/*
* wm8904.c -- WM8904 ALSA SoC Audio driver
*
* Copyright 2009-12 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/wm8904.h>
#include "wm8904.h"
enum wm8904_type {
WM8904,
WM8912,
};
#define WM8904_NUM_DCS_CHANNELS 4
#define WM8904_NUM_SUPPLIES 5
static const char *wm8904_supply_names[WM8904_NUM_SUPPLIES] = {
"DCVDD",
"DBVDD",
"AVDD",
"CPVDD",
"MICVDD",
};
/* codec private data */
struct wm8904_priv {
struct regmap *regmap;
struct clk *mclk;
enum wm8904_type devtype;
struct regulator_bulk_data supplies[WM8904_NUM_SUPPLIES];
struct wm8904_pdata *pdata;
int deemph;
/* Platform provided DRC configuration */
const char **drc_texts;
int drc_cfg;
struct soc_enum drc_enum;
/* Platform provided ReTune mobile configuration */
int num_retune_mobile_texts;
const char **retune_mobile_texts;
int retune_mobile_cfg;
struct soc_enum retune_mobile_enum;
/* FLL setup */
int fll_src;
int fll_fref;
int fll_fout;
/* Clocking configuration */
unsigned int mclk_rate;
int sysclk_src;
unsigned int sysclk_rate;
int tdm_width;
int tdm_slots;
int bclk;
int fs;
/* DC servo configuration - cached offset values */
int dcs_state[WM8904_NUM_DCS_CHANNELS];
};
static const struct reg_default wm8904_reg_defaults[] = {
{ 4, 0x0018 }, /* R4 - Bias Control 0 */
{ 5, 0x0000 }, /* R5 - VMID Control 0 */
{ 6, 0x0000 }, /* R6 - Mic Bias Control 0 */
{ 7, 0x0000 }, /* R7 - Mic Bias Control 1 */
{ 8, 0x0001 }, /* R8 - Analogue DAC 0 */
{ 9, 0x9696 }, /* R9 - mic Filter Control */
{ 10, 0x0001 }, /* R10 - Analogue ADC 0 */
{ 12, 0x0000 }, /* R12 - Power Management 0 */
{ 14, 0x0000 }, /* R14 - Power Management 2 */
{ 15, 0x0000 }, /* R15 - Power Management 3 */
{ 18, 0x0000 }, /* R18 - Power Management 6 */
{ 20, 0x945E }, /* R20 - Clock Rates 0 */
{ 21, 0x0C05 }, /* R21 - Clock Rates 1 */
{ 22, 0x0006 }, /* R22 - Clock Rates 2 */
{ 24, 0x0050 }, /* R24 - Audio Interface 0 */
{ 25, 0x000A }, /* R25 - Audio Interface 1 */
{ 26, 0x00E4 }, /* R26 - Audio Interface 2 */
{ 27, 0x0040 }, /* R27 - Audio Interface 3 */
{ 30, 0x00C0 }, /* R30 - DAC Digital Volume Left */
{ 31, 0x00C0 }, /* R31 - DAC Digital Volume Right */
{ 32, 0x0000 }, /* R32 - DAC Digital 0 */
{ 33, 0x0008 }, /* R33 - DAC Digital 1 */
{ 36, 0x00C0 }, /* R36 - ADC Digital Volume Left */
{ 37, 0x00C0 }, /* R37 - ADC Digital Volume Right */
{ 38, 0x0010 }, /* R38 - ADC Digital 0 */
{ 39, 0x0000 }, /* R39 - Digital Microphone 0 */
{ 40, 0x01AF }, /* R40 - DRC 0 */
{ 41, 0x3248 }, /* R41 - DRC 1 */
{ 42, 0x0000 }, /* R42 - DRC 2 */
{ 43, 0x0000 }, /* R43 - DRC 3 */
{ 44, 0x0085 }, /* R44 - Analogue Left Input 0 */
{ 45, 0x0085 }, /* R45 - Analogue Right Input 0 */
{ 46, 0x0044 }, /* R46 - Analogue Left Input 1 */
{ 47, 0x0044 }, /* R47 - Analogue Right Input 1 */
{ 57, 0x002D }, /* R57 - Analogue OUT1 Left */
{ 58, 0x002D }, /* R58 - Analogue OUT1 Right */
{ 59, 0x0039 }, /* R59 - Analogue OUT2 Left */
{ 60, 0x0039 }, /* R60 - Analogue OUT2 Right */
{ 61, 0x0000 }, /* R61 - Analogue OUT12 ZC */
{ 67, 0x0000 }, /* R67 - DC Servo 0 */
{ 69, 0xAAAA }, /* R69 - DC Servo 2 */
{ 71, 0xAAAA }, /* R71 - DC Servo 4 */
{ 72, 0xAAAA }, /* R72 - DC Servo 5 */
{ 90, 0x0000 }, /* R90 - Analogue HP 0 */
{ 94, 0x0000 }, /* R94 - Analogue Lineout 0 */
{ 98, 0x0000 }, /* R98 - Charge Pump 0 */
{ 104, 0x0004 }, /* R104 - Class W 0 */
{ 108, 0x0000 }, /* R108 - Write Sequencer 0 */
{ 109, 0x0000 }, /* R109 - Write Sequencer 1 */
{ 110, 0x0000 }, /* R110 - Write Sequencer 2 */
{ 111, 0x0000 }, /* R111 - Write Sequencer 3 */
{ 112, 0x0000 }, /* R112 - Write Sequencer 4 */
{ 116, 0x0000 }, /* R116 - FLL Control 1 */
{ 117, 0x0007 }, /* R117 - FLL Control 2 */
{ 118, 0x0000 }, /* R118 - FLL Control 3 */
{ 119, 0x2EE0 }, /* R119 - FLL Control 4 */
{ 120, 0x0004 }, /* R120 - FLL Control 5 */
{ 121, 0x0014 }, /* R121 - GPIO Control 1 */
{ 122, 0x0010 }, /* R122 - GPIO Control 2 */
{ 123, 0x0010 }, /* R123 - GPIO Control 3 */
{ 124, 0x0000 }, /* R124 - GPIO Control 4 */
{ 126, 0x0000 }, /* R126 - Digital Pulls */
{ 128, 0xFFFF }, /* R128 - Interrupt Status Mask */
{ 129, 0x0000 }, /* R129 - Interrupt Polarity */
{ 130, 0x0000 }, /* R130 - Interrupt Debounce */
{ 134, 0x0000 }, /* R134 - EQ1 */
{ 135, 0x000C }, /* R135 - EQ2 */
{ 136, 0x000C }, /* R136 - EQ3 */
{ 137, 0x000C }, /* R137 - EQ4 */
{ 138, 0x000C }, /* R138 - EQ5 */
{ 139, 0x000C }, /* R139 - EQ6 */
{ 140, 0x0FCA }, /* R140 - EQ7 */
{ 141, 0x0400 }, /* R141 - EQ8 */
{ 142, 0x00D8 }, /* R142 - EQ9 */
{ 143, 0x1EB5 }, /* R143 - EQ10 */
{ 144, 0xF145 }, /* R144 - EQ11 */
{ 145, 0x0B75 }, /* R145 - EQ12 */
{ 146, 0x01C5 }, /* R146 - EQ13 */
{ 147, 0x1C58 }, /* R147 - EQ14 */
{ 148, 0xF373 }, /* R148 - EQ15 */
{ 149, 0x0A54 }, /* R149 - EQ16 */
{ 150, 0x0558 }, /* R150 - EQ17 */
{ 151, 0x168E }, /* R151 - EQ18 */
{ 152, 0xF829 }, /* R152 - EQ19 */
{ 153, 0x07AD }, /* R153 - EQ20 */
{ 154, 0x1103 }, /* R154 - EQ21 */
{ 155, 0x0564 }, /* R155 - EQ22 */
{ 156, 0x0559 }, /* R156 - EQ23 */
{ 157, 0x4000 }, /* R157 - EQ24 */
{ 161, 0x0000 }, /* R161 - Control Interface Test 1 */
{ 204, 0x0000 }, /* R204 - Analogue Output Bias 0 */
{ 247, 0x0000 }, /* R247 - FLL NCO Test 0 */
{ 248, 0x0019 }, /* R248 - FLL NCO Test 1 */
};
static bool wm8904_volatile_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case WM8904_SW_RESET_AND_ID:
case WM8904_REVISION:
case WM8904_DC_SERVO_1:
case WM8904_DC_SERVO_6:
case WM8904_DC_SERVO_7:
case WM8904_DC_SERVO_8:
case WM8904_DC_SERVO_9:
case WM8904_DC_SERVO_READBACK_0:
case WM8904_INTERRUPT_STATUS:
return true;
default:
return false;
}
}
static bool wm8904_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case WM8904_SW_RESET_AND_ID:
case WM8904_REVISION:
case WM8904_BIAS_CONTROL_0:
case WM8904_VMID_CONTROL_0:
case WM8904_MIC_BIAS_CONTROL_0:
case WM8904_MIC_BIAS_CONTROL_1:
case WM8904_ANALOGUE_DAC_0:
