part->header_sectors_per_block =
			((HEADER_MAP_OFFSET + sectors_per_block) *
			sizeof(u16) + SECTOR_SIZE - 1) / SECTOR_SIZE;

	part->data_sectors_per_block = sectors_per_block -
			part->header_sectors_per_block;

	part->header_size = (HEADER_MAP_OFFSET +
			part->data_sectors_per_block) * sizeof(u16);

	part->cylinders = (part->data_sectors_per_block *
			(part->total_blocks - 1) - 1) / SECTORS_PER_TRACK;

	part->sector_count = part->cylinders * SECTORS_PER_TRACK;

	part->current_block = -1;
	part->reserved_block = -1;
	part->is_reclaiming = 0;

	part->header_cache = kmalloc(part->header_size, GFP_KERNEL);
	if (!part->header_cache)
		goto err;

	part->blocks = kcalloc(part->total_blocks, sizeof(struct block),
			GFP_KERNEL);
	if (!part->blocks)
		goto err;

	part->sector_map = vmalloc(array_size(sizeof(u_long),
					      part->sector_count));
	if (!part->sector_map) {
		printk(KERN_ERR PREFIX "'%s': unable to allocate memory for "
			"sector map", part->mbd.mtd->name);
		goto err;
	}

	for (i=0; i<part->sector_count; i++)
		part->sector_map[i] = -1;

	for (i=0, blocks_found=0; i<part->total_blocks; i++) {
		rc = mtd_read(part->mbd.mtd, i * part->block_size,
			      part->header_size, &retlen,
			      (u_char *)part->header_cache);

		if (!rc && retlen != part->header_size)
			rc = -EIO;

		if (rc)
			goto err;

		if (!build_block_map(part, i))
			blocks_found++;
	}

	if (blocks_found == 0) {
		printk(KERN_NOTICE PREFIX "no RFD magic found in '%s'\n",
				part->mbd.mtd->name);
		rc = -ENOENT;
		goto err;
	}

	if (part->reserved_block == -1) {
		printk(KERN_WARNING PREFIX "'%s': no empty erase unit found\n",
				part->mbd.mtd->name);

		part->errors = 1;
	}

	return 0;

err:
	vfree(part->sector_map);
	kfree(part->header_cache);
	kfree(part->blocks);

	return rc;
}

static int rfd_ftl_readsect(struct mtd_blktrans_dev *dev, u_long sector, char *buf)
{
	struct partition *part = (struct partition*)dev;
	u_long addr;
	size_t retlen;
	int rc;

	if (sector >= part->sector_count)
		return -EIO;

	addr = part->sector_map[sector];
	if (addr != -1) {
		rc = mtd_read(part->mbd.mtd, addr, SECTOR_SIZE, &retlen,
			      (u_char *)buf);
		if (!rc && retlen != SECTOR_SIZE)
			rc = -EIO;

		if (rc) {
			printk(KERN_WARNING PREFIX "error reading '%s' at "
				"0x%lx\n", part->mbd.mtd->name, addr);
			return rc;
		}
	} else
		memset(buf, 0, SECTOR_SIZE);

	return 0;
}

static int erase_block(struct partition *part, int block)
{
	struct erase_info *erase;
	int rc;

	erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL);
	if (!erase)
		return -ENOMEM;

	erase->addr = part->blocks[block].offset;
	erase->len = part->block_size;

	part->blocks[block].state = BLOCK_ERASING;
	part->blocks[block].free_sectors = 0;

	rc = mtd_erase(part->mbd.mtd, erase);
	if (rc) {
		printk(KERN_ERR PREFIX "erase of region %llx,%llx on '%s' "
				"failed\n", (unsigned long long)erase->addr,
				(unsigned long long)erase->len, part->mbd.mtd->name);
		part->blocks[block].state = BLOCK_FAILED;
		part->blocks[block].free_sectors = 0;
		part->blocks[block].used_sectors = 0;
	} else {
		u16 magic = cpu_to_le16(RFD_MAGIC);
		size_t retlen;

		part->blocks[block].state = BLOCK_ERASED;
		part->blocks[block].free_sectors = part->data_sectors_per_block;
		part->blocks[block].used_sectors = 0;
		part->blocks[block].erases++;

		rc = mtd_write(part->mbd.mtd, part->blocks[block].offset,
			       sizeof(magic), &retlen, (u_char *)&magic);
		if (!rc && retlen != sizeof(magic))
			rc = -EIO;

