Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ /** * DOC: The Keyslot Manager * * Many devices with inline encryption support have a limited number of "slots" * into which encryption contexts may be programmed, and requests can be tagged * with a slot number to specify the key to use for en/decryption. * * As the number of slots is limited, and programming keys is expensive on * many inline encryption hardware, we don't want to program the same key into * multiple slots - if multiple requests are using the same key, we want to * program just one slot with that key and use that slot for all requests. * * The keyslot manager manages these keyslots appropriately, and also acts as * an abstraction between the inline encryption hardware and the upper layers. * * Lower layer devices will set up a keyslot manager in their request queue * and tell it how to perform device specific operations like programming/ * evicting keys from keyslots. * * Upper layers will call blk_ksm_get_slot_for_key() to program a * key into some slot in the inline encryption hardware. */ #define pr_fmt(fmt) "blk-crypto: " fmt #include <linux/keyslot-manager.h> #include <linux/atomic.h> #include <linux/mutex.h> #include <linux/pm_runtime.h> #include <linux/wait.h> #include <linux/blkdev.h> struct blk_ksm_keyslot { atomic_t slot_refs; struct list_head idle_slot_node; struct hlist_node hash_node; const struct blk_crypto_key *key; struct blk_keyslot_manager *ksm; }; static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm) { /* * Calling into the driver requires ksm->lock held and the device * resumed. But we must resume the device first, since that can acquire * and release ksm->lock via blk_ksm_reprogram_all_keys(). */ if (ksm->dev) pm_runtime_get_sync(ksm->dev); down_write(&ksm->lock); } static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm) { up_write(&ksm->lock); if (ksm->dev) pm_runtime_put_sync(ksm->dev); } /** * blk_ksm_init() - Initialize a keyslot manager * @ksm: The keyslot_manager to initialize. * @num_slots: The number of key slots to manage. * * Allocate memory for keyslots and initialize a keyslot manager. Called by * e.g. storage drivers to set up a keyslot manager in their request_queue. * * Return: 0 on success, or else a negative error code. */ int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots) { unsigned int slot; unsigned int i; unsigned int slot_hashtable_size; memset(ksm, 0, sizeof(*ksm)); if (num_slots == 0) return -EINVAL; ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL); if (!ksm->slots) return -ENOMEM; ksm->num_slots = num_slots; init_rwsem(&ksm->lock); init_waitqueue_head(&ksm->idle_slots_wait_queue); INIT_LIST_HEAD(&ksm->idle_slots); for (slot = 0; slot < num_slots; slot++) { ksm->slots[slot].ksm = ksm; list_add_tail(&ksm->slots[slot].idle_slot_node, &ksm->idle_slots); } spin_lock_init(&ksm->idle_slots_lock); slot_hashtable_size = roundup_pow_of_two(num_slots); /* * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2 * buckets. This only makes a difference when there is only 1 keyslot. */ if (slot_hashtable_size < 2) slot_hashtable_size = 2; ksm->log_slot_ht_size = ilog2(slot_hashtable_size); ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size, sizeof(ksm->slot_hashtable[0]), GFP_KERNEL); if (!ksm->slot_hashtable) goto err_destroy_ksm; for (i = 0; i < slot_hashtable_size; i++) INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); return 0; err_destroy_ksm: blk_ksm_destroy(ksm); return -ENOMEM; } EXPORT_SYMBOL_GPL(blk_ksm_init); static inline struct hlist_head * blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)]; } static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot) { struct blk_keyslot_manager *ksm = slot->ksm; unsigned long flags; spin_lock_irqsave(&ksm->idle_slots_lock, flags); list_del(&slot->idle_slot_node); spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); } static struct blk_ksm_keyslot *blk_ksm_find_keyslot( struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key); struct blk_ksm_keyslot *slotp; hlist_for_each_entry(slotp, head, hash_node) { if (slotp->key == key) return slotp; } return NULL; } static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot( struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { struct blk_ksm_keyslot *slot; slot = blk_ksm_find_keyslot(ksm, key); if (!slot) return NULL; if (atomic_inc_return(&slot->slot_refs) == 1) { /* Took first reference to this slot; remove it from LRU list */ blk_ksm_remove_slot_from_lru_list(slot); } return slot; } unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot) { return slot - slot->ksm->slots; } EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx); /** * blk_ksm_get_slot_for_key() - Program a key into a keyslot. * @ksm: The keyslot manager to program the key into. * @key: Pointer to the key object to program, including the raw key, crypto * mode, and data unit size. * @slot_ptr: A pointer to return the pointer of the allocated keyslot. * * Get a keyslot that's been programmed with the specified key. If one already * exists, return