case WM8904_MIC_FILTER_CONTROL:
case WM8904_ANALOGUE_ADC_0:
case WM8904_POWER_MANAGEMENT_0:
case WM8904_POWER_MANAGEMENT_2:
case WM8904_POWER_MANAGEMENT_3:
case WM8904_POWER_MANAGEMENT_6:
case WM8904_CLOCK_RATES_0:
case WM8904_CLOCK_RATES_1:
case WM8904_CLOCK_RATES_2:
case WM8904_AUDIO_INTERFACE_0:
case WM8904_AUDIO_INTERFACE_1:
case WM8904_AUDIO_INTERFACE_2:
case WM8904_AUDIO_INTERFACE_3:
case WM8904_DAC_DIGITAL_VOLUME_LEFT:
case WM8904_DAC_DIGITAL_VOLUME_RIGHT:
case WM8904_DAC_DIGITAL_0:
case WM8904_DAC_DIGITAL_1:
case WM8904_ADC_DIGITAL_VOLUME_LEFT:
case WM8904_ADC_DIGITAL_VOLUME_RIGHT:
case WM8904_ADC_DIGITAL_0:
case WM8904_DIGITAL_MICROPHONE_0:
case WM8904_DRC_0:
case WM8904_DRC_1:
case WM8904_DRC_2:
case WM8904_DRC_3:
case WM8904_ANALOGUE_LEFT_INPUT_0:
case WM8904_ANALOGUE_RIGHT_INPUT_0:
case WM8904_ANALOGUE_LEFT_INPUT_1:
case WM8904_ANALOGUE_RIGHT_INPUT_1:
case WM8904_ANALOGUE_OUT1_LEFT:
case WM8904_ANALOGUE_OUT1_RIGHT:
case WM8904_ANALOGUE_OUT2_LEFT:
case WM8904_ANALOGUE_OUT2_RIGHT:
case WM8904_ANALOGUE_OUT12_ZC:
case WM8904_DC_SERVO_0:
case WM8904_DC_SERVO_1:
case WM8904_DC_SERVO_2:
case WM8904_DC_SERVO_4:
case WM8904_DC_SERVO_5:
case WM8904_DC_SERVO_6:
case WM8904_DC_SERVO_7:
case WM8904_DC_SERVO_8:
case WM8904_DC_SERVO_9:
case WM8904_DC_SERVO_READBACK_0:
case WM8904_ANALOGUE_HP_0:
case WM8904_ANALOGUE_LINEOUT_0:
case WM8904_CHARGE_PUMP_0:
case WM8904_CLASS_W_0:
case WM8904_WRITE_SEQUENCER_0:
case WM8904_WRITE_SEQUENCER_1:
case WM8904_WRITE_SEQUENCER_2:
case WM8904_WRITE_SEQUENCER_3:
case WM8904_WRITE_SEQUENCER_4:
case WM8904_FLL_CONTROL_1:
case WM8904_FLL_CONTROL_2:
case WM8904_FLL_CONTROL_3:
case WM8904_FLL_CONTROL_4:
case WM8904_FLL_CONTROL_5:
case WM8904_GPIO_CONTROL_1:
case WM8904_GPIO_CONTROL_2:
case WM8904_GPIO_CONTROL_3:
case WM8904_GPIO_CONTROL_4:
case WM8904_DIGITAL_PULLS:
case WM8904_INTERRUPT_STATUS:
case WM8904_INTERRUPT_STATUS_MASK:
case WM8904_INTERRUPT_POLARITY:
case WM8904_INTERRUPT_DEBOUNCE:
case WM8904_EQ1:
case WM8904_EQ2:
case WM8904_EQ3:
case WM8904_EQ4:
case WM8904_EQ5:
case WM8904_EQ6:
case WM8904_EQ7:
case WM8904_EQ8:
case WM8904_EQ9:
case WM8904_EQ10:
case WM8904_EQ11:
case WM8904_EQ12:
case WM8904_EQ13:
case WM8904_EQ14:
case WM8904_EQ15:
case WM8904_EQ16:
case WM8904_EQ17:
case WM8904_EQ18:
case WM8904_EQ19:
case WM8904_EQ20:
case WM8904_EQ21:
case WM8904_EQ22:
case WM8904_EQ23:
case WM8904_EQ24:
case WM8904_CONTROL_INTERFACE_TEST_1:
case WM8904_ADC_TEST_0:
case WM8904_ANALOGUE_OUTPUT_BIAS_0:
case WM8904_FLL_NCO_TEST_0:
case WM8904_FLL_NCO_TEST_1:
return true;
default:
return false;
}
}
static int wm8904_configure_clocking(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
unsigned int clock0, clock2, rate;
/* Gate the clock while we're updating to avoid misclocking */
clock2 = snd_soc_component_read32(component, WM8904_CLOCK_RATES_2);
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_2,
WM8904_SYSCLK_SRC, 0);
/* This should be done on init() for bypass paths */
switch (wm8904->sysclk_src) {
case WM8904_CLK_MCLK:
dev_dbg(component->dev, "Using %dHz MCLK\n", wm8904->mclk_rate);
clock2 &= ~WM8904_SYSCLK_SRC;
rate = wm8904->mclk_rate;
/* Ensure the FLL is stopped */
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_OSC_ENA | WM8904_FLL_ENA, 0);
break;
case WM8904_CLK_FLL:
dev_dbg(component->dev, "Using %dHz FLL clock\n",
wm8904->fll_fout);
clock2 |= WM8904_SYSCLK_SRC;
rate = wm8904->fll_fout;
break;
default:
dev_err(component->dev, "System clock not configured\n");
return -EINVAL;
}
/* SYSCLK shouldn't be over 13.5MHz */
if (rate > 13500000) {
clock0 = WM8904_MCLK_DIV;
wm8904->sysclk_rate = rate / 2;
} else {
clock0 = 0;
wm8904->sysclk_rate = rate;
}
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_0, WM8904_MCLK_DIV,
clock0);
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_2,
WM8904_CLK_SYS_ENA | WM8904_SYSCLK_SRC, clock2);
dev_dbg(component->dev, "CLK_SYS is %dHz\n", wm8904->sysclk_rate);
return 0;
}
static void wm8904_set_drc(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct wm8904_pdata *pdata = wm8904->pdata;
int save, i;
/* Save any enables; the configuration should clear them. */
save = snd_soc_component_read32(component, WM8904_DRC_0);
for (i = 0; i < WM8904_DRC_REGS; i++)
snd_soc_component_update_bits(component, WM8904_DRC_0 + i, 0xffff,
pdata->drc_cfgs[wm8904->drc_cfg].regs[i]);
/* Reenable the DRC */
snd_soc_component_update_bits(component, WM8904_DRC_0,
WM8904_DRC_ENA | WM8904_DRC_DAC_PATH, save);
}
static int wm8904_put_drc_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct wm8904_pdata *pdata = wm8904->pdata;
int value = ucontrol->value.enumerated.item[0];
if (value >= pdata->num_drc_cfgs)
return -EINVAL;
wm8904->drc_cfg = value;
wm8904_set_drc(component);
return 0;
}
static int wm8904_get_drc_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = wm8904->drc_cfg;
return 0;
}
static void wm8904_set_retune_mobile(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct wm8904_pdata *pdata = wm8904->pdata;
int best, best_val, save, i, cfg;
if (!pdata || !wm8904->num_retune_mobile_texts)
return;
/* Find the version of the currently selected configuration
* with the nearest sample rate. */
cfg = wm8904->retune_mobile_cfg;
best = 0;
best_val = INT_MAX;
for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) {
if (strcmp(pdata->retune_mobile_cfgs[i].name,
wm8904->retune_mobile_texts[cfg]) == 0 &&
abs(pdata->retune_mobile_cfgs[i].rate
- wm8904->fs) < best_val) {
best = i;
best_val = abs(pdata->retune_mobile_cfgs[i].rate
- wm8904->fs);
}
}
dev_dbg(component->dev, "ReTune Mobile %s/%dHz for %dHz sample rate\n",
pdata->retune_mobile_cfgs[best].name,
pdata->retune_mobile_cfgs[best].rate,
wm8904->fs);
/* The EQ will be disabled while reconfiguring it, remember the
* current configuration.