		if (rc) {
			pr_err(PREFIX "'%s': unable to write RFD header at 0x%lx\n",
			       part->mbd.mtd->name, part->blocks[block].offset);
			part->blocks[block].state = BLOCK_FAILED;
		} else {
			part->blocks[block].state = BLOCK_OK;
		}
	}

	kfree(erase);

	return rc;
}

static int move_block_contents(struct partition *part, int block_no, u_long *old_sector)
{
	void *sector_data;
	u16 *map;
	size_t retlen;
	int i, rc = -ENOMEM;

	part->is_reclaiming = 1;

	sector_data = kmalloc(SECTOR_SIZE, GFP_KERNEL);
	if (!sector_data)
		goto err3;

	map = kmalloc(part->header_size, GFP_KERNEL);
	if (!map)
		goto err2;

	rc = mtd_read(part->mbd.mtd, part->blocks[block_no].offset,
		      part->header_size, &retlen, (u_char *)map);

	if (!rc && retlen != part->header_size)
		rc = -EIO;

	if (rc) {
		printk(KERN_ERR PREFIX "error reading '%s' at "
			"0x%lx\n", part->mbd.mtd->name,
			part->blocks[block_no].offset);

		goto err;
	}

	for (i=0; i<part->data_sectors_per_block; i++) {
		u16 entry = le16_to_cpu(map[HEADER_MAP_OFFSET + i]);
		u_long addr;


		if (entry == SECTOR_FREE || entry == SECTOR_DELETED)
			continue;

		if (entry == SECTOR_ZERO)
			entry = 0;

		/* already warned about and ignored in build_block_map() */
		if (entry >= part->sector_count)
			continue;

		addr = part->blocks[block_no].offset +
			(i + part->header_sectors_per_block) * SECTOR_SIZE;

		if (*old_sector == addr) {
			*old_sector = -1;
			if (!part->blocks[block_no].used_sectors--) {
				rc = erase_block(part, block_no);
				break;
			}
			continue;
		}
		rc = mtd_read(part->mbd.mtd, addr, SECTOR_SIZE, &retlen,
			      sector_data);

		if (!rc && retlen != SECTOR_SIZE)
			rc = -EIO;

		if (rc) {
			printk(KERN_ERR PREFIX "'%s': Unable to "
				"read sector for relocation\n",
				part->mbd.mtd->name);

			goto err;
		}

		rc = rfd_ftl_writesect((struct mtd_blktrans_dev*)part,
				entry, sector_data);

		if (rc)
			goto err;
	}

err:
	kfree(map);
err2:
	kfree(sector_data);
err3:
	part->is_reclaiming = 0;

	return rc;
}

static int reclaim_block(struct partition *part, u_long *old_sector)
{
	int block, best_block, score, old_sector_block;
	int rc;

	/* we have a race if sync doesn't exist */
	mtd_sync(part->mbd.mtd);

	score = 0x7fffffff; /* MAX_INT */
	best_block = -1;
	if (*old_sector != -1)
		old_sector_block = *old_sector / part->block_size;
	else
		old_sector_block = -1;

	for (block=0; block<part->total_blocks; block++) {
		int this_score;

		if (block == part->reserved_block)
			continue;

		/*
		 * Postpone reclaiming if there is a free sector as
		 * more removed sectors is more efficient (have to move
		 * less).
		 */
		if (part->blocks[block].free_sectors)
			return 0;

		this_score = part->blocks[block].used_sectors;

		if (block == old_sector_block)
			this_score--;
		else {
			/* no point in moving a full block */
			if (part->blocks[block].used_sectors ==
					part->data_sectors_per_block)
				continue;
		}

		this_score += part->blocks[block].erases;

		if (this_score < score) {
			best_block = block;
			score = this_score;
		}
	}

	if (best_block == -1)
		return -ENOSPC;

	part->current_block = -1;
	part->reserved_block = best_block;

	pr_debug("reclaim_block: reclaiming block #%d with %d used "
		 "%d free sectors\n", best_block,
		 part->blocks[best_block].used_sectors,
		 part->blocks[best_block].free_sectors);

	if (part->blocks[best_block].used_sectors)
		rc = move_block_contents(part, best_block, old_sector);
	else
		rc = erase_block(part, best_block);

	return rc;
}

/*
 * IMPROVE: It would be best to choose the block with the most deleted sectors,
 * because if we fill that one up first it'll have the most chance of having
 * the least live sectors at reclaim.
 */
static int find_free_block(struct partition *part)
{
	int block, stop;

	block = part->current_block == -1 ?
			jiffies % part->total_blocks : part->current_block;
	stop = block;

	do {
		if (part->blocks[block].free_sectors &&
				block != part->reserved_block)
			return block;

		if (part->blocks[block].state == BLOCK_UNUSED)
			erase_block(part, block);

		if (++block >= part->total_blocks)
			block = 0;

