Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ /* * Refer to Documentation/block/inline-encryption.rst for detailed explanation. */ #define pr_fmt(fmt) "blk-crypto: " fmt #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/keyslot-manager.h> #include <linux/module.h> #include <linux/slab.h> #include "blk-crypto-internal.h" const struct blk_crypto_mode blk_crypto_modes[] = { [BLK_ENCRYPTION_MODE_AES_256_XTS] = { .cipher_str = "xts(aes)", .keysize = 64, .ivsize = 16, }, [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { .cipher_str = "essiv(cbc(aes),sha256)", .keysize = 16, .ivsize = 16, }, [BLK_ENCRYPTION_MODE_ADIANTUM] = { .cipher_str = "adiantum(xchacha12,aes)", .keysize = 32, .ivsize = 32, }, }; /* * This number needs to be at least (the number of threads doing IO * concurrently) * (maximum recursive depth of a bio), so that we don't * deadlock on crypt_ctx allocations. The default is chosen to be the same * as the default number of post read contexts in both EXT4 and F2FS. */ static int num_prealloc_crypt_ctxs = 128; module_param(num_prealloc_crypt_ctxs, int, 0444); MODULE_PARM_DESC(num_prealloc_crypt_ctxs, "Number of bio crypto contexts to preallocate"); static struct kmem_cache *bio_crypt_ctx_cache; static mempool_t *bio_crypt_ctx_pool; static int __init bio_crypt_ctx_init(void) { size_t i; bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); if (!bio_crypt_ctx_cache) goto out_no_mem; bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, bio_crypt_ctx_cache); if (!bio_crypt_ctx_pool) goto out_no_mem; /* This is assumed in various places. */ BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); /* Sanity check that no algorithm exceeds the defined limits. */ for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); } return 0; out_no_mem: panic("Failed to allocate mem for bio crypt ctxs\n"); } subsys_initcall(bio_crypt_ctx_init); void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) { struct bio_crypt_ctx *bc; /* * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so * that the mempool_alloc() can't fail. */ WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM)); bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); bc->bc_key = key; memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); bio->bi_crypt_context = bc; } void __bio_crypt_free_ctx(struct bio *bio) { mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); bio->bi_crypt_context = NULL; } int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) { dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); if (!dst->bi_crypt_context) return -ENOMEM; *dst->bi_crypt_context = *src->bi_crypt_context; return 0; } EXPORT_SYMBOL_GPL(__bio_crypt_clone); /* Increments @dun by @inc, treating @dun as a multi-limb integer. */ void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], unsigned int inc) { int i; for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { dun[i] += inc; /* * If the addition in this limb overflowed, then we need to * carry 1 into the next limb. Else the carry is 0. */ if (dun[i] < inc) inc = 1; else inc = 0; } } void __bio_crypt_advance(struct bio *bio, unsigned int bytes) { struct bio_crypt_ctx *bc = bio->bi_crypt_context; bio_crypt_dun_increment(bc->bc_dun, bytes >> bc->bc_key->data_unit_size_bits); } /* * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to * @next_dun, treating the DUNs as multi-limb integers. */ bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, unsigned int bytes, const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) { int i; unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { if (bc->bc_dun[i] + carry != next_dun[i]) return false; /* * If the addition in this limb overflowed, then we need to * carry 1 into the next limb. Else the carry is 0. */ if ((bc->bc_dun[i] + carry) < carry) carry = 1; else carry = 0; } /* If the DUN wrapped through 0, don't treat it as contiguous. */ return carry == 0; } /* * Checks that two bio crypt contexts are compatible - i.e. that * they are mergeable except for data_unit_num continuity. */ static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, struct bio_crypt_ctx *bc2) { if (!bc1) return !bc2; return bc2 && bc1->bc_key == bc2->bc_key; } bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) { return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); } /* * Checks that two bio crypt contexts are compatible, and also * that their data_unit_nums are continuous (and can hence be merged) * in the order @bc1 followed by @bc2. */ bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, struct bio_crypt_ctx *bc2) { if (!bio_crypt_ctx_compatible(bc1, bc2)) return false; return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); } /* Check that all I/O segments are data unit aligned. */ static bool bio_crypt_check_alignment(struct bio *bio) { const unsigned int data_unit_size = bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; struct bvec_iter iter; struct bio_vec bv; bio_for_each_segment(bv, bio, iter) { if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) return false; } return true; } blk_status_t __blk_crypto_init_request(struct request *rq) { return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key, &rq->crypt_keyslot); } /** * __blk_crypto_free_request - Uninitialize the crypto fields of a request. * * @rq: The request whose crypto fields to uninitialize. * * Completely uninitializes the crypto fields of a request. If a keyslot has * been programmed into some inline encryption hardware, that keyslot is * released. The rq->crypt_ctx is also freed. */ void __blk_crypto_free_request(struct