*/
save = snd_soc_component_read32(component, WM8904_EQ1);
for (i = 0; i < WM8904_EQ_REGS; i++)
snd_soc_component_update_bits(component, WM8904_EQ1 + i, 0xffff,
pdata->retune_mobile_cfgs[best].regs[i]);
snd_soc_component_update_bits(component, WM8904_EQ1, WM8904_EQ_ENA, save);
}
static int wm8904_put_retune_mobile_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct wm8904_pdata *pdata = wm8904->pdata;
int value = ucontrol->value.enumerated.item[0];
if (value >= pdata->num_retune_mobile_cfgs)
return -EINVAL;
wm8904->retune_mobile_cfg = value;
wm8904_set_retune_mobile(component);
return 0;
}
static int wm8904_get_retune_mobile_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = wm8904->retune_mobile_cfg;
return 0;
}
static int deemph_settings[] = { 0, 32000, 44100, 48000 };
static int wm8904_set_deemph(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
int val, i, best;
/* If we're using deemphasis select the nearest available sample
* rate.
*/
if (wm8904->deemph) {
best = 1;
for (i = 2; i < ARRAY_SIZE(deemph_settings); i++) {
if (abs(deemph_settings[i] - wm8904->fs) <
abs(deemph_settings[best] - wm8904->fs))
best = i;
}
val = best << WM8904_DEEMPH_SHIFT;
} else {
val = 0;
}
dev_dbg(component->dev, "Set deemphasis %d\n", val);
return snd_soc_component_update_bits(component, WM8904_DAC_DIGITAL_1,
WM8904_DEEMPH_MASK, val);
}
static int wm8904_get_deemph(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = wm8904->deemph;
return 0;
}
static int wm8904_put_deemph(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
unsigned int deemph = ucontrol->value.integer.value[0];
if (deemph > 1)
return -EINVAL;
wm8904->deemph = deemph;
return wm8904_set_deemph(component);
}
static const DECLARE_TLV_DB_SCALE(dac_boost_tlv, 0, 600, 0);
static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1);
static const DECLARE_TLV_DB_SCALE(out_tlv, -5700, 100, 0);
static const DECLARE_TLV_DB_SCALE(sidetone_tlv, -3600, 300, 0);
static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0);
static const char *input_mode_text[] = {
"Single-Ended", "Differential Line", "Differential Mic"
};
static SOC_ENUM_SINGLE_DECL(lin_mode,
WM8904_ANALOGUE_LEFT_INPUT_1, 0,
input_mode_text);
static SOC_ENUM_SINGLE_DECL(rin_mode,
WM8904_ANALOGUE_RIGHT_INPUT_1, 0,
input_mode_text);
static const char *hpf_mode_text[] = {
"Hi-fi", "Voice 1", "Voice 2", "Voice 3"
};
static SOC_ENUM_SINGLE_DECL(hpf_mode, WM8904_ADC_DIGITAL_0, 5,
hpf_mode_text);
static int wm8904_adc_osr_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
unsigned int val;
int ret;
ret = snd_soc_put_volsw(kcontrol, ucontrol);
if (ret < 0)
return ret;
if (ucontrol->value.integer.value[0])
val = 0;
else
val = WM8904_ADC_128_OSR_TST_MODE | WM8904_ADC_BIASX1P5;
snd_soc_component_update_bits(component, WM8904_ADC_TEST_0,
WM8904_ADC_128_OSR_TST_MODE | WM8904_ADC_BIASX1P5,
val);
return ret;
}
static const struct snd_kcontrol_new wm8904_adc_snd_controls[] = {
SOC_DOUBLE_R_TLV("Digital Capture Volume", WM8904_ADC_DIGITAL_VOLUME_LEFT,
WM8904_ADC_DIGITAL_VOLUME_RIGHT, 1, 119, 0, digital_tlv),
SOC_ENUM("Left Capture Mode", lin_mode),
SOC_ENUM("Right Capture Mode", rin_mode),
/* No TLV since it depends on mode */
SOC_DOUBLE_R("Capture Volume", WM8904_ANALOGUE_LEFT_INPUT_0,
WM8904_ANALOGUE_RIGHT_INPUT_0, 0, 31, 0),
SOC_DOUBLE_R("Capture Switch", WM8904_ANALOGUE_LEFT_INPUT_0,
WM8904_ANALOGUE_RIGHT_INPUT_0, 7, 1, 1),
SOC_SINGLE("High Pass Filter Switch", WM8904_ADC_DIGITAL_0, 4, 1, 0),
SOC_ENUM("High Pass Filter Mode", hpf_mode),
SOC_SINGLE_EXT("ADC 128x OSR Switch", WM8904_ANALOGUE_ADC_0, 0, 1, 0,
snd_soc_get_volsw, wm8904_adc_osr_put),
};
static const char *drc_path_text[] = {
"ADC", "DAC"
};
static SOC_ENUM_SINGLE_DECL(drc_path, WM8904_DRC_0, 14, drc_path_text);
static const struct snd_kcontrol_new wm8904_dac_snd_controls[] = {
SOC_SINGLE_TLV("Digital Playback Boost Volume",
WM8904_AUDIO_INTERFACE_0, 9, 3, 0, dac_boost_tlv),
SOC_DOUBLE_R_TLV("Digital Playback Volume", WM8904_DAC_DIGITAL_VOLUME_LEFT,
WM8904_DAC_DIGITAL_VOLUME_RIGHT, 1, 96, 0, digital_tlv),
SOC_DOUBLE_R_TLV("Headphone Volume", WM8904_ANALOGUE_OUT1_LEFT,
WM8904_ANALOGUE_OUT1_RIGHT, 0, 63, 0, out_tlv),
SOC_DOUBLE_R("Headphone Switch", WM8904_ANALOGUE_OUT1_LEFT,
WM8904_ANALOGUE_OUT1_RIGHT, 8, 1, 1),
SOC_DOUBLE_R("Headphone ZC Switch", WM8904_ANALOGUE_OUT1_LEFT,
WM8904_ANALOGUE_OUT1_RIGHT, 6, 1, 0),
SOC_DOUBLE_R_TLV("Line Output Volume", WM8904_ANALOGUE_OUT2_LEFT,
WM8904_ANALOGUE_OUT2_RIGHT, 0, 63, 0, out_tlv),
SOC_DOUBLE_R("Line Output Switch", WM8904_ANALOGUE_OUT2_LEFT,
WM8904_ANALOGUE_OUT2_RIGHT, 8, 1, 1),
SOC_DOUBLE_R("Line Output ZC Switch", WM8904_ANALOGUE_OUT2_LEFT,
WM8904_ANALOGUE_OUT2_RIGHT, 6, 1, 0),
SOC_SINGLE("EQ Switch", WM8904_EQ1, 0, 1, 0),
SOC_SINGLE("DRC Switch", WM8904_DRC_0, 15, 1, 0),
SOC_ENUM("DRC Path", drc_path),
SOC_SINGLE("DAC OSRx2 Switch", WM8904_DAC_DIGITAL_1, 6, 1, 0),
SOC_SINGLE_BOOL_EXT("DAC Deemphasis Switch", 0,
wm8904_get_deemph, wm8904_put_deemph),
};
static const struct snd_kcontrol_new wm8904_snd_controls[] = {
SOC_DOUBLE_TLV("Digital Sidetone Volume", WM8904_DAC_DIGITAL_0, 4, 8, 15, 0,
sidetone_tlv),
};
static const struct snd_kcontrol_new wm8904_eq_controls[] = {
SOC_SINGLE_TLV("EQ1 Volume", WM8904_EQ2, 0, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ2 Volume", WM8904_EQ3, 0, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ3 Volume", WM8904_EQ4, 0, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ4 Volume", WM8904_EQ5, 0, 24, 0, eq_tlv),
SOC_SINGLE_TLV("EQ5 Volume", WM8904_EQ6, 0, 24, 0, eq_tlv),
};
static int cp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
if (WARN_ON(event != SND_SOC_DAPM_POST_PMU))
return -EINVAL;
/* Maximum startup time */
udelay(500);
return 0;
}
static int sysclk_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* If we're using the FLL then we only start it when
* required; we assume that the configuration has been
* done previously and all we need to do is kick it
* off.