	} while (block != stop);

	return -1;
}

static int find_writable_block(struct partition *part, u_long *old_sector)
{
	int rc, block;
	size_t retlen;

	block = find_free_block(part);

	if (block == -1) {
		if (!part->is_reclaiming) {
			rc = reclaim_block(part, old_sector);
			if (rc)
				goto err;

			block = find_free_block(part);
		}

		if (block == -1) {
			rc = -ENOSPC;
			goto err;
		}
	}

	rc = mtd_read(part->mbd.mtd, part->blocks[block].offset,
		      part->header_size, &retlen,
		      (u_char *)part->header_cache);

	if (!rc && retlen != part->header_size)
		rc = -EIO;

	if (rc) {
		printk(KERN_ERR PREFIX "'%s': unable to read header at "
				"0x%lx\n", part->mbd.mtd->name,
				part->blocks[block].offset);
		goto err;
	}

	part->current_block = block;

err:
	return rc;
}

static int mark_sector_deleted(struct partition *part, u_long old_addr)
{
	int block, offset, rc;
	u_long addr;
	size_t retlen;
	u16 del = cpu_to_le16(SECTOR_DELETED);

	block = old_addr / part->block_size;
	offset = (old_addr % part->block_size) / SECTOR_SIZE -
		part->header_sectors_per_block;

	addr = part->blocks[block].offset +
			(HEADER_MAP_OFFSET + offset) * sizeof(u16);
	rc = mtd_write(part->mbd.mtd, addr, sizeof(del), &retlen,
		       (u_char *)&del);

	if (!rc && retlen != sizeof(del))
		rc = -EIO;

	if (rc) {
		printk(KERN_ERR PREFIX "error writing '%s' at "
			"0x%lx\n", part->mbd.mtd->name, addr);
		goto err;
	}
	if (block == part->current_block)
		part->header_cache[offset + HEADER_MAP_OFFSET] = del;

	part->blocks[block].used_sectors--;

	if (!part->blocks[block].used_sectors &&
	    !part->blocks[block].free_sectors)
		rc = erase_block(part, block);

err:
	return rc;
}

static int find_free_sector(const struct partition *part, const struct block *block)
{
	int i, stop;

	i = stop = part->data_sectors_per_block - block->free_sectors;

	do {
		if (le16_to_cpu(part->header_cache[HEADER_MAP_OFFSET + i])
				== SECTOR_FREE)
			return i;

		if (++i == part->data_sectors_per_block)
			i = 0;
	}
	while(i != stop);

	return -1;
}

static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, ulong *old_addr)
{
	struct partition *part = (struct partition*)dev;
	struct block *block;
	u_long addr;
	int i;
	int rc;
	size_t retlen;
	u16 entry;

	if (part->current_block == -1 ||
		!part->blocks[part->current_block].free_sectors) {

		rc = find_writable_block(part, old_addr);
		if (rc)
			goto err;
	}

	block = &part->blocks[part->current_block];

	i = find_free_sector(part, block);

	if (i < 0) {
		rc = -ENOSPC;
		goto err;
	}

	addr = (i + part->header_sectors_per_block) * SECTOR_SIZE +
		block->offset;
	rc = mtd_write(part->mbd.mtd, addr, SECTOR_SIZE, &retlen,
		       (u_char *)buf);

	if (!rc && retlen != SECTOR_SIZE)
		rc = -EIO;

	if (rc) {
		printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n",
				part->mbd.mtd->name, addr);
		goto err;
	}

	part->sector_map[sector] = addr;

	entry = cpu_to_le16(sector == 0 ? SECTOR_ZERO : sector);

	part->header_cache[i + HEADER_MAP_OFFSET] = entry;