it with incremented refcount. Otherwise, wait for a keyslot * to become idle and program it. * * Context: Process context. Takes and releases ksm->lock. * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the * allocated keyslot), or some other blk_status_t otherwise (and * keyslot is set to NULL). */ blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key, struct blk_ksm_keyslot **slot_ptr) { struct blk_ksm_keyslot *slot; int slot_idx; int err; *slot_ptr = NULL; down_read(&ksm->lock); slot = blk_ksm_find_and_grab_keyslot(ksm, key); up_read(&ksm->lock); if (slot) goto success; for (;;) { blk_ksm_hw_enter(ksm); slot = blk_ksm_find_and_grab_keyslot(ksm, key); if (slot) { blk_ksm_hw_exit(ksm); goto success; } /* * If we're here, that means there wasn't a slot that was * already programmed with the key. So try to program it. */ if (!list_empty(&ksm->idle_slots)) break; blk_ksm_hw_exit(ksm); wait_event(ksm->idle_slots_wait_queue, !list_empty(&ksm->idle_slots)); } slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot, idle_slot_node); slot_idx = blk_ksm_get_slot_idx(slot); err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx); if (err) { wake_up(&ksm->idle_slots_wait_queue); blk_ksm_hw_exit(ksm); return errno_to_blk_status(err); } /* Move this slot to the hash list for the new key. */ if (slot->key) hlist_del(&slot->hash_node); slot->key = key; hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key)); atomic_set(&slot->slot_refs, 1); blk_ksm_remove_slot_from_lru_list(slot); blk_ksm_hw_exit(ksm); success: *slot_ptr = slot; return BLK_STS_OK; } /** * blk_ksm_put_slot() - Release a reference to a slot * @slot: The keyslot to release the reference of. * * Context: Any context. */ void blk_ksm_put_slot(struct blk_ksm_keyslot *slot) { struct blk_keyslot_manager *ksm; unsigned long flags; if (!slot) return; ksm = slot->ksm; if (atomic_dec_and_lock_irqsave(&slot->slot_refs, &ksm->idle_slots_lock, flags)) { list_add_tail(&slot->idle_slot_node, &ksm->idle_slots); spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); wake_up(&ksm->idle_slots_wait_queue); } } /** * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is * supported by a ksm. * @ksm: The keyslot manager to check * @cfg: The crypto configuration to check for. * * Checks for crypto_mode/data unit size/dun bytes support. * * Return: Whether or not this ksm supports the specified crypto config. */ bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm, const struct blk_crypto_config *cfg) { if (!ksm) return false; if (!(ksm->crypto_modes_supported[cfg->crypto_mode] & cfg->data_unit_size)) return false; if (ksm->max_dun_bytes_supported < cfg->dun_bytes) return false; return true; } /** * blk_ksm_evict_key() - Evict a key from the lower layer device. * @ksm: The keyslot manager to evict from * @key: The key to evict * * Find the keyslot that the specified key was programmed into, and evict that * slot from the lower layer device. The slot must not be in use by any * in-flight IO when this function is called. * * Context: Process context. Takes and releases ksm->lock. * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY * if the keyslot is still in use, or another -errno value on other * error. */ int blk_ksm_evict_key(struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { struct blk_ksm_keyslot *slot; int err = 0; blk_ksm_hw_enter(ksm); slot = blk_ksm_find_keyslot(ksm, key); if (!slot) goto out_unlock; if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) { err = -EBUSY; goto out_unlock; } err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, blk_ksm_get_slot_idx(slot)); if (err) goto out_unlock; hlist_del(&slot->hash_node); slot->key = NULL; err = 0; out_unlock: blk_ksm_hw_exit(ksm); return err; } /** * blk_ksm_reprogram_all_keys() - Re-program all keyslots. * @ksm: The keyslot manager * * Re-program all keyslots that are supposed to have a key programmed. This is * intended only for use by drivers for hardware that loses its keys on reset. * * Context: Process context. Takes and releases ksm->lock. */ void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm) { unsigned int slot; /* This is for device initialization, so don't resume the device */ down_write(&ksm->lock); for (slot = 0; slot < ksm->num_slots; slot++) { const struct blk_crypto_key *key = ksm->slots[slot].key; int err; if (!key) continue; err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); WARN_ON(err); } up_write(&ksm->lock); } EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys); void blk_ksm_destroy(struct blk_keyslot_manager *ksm) { if (!ksm) return; kvfree(ksm->slot_hashtable); kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots); memzero_explicit(ksm, sizeof(*ksm)); } EXPORT_SYMBOL_GPL(blk_ksm_destroy); bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) { if (blk_integrity_queue_supports_integrity(q)) { pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n"); return false; } q->ksm = ksm; return true; } EXPORT_SYMBOL_GPL(blk_ksm_register); void blk_ksm_unregister(struct request_queue *q) { q->ksm = NULL; } |