*/
switch (wm8904->sysclk_src) {
case WM8904_CLK_FLL:
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_OSC_ENA,
WM8904_FLL_OSC_ENA);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_ENA,
WM8904_FLL_ENA);
break;
default:
break;
}
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_OSC_ENA | WM8904_FLL_ENA, 0);
break;
}
return 0;
}
static int out_pga_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
int reg, val;
int dcs_mask;
int dcs_l, dcs_r;
int dcs_l_reg, dcs_r_reg;
int timeout;
int pwr_reg;
/* This code is shared between HP and LINEOUT; we do all our
* power management in stereo pairs to avoid latency issues so
* we reuse shift to identify which rather than strcmp() the
* name. */
reg = w->shift;
switch (reg) {
case WM8904_ANALOGUE_HP_0:
pwr_reg = WM8904_POWER_MANAGEMENT_2;
dcs_mask = WM8904_DCS_ENA_CHAN_0 | WM8904_DCS_ENA_CHAN_1;
dcs_r_reg = WM8904_DC_SERVO_8;
dcs_l_reg = WM8904_DC_SERVO_9;
dcs_l = 0;
dcs_r = 1;
break;
case WM8904_ANALOGUE_LINEOUT_0:
pwr_reg = WM8904_POWER_MANAGEMENT_3;
dcs_mask = WM8904_DCS_ENA_CHAN_2 | WM8904_DCS_ENA_CHAN_3;
dcs_r_reg = WM8904_DC_SERVO_6;
dcs_l_reg = WM8904_DC_SERVO_7;
dcs_l = 2;
dcs_r = 3;
break;
default:
WARN(1, "Invalid reg %d\n", reg);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Power on the PGAs */
snd_soc_component_update_bits(component, pwr_reg,
WM8904_HPL_PGA_ENA | WM8904_HPR_PGA_ENA,
WM8904_HPL_PGA_ENA | WM8904_HPR_PGA_ENA);
/* Power on the amplifier */
snd_soc_component_update_bits(component, reg,
WM8904_HPL_ENA | WM8904_HPR_ENA,
WM8904_HPL_ENA | WM8904_HPR_ENA);
/* Enable the first stage */
snd_soc_component_update_bits(component, reg,
WM8904_HPL_ENA_DLY | WM8904_HPR_ENA_DLY,
WM8904_HPL_ENA_DLY | WM8904_HPR_ENA_DLY);
/* Power up the DC servo */
snd_soc_component_update_bits(component, WM8904_DC_SERVO_0,
dcs_mask, dcs_mask);
/* Either calibrate the DC servo or restore cached state
* if we have that.
*/
if (wm8904->dcs_state[dcs_l] || wm8904->dcs_state[dcs_r]) {
dev_dbg(component->dev, "Restoring DC servo state\n");
snd_soc_component_write(component, dcs_l_reg,
wm8904->dcs_state[dcs_l]);
snd_soc_component_write(component, dcs_r_reg,
wm8904->dcs_state[dcs_r]);
snd_soc_component_write(component, WM8904_DC_SERVO_1, dcs_mask);
timeout = 20;
} else {
dev_dbg(component->dev, "Calibrating DC servo\n");
snd_soc_component_write(component, WM8904_DC_SERVO_1,
dcs_mask << WM8904_DCS_TRIG_STARTUP_0_SHIFT);
timeout = 500;
}
/* Wait for DC servo to complete */
dcs_mask <<= WM8904_DCS_CAL_COMPLETE_SHIFT;
do {
val = snd_soc_component_read32(component, WM8904_DC_SERVO_READBACK_0);
if ((val & dcs_mask) == dcs_mask)
break;
msleep(1);
} while (--timeout);
if ((val & dcs_mask) != dcs_mask)
dev_warn(component->dev, "DC servo timed out\n");
else
dev_dbg(component->dev, "DC servo ready\n");
/* Enable the output stage */
snd_soc_component_update_bits(component, reg,
WM8904_HPL_ENA_OUTP | WM8904_HPR_ENA_OUTP,
WM8904_HPL_ENA_OUTP | WM8904_HPR_ENA_OUTP);
break;
case SND_SOC_DAPM_POST_PMU:
/* Unshort the output itself */
snd_soc_component_update_bits(component, reg,
WM8904_HPL_RMV_SHORT |
WM8904_HPR_RMV_SHORT,
WM8904_HPL_RMV_SHORT |
WM8904_HPR_RMV_SHORT);
break;
case SND_SOC_DAPM_PRE_PMD:
/* Short the output */
snd_soc_component_update_bits(component, reg,
WM8904_HPL_RMV_SHORT |
WM8904_HPR_RMV_SHORT, 0);
break;
case SND_SOC_DAPM_POST_PMD:
/* Cache the DC servo configuration; this will be
* invalidated if we change the configuration. */
wm8904->dcs_state[dcs_l] = snd_soc_component_read32(component, dcs_l_reg);
wm8904->dcs_state[dcs_r] = snd_soc_component_read32(component, dcs_r_reg);
snd_soc_component_update_bits(component, WM8904_DC_SERVO_0,
dcs_mask, 0);
/* Disable the amplifier input and output stages */
snd_soc_component_update_bits(component, reg,
WM8904_HPL_ENA | WM8904_HPR_ENA |
WM8904_HPL_ENA_DLY | WM8904_HPR_ENA_DLY |
WM8904_HPL_ENA_OUTP | WM8904_HPR_ENA_OUTP,
0);
/* PGAs too */
snd_soc_component_update_bits(component, pwr_reg,
WM8904_HPL_PGA_ENA | WM8904_HPR_PGA_ENA,
0);
break;
}
return 0;
}
static const char *lin_text[] = {
"IN1L", "IN2L", "IN3L"
};
static SOC_ENUM_SINGLE_DECL(lin_enum, WM8904_ANALOGUE_LEFT_INPUT_1, 2,
lin_text);
static const struct snd_kcontrol_new lin_mux =
SOC_DAPM_ENUM("Left Capture Mux", lin_enum);
static SOC_ENUM_SINGLE_DECL(lin_inv_enum, WM8904_ANALOGUE_LEFT_INPUT_1, 4,
lin_text);
static const struct snd_kcontrol_new lin_inv_mux =
SOC_DAPM_ENUM("Left Capture Inveting Mux", lin_inv_enum);
static const char *rin_text[] = {
"IN1R", "IN2R", "IN3R"
};
static SOC_ENUM_SINGLE_DECL(rin_enum, WM8904_ANALOGUE_RIGHT_INPUT_1, 2,
rin_text);
static const struct snd_kcontrol_new rin_mux =
SOC_DAPM_ENUM("Right Capture Mux", rin_enum);
static SOC_ENUM_SINGLE_DECL(rin_inv_enum, WM8904_ANALOGUE_RIGHT_INPUT_1, 4,
rin_text);
static const struct snd_kcontrol_new rin_inv_mux =
SOC_DAPM_ENUM("Right Capture Inveting Mux", rin_inv_enum);
static const char *aif_text[] = {
"Left", "Right"
};
static SOC_ENUM_SINGLE_DECL(aifoutl_enum, WM8904_AUDIO_INTERFACE_0, 7,
aif_text);
static const struct snd_kcontrol_new aifoutl_mux =
SOC_DAPM_ENUM("AIFOUTL Mux", aifoutl_enum);
static SOC_ENUM_SINGLE_DECL(aifoutr_enum, WM8904_AUDIO_INTERFACE_0, 6,
aif_text);
static const struct snd_kcontrol_new aifoutr_mux =
SOC_DAPM_ENUM("AIFOUTR Mux", aifoutr_enum);
static SOC_ENUM_SINGLE_DECL(aifinl_enum, WM8904_AUDIO_INTERFACE_0, 5,
aif_text);
static const struct snd_kcontrol_new aifinl_mux =
SOC_DAPM_ENUM("AIFINL Mux", aifinl_enum);
static SOC_ENUM_SINGLE_DECL(aifinr_enum, WM8904_AUDIO_INTERFACE_0, 4,
aif_text);
static const struct snd_kcontrol_new aifinr_mux =
SOC_DAPM_ENUM("AIFINR Mux", aifinr_enum);
static const struct snd_soc_dapm_widget wm8904_core_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("SYSCLK", WM8904_CLOCK_RATES_2, 2, 0, sysclk_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("CLK_DSP", WM8904_CLOCK_RATES_2, 1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TOCLK", WM8904_CLOCK_RATES_2, 0, 0, NULL, 0),
};
static const struct snd_soc_dapm_widget wm8904_adc_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("IN1L"),
SND_SOC_DAPM_INPUT("IN1R"),
SND_SOC_DAPM_INPUT("IN2L"),
SND_SOC_DAPM_INPUT("IN2R"),
SND_SOC_DAPM_INPUT("IN3L"),
SND_SOC_DAPM_INPUT("IN3R"),