request *rq) { blk_ksm_put_slot(rq->crypt_keyslot); mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); blk_crypto_rq_set_defaults(rq); } /** * __blk_crypto_bio_prep - Prepare bio for inline encryption * * @bio_ptr: pointer to original bio pointer * * If the bio crypt context provided for the bio is supported by the underlying * device's inline encryption hardware, do nothing. * * Otherwise, try to perform en/decryption for this bio by falling back to the * kernel crypto API. When the crypto API fallback is used for encryption, * blk-crypto may choose to split the bio into 2 - the first one that will * continue to be processed and the second one that will be resubmitted via * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents * of the aforementioned "first one", and *bio_ptr will be updated to this * bounce bio. * * Caller must ensure bio has bio_crypt_ctx. * * Return: true on success; false on error (and bio->bi_status will be set * appropriately, and bio_endio() will have been called so bio * submission should abort). */ bool __blk_crypto_bio_prep(struct bio **bio_ptr) { struct bio *bio = *bio_ptr; const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; /* Error if bio has no data. */ if (WARN_ON_ONCE(!bio_has_data(bio))) { bio->bi_status = BLK_STS_IOERR; goto fail; } if (!bio_crypt_check_alignment(bio)) { bio->bi_status = BLK_STS_IOERR; goto fail; } /* * Success if device supports the encryption context, or if we succeeded * in falling back to the crypto API. */ if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm, &bc_key->crypto_cfg)) return true; if (blk_crypto_fallback_bio_prep(bio_ptr)) return true; fail: bio_endio(*bio_ptr); return false; } int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, gfp_t gfp_mask) { if (!rq->crypt_ctx) { rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); if (!rq->crypt_ctx) return -ENOMEM; } *rq->crypt_ctx = *bio->bi_crypt_context; return 0; } /** * blk_crypto_init_key() - Prepare a key for use with blk-crypto * @blk_key: Pointer to the blk_crypto_key to initialize. * @raw_key: Pointer to the raw key. Must be the correct length for the chosen * @crypto_mode; see blk_crypto_modes[]. * @crypto_mode: identifier for the encryption algorithm to use * @dun_bytes: number of bytes that will be used to specify the DUN when this * key is used * @data_unit_size: the data unit size to use for en/decryption * * Return: 0 on success, -errno on failure. The caller is responsible for * zeroizing both blk_key and raw_key when done with them. */ int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, enum blk_crypto_mode_num crypto_mode, unsigned int dun_bytes, unsigned int data_unit_size) { const struct blk_crypto_mode *mode; memset(blk_key, 0, sizeof(*blk_key)); if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) return -EINVAL; mode = &blk_crypto_modes[crypto_mode]; if (mode->keysize == 0) return -EINVAL; if (dun_bytes == 0 || dun_bytes > mode->ivsize) return -EINVAL; if (!is_power_of_2(data_unit_size)) return -EINVAL; blk_key->crypto_cfg.crypto_mode = crypto_mode; blk_key->crypto_cfg.dun_bytes = dun_bytes; blk_key->crypto_cfg.data_unit_size = data_unit_size; blk_key->data_unit_size_bits = ilog2(data_unit_size); blk_key->size = mode->keysize; memcpy(blk_key->raw, raw_key, mode->keysize); return 0; } /* * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the * request queue it's submitted to supports inline crypto, or the * blk-crypto-fallback is enabled and supports the cfg). */ bool blk_crypto_config_supported(struct request_queue *q, const struct blk_crypto_config *cfg) { return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || blk_ksm_crypto_cfg_supported(q->ksm, cfg); } /** * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device * @key: A key to use on the device * @q: the request queue for the device * * Upper layers must call this function to ensure that either the hardware * supports the key's crypto settings, or the crypto API fallback has transforms * for the needed mode allocated and ready to go. This function may allocate * an skcipher, and *should not* be called from the data path, since that might * cause a deadlock * * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and * blk-crypto-fallback is either disabled or the needed algorithm * is disabled in the crypto API; or another -errno code. */ int blk_crypto_start_using_key(const struct blk_crypto_key *key, struct request_queue *q) { if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) return 0; return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); } /** * blk_crypto_evict_key() - Evict a key from any inline encryption hardware * it may have been programmed into * @q: The request queue who's associated inline encryption hardware this key * might have been programmed into * @key: The key to evict * * Upper layers (filesystems) must call this function to ensure that a key is * evicted from any hardware that it might have been programmed into. The key * must not be in use by any in-flight IO when this function is called. * * Return: 0 on success or if key is not present in the q's ksm, -err on error. */ int blk_crypto_evict_key(struct request_queue *q, const struct blk_crypto_key *key) { if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg)) return blk_ksm_evict_key(q->ksm, key); /* * If the request queue's associated inline encryption hardware didn't * have support for the key, then the key might have been programmed * into the fallback keyslot manager, so try to evict from there. */ return blk_crypto_fallback_evict_key(key); } |