	addr = block->offset + (HEADER_MAP_OFFSET + i) * sizeof(u16);
	rc = mtd_write(part->mbd.mtd, addr, sizeof(entry), &retlen,
		       (u_char *)&entry);

	if (!rc && retlen != sizeof(entry))
		rc = -EIO;

	if (rc) {
		printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n",
				part->mbd.mtd->name, addr);
		goto err;
	}
	block->used_sectors++;
	block->free_sectors--;

err:
	return rc;
}

static int rfd_ftl_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf)
{
	struct partition *part = (struct partition*)dev;
	u_long old_addr;
	int i;
	int rc = 0;

	pr_debug("rfd_ftl_writesect(sector=0x%lx)\n", sector);

	if (part->reserved_block == -1) {
		rc = -EACCES;
		goto err;
	}

	if (sector >= part->sector_count) {
		rc = -EIO;
		goto err;
	}

	old_addr = part->sector_map[sector];

	for (i=0; i<SECTOR_SIZE; i++) {
		if (!buf[i])
			continue;

		rc = do_writesect(dev, sector, buf, &old_addr);
		if (rc)
			goto err;
		break;
	}

	if (i == SECTOR_SIZE)
		part->sector_map[sector] = -1;

	if (old_addr != -1)
		rc = mark_sector_deleted(part, old_addr);

err:
	return rc;
}

static int rfd_ftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo)
{
	struct partition *part = (struct partition*)dev;

	geo->heads = 1;
	geo->sectors = SECTORS_PER_TRACK;
	geo->cylinders = part->cylinders;

	return 0;
}

static void rfd_ftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
{
	struct partition *part;

	if (mtd->type != MTD_NORFLASH || mtd->size > UINT_MAX)
		return;

	part = kzalloc(sizeof(struct partition), GFP_KERNEL);
	if (!part)
		return;

	part->mbd.mtd = mtd;

	if (block_size)
		part->block_size = block_size;
	else {
		if (!mtd->erasesize) {
			printk(KERN_WARNING PREFIX "please provide block_size");
			goto out;
		} else
			part->block_size = mtd->erasesize;
	}

	if (scan_header(part) == 0) {
		part->mbd.size = part->sector_count;
		part->mbd.tr = tr;
		part->mbd.devnum = -1;
		if (!(mtd->flags & MTD_WRITEABLE))
			part->mbd.readonly = 1;
		else if (part->errors) {
			printk(KERN_WARNING PREFIX "'%s': errors found, "
					"setting read-only\n", mtd->name);
			part->mbd.readonly = 1;
		}

		printk(KERN_INFO PREFIX "name: '%s' type: %d flags %x\n",
				mtd->name, mtd->type, mtd->flags);

		if (!add_mtd_blktrans_dev((void*)part))
			return;
	}
out:
	kfree(part);
}

static void rfd_ftl_remove_dev(struct mtd_blktrans_dev *dev)
{
	struct partition *part = (struct partition*)dev;
	int i;

	for (i=0; i<part->total_blocks; i++) {
		pr_debug("rfd_ftl_remove_dev:'%s': erase unit #%02d: %d erases\n",
			part->mbd.mtd->name, i, part->blocks[i].erases);
	}

	del_mtd_blktrans_dev(dev);
	vfree(part->sector_map);
	kfree(part->header_cache);
	kfree(part->blocks);
}

static struct mtd_blktrans_ops rfd_ftl_tr = {
	.name		= "rfd",
	.major		= RFD_FTL_MAJOR,
	.part_bits	= PART_BITS,
	.blksize 	= SECTOR_SIZE,

	.readsect	= rfd_ftl_readsect,
	.writesect	= rfd_ftl_writesect,
	.getgeo		= rfd_ftl_getgeo,
	.add_mtd	= rfd_ftl_add_mtd,
	.remove_dev	= rfd_ftl_remove_dev,
	.owner		= THIS_MODULE,
};

static int __init init_rfd_ftl(void)
{
	return register_mtd_blktrans(&rfd_ftl_tr);
}

static void __exit cleanup_rfd_ftl(void)
{
	deregister_mtd_blktrans(&rfd_ftl_tr);
}

module_init(init_rfd_ftl);
module_exit(cleanup_rfd_ftl);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sean Young <sean@mess.org>");
MODULE_DESCRIPTION("Support code for RFD Flash Translation Layer, "
		"used by General Software's Embedded BIOS");