SND_SOC_DAPM_SUPPLY("MICBIAS", WM8904_MIC_BIAS_CONTROL_0, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("Left Capture Mux", SND_SOC_NOPM, 0, 0, &lin_mux),
SND_SOC_DAPM_MUX("Left Capture Inverting Mux", SND_SOC_NOPM, 0, 0,
&lin_inv_mux),
SND_SOC_DAPM_MUX("Right Capture Mux", SND_SOC_NOPM, 0, 0, &rin_mux),
SND_SOC_DAPM_MUX("Right Capture Inverting Mux", SND_SOC_NOPM, 0, 0,
&rin_inv_mux),
SND_SOC_DAPM_PGA("Left Capture PGA", WM8904_POWER_MANAGEMENT_0, 1, 0,
NULL, 0),
SND_SOC_DAPM_PGA("Right Capture PGA", WM8904_POWER_MANAGEMENT_0, 0, 0,
NULL, 0),
SND_SOC_DAPM_ADC("ADCL", NULL, WM8904_POWER_MANAGEMENT_6, 1, 0),
SND_SOC_DAPM_ADC("ADCR", NULL, WM8904_POWER_MANAGEMENT_6, 0, 0),
SND_SOC_DAPM_MUX("AIFOUTL Mux", SND_SOC_NOPM, 0, 0, &aifoutl_mux),
SND_SOC_DAPM_MUX("AIFOUTR Mux", SND_SOC_NOPM, 0, 0, &aifoutr_mux),
SND_SOC_DAPM_AIF_OUT("AIFOUTL", "Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIFOUTR", "Capture", 1, SND_SOC_NOPM, 0, 0),
};
static const struct snd_soc_dapm_widget wm8904_dac_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN("AIFINL", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIFINR", "Playback", 1, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &aifinl_mux),
SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &aifinr_mux),
SND_SOC_DAPM_DAC("DACL", NULL, WM8904_POWER_MANAGEMENT_6, 3, 0),
SND_SOC_DAPM_DAC("DACR", NULL, WM8904_POWER_MANAGEMENT_6, 2, 0),
SND_SOC_DAPM_SUPPLY("Charge pump", WM8904_CHARGE_PUMP_0, 0, 0, cp_event,
SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_PGA("HPL PGA", SND_SOC_NOPM, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("HPR PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("LINEL PGA", SND_SOC_NOPM, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("LINER PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA_E("Headphone Output", SND_SOC_NOPM, WM8904_ANALOGUE_HP_0,
0, NULL, 0, out_pga_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("Line Output", SND_SOC_NOPM, WM8904_ANALOGUE_LINEOUT_0,
0, NULL, 0, out_pga_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_OUTPUT("HPOUTL"),
SND_SOC_DAPM_OUTPUT("HPOUTR"),
SND_SOC_DAPM_OUTPUT("LINEOUTL"),
SND_SOC_DAPM_OUTPUT("LINEOUTR"),
};
static const char *out_mux_text[] = {
"DAC", "Bypass"
};
static SOC_ENUM_SINGLE_DECL(hpl_enum, WM8904_ANALOGUE_OUT12_ZC, 3,
out_mux_text);
static const struct snd_kcontrol_new hpl_mux =
SOC_DAPM_ENUM("HPL Mux", hpl_enum);
static SOC_ENUM_SINGLE_DECL(hpr_enum, WM8904_ANALOGUE_OUT12_ZC, 2,
out_mux_text);
static const struct snd_kcontrol_new hpr_mux =
SOC_DAPM_ENUM("HPR Mux", hpr_enum);
static SOC_ENUM_SINGLE_DECL(linel_enum, WM8904_ANALOGUE_OUT12_ZC, 1,
out_mux_text);
static const struct snd_kcontrol_new linel_mux =
SOC_DAPM_ENUM("LINEL Mux", linel_enum);
static SOC_ENUM_SINGLE_DECL(liner_enum, WM8904_ANALOGUE_OUT12_ZC, 0,
out_mux_text);
static const struct snd_kcontrol_new liner_mux =
SOC_DAPM_ENUM("LINER Mux", liner_enum);
static const char *sidetone_text[] = {
"None", "Left", "Right"
};
static SOC_ENUM_SINGLE_DECL(dacl_sidetone_enum, WM8904_DAC_DIGITAL_0, 2,
sidetone_text);
static const struct snd_kcontrol_new dacl_sidetone_mux =
SOC_DAPM_ENUM("Left Sidetone Mux", dacl_sidetone_enum);
static SOC_ENUM_SINGLE_DECL(dacr_sidetone_enum, WM8904_DAC_DIGITAL_0, 0,
sidetone_text);
static const struct snd_kcontrol_new dacr_sidetone_mux =
SOC_DAPM_ENUM("Right Sidetone Mux", dacr_sidetone_enum);
static const struct snd_soc_dapm_widget wm8904_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("Class G", WM8904_CLASS_W_0, 0, 1, NULL, 0),
SND_SOC_DAPM_PGA("Left Bypass", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Bypass", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("Left Sidetone", SND_SOC_NOPM, 0, 0, &dacl_sidetone_mux),
SND_SOC_DAPM_MUX("Right Sidetone", SND_SOC_NOPM, 0, 0, &dacr_sidetone_mux),
SND_SOC_DAPM_MUX("HPL Mux", SND_SOC_NOPM, 0, 0, &hpl_mux),
SND_SOC_DAPM_MUX("HPR Mux", SND_SOC_NOPM, 0, 0, &hpr_mux),
SND_SOC_DAPM_MUX("LINEL Mux", SND_SOC_NOPM, 0, 0, &linel_mux),
SND_SOC_DAPM_MUX("LINER Mux", SND_SOC_NOPM, 0, 0, &liner_mux),
};
static const struct snd_soc_dapm_route core_intercon[] = {
{ "CLK_DSP", NULL, "SYSCLK" },
{ "TOCLK", NULL, "SYSCLK" },
};
static const struct snd_soc_dapm_route adc_intercon[] = {
{ "Left Capture Mux", "IN1L", "IN1L" },
{ "Left Capture Mux", "IN2L", "IN2L" },
{ "Left Capture Mux", "IN3L", "IN3L" },
{ "Left Capture Inverting Mux", "IN1L", "IN1L" },
{ "Left Capture Inverting Mux", "IN2L", "IN2L" },
{ "Left Capture Inverting Mux", "IN3L", "IN3L" },
{ "Right Capture Mux", "IN1R", "IN1R" },
{ "Right Capture Mux", "IN2R", "IN2R" },
{ "Right Capture Mux", "IN3R", "IN3R" },
{ "Right Capture Inverting Mux", "IN1R", "IN1R" },
{ "Right Capture Inverting Mux", "IN2R", "IN2R" },
{ "Right Capture Inverting Mux", "IN3R", "IN3R" },
{ "Left Capture PGA", NULL, "Left Capture Mux" },
{ "Left Capture PGA", NULL, "Left Capture Inverting Mux" },
{ "Right Capture PGA", NULL, "Right Capture Mux" },
{ "Right Capture PGA", NULL, "Right Capture Inverting Mux" },
{ "AIFOUTL Mux", "Left", "ADCL" },
{ "AIFOUTL Mux", "Right", "ADCR" },
{ "AIFOUTR Mux", "Left", "ADCL" },
{ "AIFOUTR Mux", "Right", "ADCR" },
{ "AIFOUTL", NULL, "AIFOUTL Mux" },
{ "AIFOUTR", NULL, "AIFOUTR Mux" },
{ "ADCL", NULL, "CLK_DSP" },
{ "ADCL", NULL, "Left Capture PGA" },
{ "ADCR", NULL, "CLK_DSP" },
{ "ADCR", NULL, "Right Capture PGA" },
};
static const struct snd_soc_dapm_route dac_intercon[] = {
{ "DACL Mux", "Left", "AIFINL" },
{ "DACL Mux", "Right", "AIFINR" },
{ "DACR Mux", "Left", "AIFINL" },
{ "DACR Mux", "Right", "AIFINR" },
{ "DACL", NULL, "DACL Mux" },
{ "DACL", NULL, "CLK_DSP" },
{ "DACR", NULL, "DACR Mux" },
{ "DACR", NULL, "CLK_DSP" },
{ "Charge pump", NULL, "SYSCLK" },
{ "Headphone Output", NULL, "HPL PGA" },
{ "Headphone Output", NULL, "HPR PGA" },
{ "Headphone Output", NULL, "Charge pump" },
{ "Headphone Output", NULL, "TOCLK" },
{ "Line Output", NULL, "LINEL PGA" },
{ "Line Output", NULL, "LINER PGA" },
{ "Line Output", NULL, "Charge pump" },
{ "Line Output", NULL, "TOCLK" },
{ "HPOUTL", NULL, "Headphone Output" },
{ "HPOUTR", NULL, "Headphone Output" },
{ "LINEOUTL", NULL, "Line Output" },
{ "LINEOUTR", NULL, "Line Output" },
};
static const struct snd_soc_dapm_route wm8904_intercon[] = {
{ "Left Sidetone", "Left", "ADCL" },
{ "Left Sidetone", "Right", "ADCR" },
{ "DACL", NULL, "Left Sidetone" },
{ "Right Sidetone", "Left", "ADCL" },
{ "Right Sidetone", "Right", "ADCR" },
{ "DACR", NULL, "Right Sidetone" },
{ "Left Bypass", NULL, "Class G" },
{ "Left Bypass", NULL, "Left Capture PGA" },
{ "Right Bypass", NULL, "Class G" },
{ "Right Bypass", NULL, "Right Capture PGA" },
{ "HPL Mux", "DAC", "DACL" },
{ "HPL Mux", "Bypass", "Left Bypass" },
{ "HPR Mux", "DAC", "DACR" },
{ "HPR Mux", "Bypass", "Right Bypass" },
{ "LINEL Mux", "DAC", "DACL" },
{ "LINEL Mux", "Bypass", "Left Bypass" },
{ "LINER Mux", "DAC", "DACR" },
{ "LINER Mux", "Bypass", "Right Bypass" },
{ "HPL PGA", NULL, "HPL Mux" },
{ "HPR PGA", NULL, "HPR Mux" },
{ "LINEL PGA", NULL, "LINEL Mux" },
{ "LINER PGA", NULL, "LINER Mux" },
};
static const struct snd_soc_dapm_route wm8912_intercon[] = {
{ "HPL PGA", NULL, "DACL" },
{ "HPR PGA", NULL, "DACR" },
{ "LINEL PGA", NULL, "DACL" },
{ "LINER PGA", NULL, "DACR" },
};
static int wm8904_add_widgets(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
snd_soc_dapm_new_controls(dapm, wm8904_core_dapm_widgets,
ARRAY_SIZE(wm8904_core_dapm_widgets));
snd_soc_dapm_add_routes(dapm, core_intercon,
ARRAY_SIZE(core_intercon));
switch (wm8904->devtype) {
case WM8904:
snd_soc_add_component_controls(component, wm8904_adc_snd_controls,
ARRAY_SIZE(wm8904_adc_snd_controls));
snd_soc_add_component_controls(component, wm8904_dac_snd_controls,
ARRAY_SIZE(wm8904_dac_snd_controls));
snd_soc_add_component_controls(component, wm8904_snd_controls,
ARRAY_SIZE(wm8904_snd_controls));
snd_soc_dapm_new_controls(dapm, wm8904_adc_dapm_widgets,
ARRAY_SIZE(wm8904_adc_dapm_widgets));
snd_soc_dapm_new_controls(dapm, wm8904_dac_dapm_widgets,
ARRAY_SIZE(wm8904_dac_dapm_widgets));
snd_soc_dapm_new_controls(dapm, wm8904_dapm_widgets,
ARRAY_SIZE(wm8904_dapm_widgets));
snd_soc_dapm_add_routes(dapm, adc_intercon,
ARRAY_SIZE(adc_intercon));
snd_soc_dapm_add_routes(dapm, dac_intercon,
ARRAY_SIZE(dac_intercon));
snd_soc_dapm_add_routes(dapm, wm8904_intercon,
ARRAY_SIZE(wm8904_intercon));
break;
case WM8912:
snd_soc_add_component_controls(component, wm8904_dac_snd_controls,
ARRAY_SIZE(wm8904_dac_snd_controls));
snd_soc_dapm_new_controls(dapm, wm8904_dac_dapm_widgets,
ARRAY_SIZE(wm8904_dac_dapm_widgets));
snd_soc_dapm_add_routes(dapm, dac_intercon,
ARRAY_SIZE(dac_intercon));
snd_soc_dapm_add_routes(dapm, wm8912_intercon,
ARRAY_SIZE(wm8912_intercon));
break;
}
return 0;
}
static struct {
int ratio;
unsigned int clk_sys_rate;
} clk_sys_rates[] = {
{ 64, 0 },
{ 128, 1 },
{ 192, 2 },
{ 256, 3 },
{ 384, 4 },
{ 512, 5 },
{ 786, 6 },
{ 1024, 7 },
{ 1408, 8 },
{ 1536, 9 },
};
static struct {
int rate;
int sample_rate;
} sample_rates[] = {
{ 8000, 0 },
{ 11025, 1 },
{ 12000, 1 },
{ 16000, 2 },
{ 22050, 3 },
{ 24000, 3 },
{ 32000, 4 },
{ 44100, 5 },
{ 48000, 5 },
};
static struct {
int div; /* *10 due to .5s */
int bclk_div;
} bclk_divs[] = {
{ 10, 0 },
{ 15, 1 },
{ 20, 2 },
{ 30, 3 },
{ 40, 4 },
{ 50, 5 },
{ 55, 6 },
{ 60, 7 },
{ 80, 8 },
{ 100, 9 },
{ 110, 10 },
{ 120, 11 },
{ 160, 12 },
{ 200, 13 },
{ 220, 14 },
{ 240, 16 },
{ 200, 17 },
{ 320, 18 },
{ 440, 19 },
{ 480, 20 },
};
static int wm8904_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
int ret, i, best, best_val, cur_val;
unsigned int aif1 = 0;
unsigned int aif2 = 0;
unsigned int aif3 = 0;
unsigned int clock1 = 0;
unsigned int dac_digital1 = 0;
/* What BCLK do we need? */
wm8904->fs = params_rate(params);
if (wm8904->tdm_slots) {
dev_dbg(component->dev, "Configuring for %d %d bit TDM slots\n",
wm8904->tdm_slots, wm8904->tdm_width);
wm8904->bclk = snd_soc_calc_bclk(wm8904->fs,
wm8904->tdm_width, 2,
wm8904->tdm_slots);
} else {
wm8904->bclk = snd_soc_params_to_bclk(params);
}
switch (params_width(params)) {
case 16:
break;
case 20:
aif1 |= 0x40;
break;
case 24:
aif1 |= 0x80;
break;
case 32:
aif1 |= 0xc0;
break;
default:
return -EINVAL;
}
dev_dbg(component->dev, "Target BCLK is %dHz\n", wm8904->bclk);
ret = wm8904_configure_clocking(component);
if (ret != 0)
return ret;
/* Select nearest CLK_SYS_RATE */
best = 0;
best_val = abs((wm8904->sysclk_rate / clk_sys_rates[0].ratio)
- wm8904->fs);
for (i = 1; i < ARRAY_SIZE(clk_sys_rates); i++) {
cur_val = abs((wm8904->sysclk_rate /
clk_sys_rates[i].ratio) - wm8904->fs);
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
dev_dbg(component->dev, "Selected CLK_SYS_RATIO of %d\n",
clk_sys_rates[best].ratio);
clock1 |= (clk_sys_rates[best].clk_sys_rate
<< WM8904_CLK_SYS_RATE_SHIFT);
/* SAMPLE_RATE */
best = 0;
best_val = abs(wm8904->fs - sample_rates[0].rate);
for (i = 1; i < ARRAY_SIZE(sample_rates); i++) {
/* Closest match */
cur_val = abs(wm8904->fs - sample_rates[i].rate);
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
dev_dbg(component->dev, "Selected SAMPLE_RATE of %dHz\n",
sample_rates[best].rate);
clock1 |= (sample_rates[best].sample_rate
<< WM8904_SAMPLE_RATE_SHIFT);
/* Enable sloping stopband filter for low sample rates */
if (wm8904->fs <= 24000)
dac_digital1 |= WM8904_DAC_SB_FILT;
/* BCLK_DIV */
best = 0;
best_val = INT_MAX;
for (i = 0; i < ARRAY_SIZE(bclk_divs); i++) {
cur_val = ((wm8904->sysclk_rate * 10) / bclk_divs[i].div)
- wm8904->bclk;
if (cur_val < 0) /* Table is sorted */
break;
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
wm8904->bclk = (wm8904->sysclk_rate * 10) / bclk_divs[best].div;
dev_dbg(component->dev, "Selected BCLK_DIV of %d for %dHz BCLK\n",
bclk_divs[best].div, wm8904->bclk);
aif2 |= bclk_divs[best].bclk_div;
/* LRCLK is a simple fraction of BCLK */
dev_dbg(component->dev, "LRCLK_RATE is %d\n", wm8904->bclk / wm8904->fs);
aif3 |= wm8904->bclk / wm8904->fs;
/* Apply the settings */
snd_soc_component_update_bits(component, WM8904_DAC_DIGITAL_1,
WM8904_DAC_SB_FILT, dac_digital1);
snd_soc_component_update_bits(component, WM8904_AUDIO_INTERFACE_1,
WM8904_AIF_WL_MASK, aif1);
snd_soc_component_update_bits(component, WM8904_AUDIO_INTERFACE_2,
WM8904_BCLK_DIV_MASK, aif2);
snd_soc_component_update_bits(component, WM8904_AUDIO_INTERFACE_3,
WM8904_LRCLK_RATE_MASK, aif3);
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_1,
WM8904_SAMPLE_RATE_MASK |
WM8904_CLK_SYS_RATE_MASK, clock1);
/* Update filters for the new settings */
wm8904_set_retune_mobile(component);
wm8904_set_deemph(component);
return 0;
}
static int wm8904_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct wm8904_priv *priv = snd_soc_component_get_drvdata(component);
switch (clk_id) {
case WM8904_CLK_MCLK:
priv->sysclk_src = clk_id;
priv->mclk_rate = freq;
break;
case WM8904_CLK_FLL:
priv->sysclk_src = clk_id;
break;
default:
return -EINVAL;
}
dev_dbg(dai->dev, "Clock source is %d at %uHz\n", clk_id, freq);
wm8904_configure_clocking(component);
return 0;
}
static int wm8904_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
unsigned int aif1 = 0;
unsigned int aif3 = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
case SND_SOC_DAIFMT_CBS_CFM:
aif3 |= WM8904_LRCLK_DIR;
break;
case SND_SOC_DAIFMT_CBM_CFS:
aif1 |= WM8904_BCLK_DIR;
break;
case SND_SOC_DAIFMT_CBM_CFM:
aif1 |= WM8904_BCLK_DIR;
aif3 |= WM8904_LRCLK_DIR;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_B:
aif1 |= 0x3 | WM8904_AIF_LRCLK_INV;
/* fall through */
case SND_SOC_DAIFMT_DSP_A:
aif1 |= 0x3;
break;
case SND_SOC_DAIFMT_I2S:
aif1 |= 0x2;
break;
case SND_SOC_DAIFMT_RIGHT_J:
break;
case SND_SOC_DAIFMT_LEFT_J:
aif1 |= 0x1;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
/* frame inversion not valid for DSP modes */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
aif1 |= WM8904_AIF_BCLK_INV;
break;
default:
return -EINVAL;
}
break;
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
aif1 |= WM8904_AIF_BCLK_INV | WM8904_AIF_LRCLK_INV;
break;
case SND_SOC_DAIFMT_IB_NF:
aif1 |= WM8904_AIF_BCLK_INV;
break;
case SND_SOC_DAIFMT_NB_IF:
aif1 |= WM8904_AIF_LRCLK_INV;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
snd_soc_component_update_bits(component, WM8904_AUDIO_INTERFACE_1,
WM8904_AIF_BCLK_INV | WM8904_AIF_LRCLK_INV |
WM8904_AIF_FMT_MASK | WM8904_BCLK_DIR, aif1);
snd_soc_component_update_bits(component, WM8904_AUDIO_INTERFACE_3,
WM8904_LRCLK_DIR, aif3);
return 0;
}
static int wm8904_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
int aif1 = 0;
/* Don't need to validate anything if we're turning off TDM */
if (slots == 0)
goto out;
/* Note that we allow configurations we can't handle ourselves -
* for example, we can generate clocks for slots 2 and up even if
* we can't use those slots ourselves.
*/
aif1 |= WM8904_AIFADC_TDM | WM8904_AIFDAC_TDM;
switch (rx_mask) {
case 3:
break;
case 0xc:
aif1 |= WM8904_AIFADC_TDM_CHAN;
break;
default:
return -EINVAL;
}
switch (tx_mask) {
case 3:
break;
case 0xc:
aif1 |= WM8904_AIFDAC_TDM_CHAN;
break;
default:
return -EINVAL;
}
out:
wm8904->tdm_width = slot_width;
wm8904->tdm_slots = slots / 2;
snd_soc_component_update_bits(component, WM8904_AUDIO_INTERFACE_1,
WM8904_AIFADC_TDM | WM8904_AIFADC_TDM_CHAN |
WM8904_AIFDAC_TDM | WM8904_AIFDAC_TDM_CHAN, aif1);
return 0;
}
struct _fll_div {
u16 fll_fratio;
u16 fll_outdiv;
u16 fll_clk_ref_div;
u16 n;
u16 k;
};
/* The size in bits of the FLL divide multiplied by 10
* to allow rounding later */
#define FIXED_FLL_SIZE ((1 << 16) * 10)
static struct {
unsigned int min;
unsigned int max;
u16 fll_fratio;
int ratio;
} fll_fratios[] = {
{ 0, 64000, 4, 16 },
{ 64000, 128000, 3, 8 },
{ 128000, 256000, 2, 4 },
{ 256000, 1000000, 1, 2 },
{ 1000000, 13500000, 0, 1 },
};
static int fll_factors(struct _fll_div *fll_div, unsigned int Fref,
unsigned int Fout)
{
u64 Kpart;
unsigned int K, Ndiv, Nmod, target;
unsigned int div;
int i;
/* Fref must be <=13.5MHz */
div = 1;
fll_div->fll_clk_ref_div = 0;
while ((Fref / div) > 13500000) {
div *= 2;
fll_div->fll_clk_ref_div++;
if (div > 8) {
pr_err("Can't scale %dMHz input down to <=13.5MHz\n",
Fref);
return -EINVAL;
}
}
pr_debug("Fref=%u Fout=%u\n", Fref, Fout);
/* Apply the division for our remaining calculations */
Fref /= div;
/* Fvco should be 90-100MHz; don't check the upper bound */
div = 4;
while (Fout * div < 90000000) {
div++;
if (div > 64) {
pr_err("Unable to find FLL_OUTDIV for Fout=%uHz\n",
Fout);
return -EINVAL;
}
}
target = Fout * div;
fll_div->fll_outdiv = div - 1;
pr_debug("Fvco=%dHz\n", target);
/* Find an appropriate FLL_FRATIO and factor it out of the target */
for (i = 0; i < ARRAY_SIZE(fll_fratios); i++) {
if (fll_fratios[i].min <= Fref && Fref <= fll_fratios[i].max) {
fll_div->fll_fratio = fll_fratios[i].fll_fratio;
target /= fll_fratios[i].ratio;
break;
}
}
if (i == ARRAY_SIZE(fll_fratios)) {
pr_err("Unable to find FLL_FRATIO for Fref=%uHz\n", Fref);
return -EINVAL;
}
/* Now, calculate N.K */
Ndiv = target / Fref;
fll_div->n = Ndiv;
Nmod = target % Fref;
pr_debug("Nmod=%d\n", Nmod);
/* Calculate fractional part - scale up so we can round. */
Kpart = FIXED_FLL_SIZE * (long long)Nmod;
do_div(Kpart, Fref);
K = Kpart & 0xFFFFFFFF;
if ((K % 10) >= 5)
K += 5;
/* Move down to proper range now rounding is done */
fll_div->k = K / 10;
pr_debug("N=%x K=%x FLL_FRATIO=%x FLL_OUTDIV=%x FLL_CLK_REF_DIV=%x\n",
fll_div->n, fll_div->k,
fll_div->fll_fratio, fll_div->fll_outdiv,
fll_div->fll_clk_ref_div);
return 0;
}
static int wm8904_set_fll(struct snd_soc_dai *dai, int fll_id, int source,
unsigned int Fref, unsigned int Fout)
{
struct snd_soc_component *component = dai->component;
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct _fll_div fll_div;
int ret, val;
int clock2, fll1;
/* Any change? */
if (source == wm8904->fll_src && Fref == wm8904->fll_fref &&
Fout == wm8904->fll_fout)
return 0;
clock2 = snd_soc_component_read32(component, WM8904_CLOCK_RATES_2);
if (Fout == 0) {
dev_dbg(component->dev, "FLL disabled\n");
wm8904->fll_fref = 0;
wm8904->fll_fout = 0;
/* Gate SYSCLK to avoid glitches */
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_2,
WM8904_CLK_SYS_ENA, 0);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_OSC_ENA | WM8904_FLL_ENA, 0);
goto out;
}
/* Validate the FLL ID */
switch (source) {
case WM8904_FLL_MCLK:
case WM8904_FLL_LRCLK:
case WM8904_FLL_BCLK:
ret = fll_factors(&fll_div, Fref, Fout);
if (ret != 0)
return ret;
break;
case WM8904_FLL_FREE_RUNNING:
dev_dbg(component->dev, "Using free running FLL\n");
/* Force 12MHz and output/4 for now */
Fout = 12000000;
Fref = 12000000;
memset(&fll_div, 0, sizeof(fll_div));
fll_div.fll_outdiv = 3;
break;
default:
dev_err(component->dev, "Unknown FLL ID %d\n", fll_id);
return -EINVAL;
}
/* Save current state then disable the FLL and SYSCLK to avoid
* misclocking */
fll1 = snd_soc_component_read32(component, WM8904_FLL_CONTROL_1);
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_2,
WM8904_CLK_SYS_ENA, 0);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_OSC_ENA | WM8904_FLL_ENA, 0);
/* Unlock forced oscilator control to switch it on/off */
snd_soc_component_update_bits(component, WM8904_CONTROL_INTERFACE_TEST_1,
WM8904_USER_KEY, WM8904_USER_KEY);
if (fll_id == WM8904_FLL_FREE_RUNNING) {
val = WM8904_FLL_FRC_NCO;
} else {
val = 0;
}
snd_soc_component_update_bits(component, WM8904_FLL_NCO_TEST_1, WM8904_FLL_FRC_NCO,
val);
snd_soc_component_update_bits(component, WM8904_CONTROL_INTERFACE_TEST_1,
WM8904_USER_KEY, 0);
switch (fll_id) {
case WM8904_FLL_MCLK:
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_5,
WM8904_FLL_CLK_REF_SRC_MASK, 0);
break;
case WM8904_FLL_LRCLK:
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_5,
WM8904_FLL_CLK_REF_SRC_MASK, 1);
break;
case WM8904_FLL_BCLK:
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_5,
WM8904_FLL_CLK_REF_SRC_MASK, 2);
break;
}
if (fll_div.k)
val = WM8904_FLL_FRACN_ENA;
else
val = 0;
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_FRACN_ENA, val);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_2,
WM8904_FLL_OUTDIV_MASK | WM8904_FLL_FRATIO_MASK,
(fll_div.fll_outdiv << WM8904_FLL_OUTDIV_SHIFT) |
(fll_div.fll_fratio << WM8904_FLL_FRATIO_SHIFT));
snd_soc_component_write(component, WM8904_FLL_CONTROL_3, fll_div.k);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_4, WM8904_FLL_N_MASK,
fll_div.n << WM8904_FLL_N_SHIFT);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_5,
WM8904_FLL_CLK_REF_DIV_MASK,
fll_div.fll_clk_ref_div
<< WM8904_FLL_CLK_REF_DIV_SHIFT);
dev_dbg(component->dev, "FLL configured for %dHz->%dHz\n", Fref, Fout);
wm8904->fll_fref = Fref;
wm8904->fll_fout = Fout;
wm8904->fll_src = source;
/* Enable the FLL if it was previously active */
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_OSC_ENA, fll1);
snd_soc_component_update_bits(component, WM8904_FLL_CONTROL_1,
WM8904_FLL_ENA, fll1);
out:
/* Reenable SYSCLK if it was previously active */
snd_soc_component_update_bits(component, WM8904_CLOCK_RATES_2,
WM8904_CLK_SYS_ENA, clock2);
return 0;
}
static int wm8904_digital_mute(struct snd_soc_dai *codec_dai, int mute)
{
struct snd_soc_component *component = codec_dai->component;
int val;
if (mute)
val = WM8904_DAC_MUTE;
else
val = 0;
snd_soc_component_update_bits(component, WM8904_DAC_DIGITAL_1, WM8904_DAC_MUTE, val);
return 0;
}
static int wm8904_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* VMID resistance 2*50k */
snd_soc_component_update_bits(component, WM8904_VMID_CONTROL_0,
WM8904_VMID_RES_MASK,
0x1 << WM8904_VMID_RES_SHIFT);
/* Normal bias current */
snd_soc_component_update_bits(component, WM8904_BIAS_CONTROL_0,
WM8904_ISEL_MASK, 2 << WM8904_ISEL_SHIFT);
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
ret = regulator_bulk_enable(ARRAY_SIZE(wm8904->supplies),
wm8904->supplies);
if (ret != 0) {
dev_err(component->dev,
"Failed to enable supplies: %d\n",
ret);
return ret;
}
ret = clk_prepare_enable(wm8904->mclk);
if (ret) {
dev_err(component->dev,
"Failed to enable MCLK: %d\n", ret);
regulator_bulk_disable(ARRAY_SIZE(wm8904->supplies),
wm8904->supplies);
return ret;
}
regcache_cache_only(wm8904->regmap, false);
regcache_sync(wm8904->regmap);
/* Enable bias */
snd_soc_component_update_bits(component, WM8904_BIAS_CONTROL_0,
WM8904_BIAS_ENA, WM8904_BIAS_ENA);
/* Enable VMID, VMID buffering, 2*5k resistance */
snd_soc_component_update_bits(component, WM8904_VMID_CONTROL_0,
WM8904_VMID_ENA |
WM8904_VMID_RES_MASK,
WM8904_VMID_ENA |
0x3 << WM8904_VMID_RES_SHIFT);
/* Let VMID ramp */
msleep(1);
}
/* Maintain VMID with 2*250k */
snd_soc_component_update_bits(component, WM8904_VMID_CONTROL_0,
WM8904_VMID_RES_MASK,
0x2 << WM8904_VMID_RES_SHIFT);
/* Bias current *0.5 */
snd_soc_component_update_bits(component, WM8904_BIAS_CONTROL_0,
WM8904_ISEL_MASK, 0);
break;
case SND_SOC_BIAS_OFF:
/* Turn off VMID */
snd_soc_component_update_bits(component, WM8904_VMID_CONTROL_0,
WM8904_VMID_RES_MASK | WM8904_VMID_ENA, 0);
/* Stop bias generation */
snd_soc_component_update_bits(component, WM8904_BIAS_CONTROL_0,
WM8904_BIAS_ENA, 0);
regcache_cache_only(wm8904->regmap, true);
regcache_mark_dirty(wm8904->regmap);
regulator_bulk_disable(ARRAY_SIZE(wm8904->supplies),
wm8904->supplies);
clk_disable_unprepare(wm8904->mclk);
break;
}
return 0;
}
#define WM8904_RATES SNDRV_PCM_RATE_8000_96000
#define WM8904_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops wm8904_dai_ops = {
.set_sysclk = wm8904_set_sysclk,
.set_fmt = wm8904_set_fmt,
.set_tdm_slot = wm8904_set_tdm_slot,
.set_pll = wm8904_set_fll,
.hw_params = wm8904_hw_params,
.digital_mute = wm8904_digital_mute,
};
static struct snd_soc_dai_driver wm8904_dai = {
.name = "wm8904-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = WM8904_RATES,
.formats = WM8904_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 2,
.channels_max = 2,
.rates = WM8904_RATES,
.formats = WM8904_FORMATS,
},
.ops = &wm8904_dai_ops,
.symmetric_rates = 1,
};
static void wm8904_handle_retune_mobile_pdata(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct wm8904_pdata *pdata = wm8904->pdata;
struct snd_kcontrol_new control =
SOC_ENUM_EXT("EQ Mode",
wm8904->retune_mobile_enum,
wm8904_get_retune_mobile_enum,
wm8904_put_retune_mobile_enum);
int ret, i, j;
const char **t;
/* We need an array of texts for the enum API but the number
* of texts is likely to be less than the number of
* configurations due to the sample rate dependency of the
* configurations. */
wm8904->num_retune_mobile_texts = 0;
wm8904->retune_mobile_texts = NULL;
for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) {
for (j = 0; j < wm8904->num_retune_mobile_texts; j++) {
if (strcmp(pdata->retune_mobile_cfgs[i].name,
wm8904->retune_mobile_texts[j]) == 0)
break;
}
if (j != wm8904->num_retune_mobile_texts)
continue;
/* Expand the array... */
t = krealloc(wm8904->retune_mobile_texts,
sizeof(char *) *
(wm8904->num_retune_mobile_texts + 1),
GFP_KERNEL);
if (t == NULL)
continue;
/* ...store the new entry... */
t[wm8904->num_retune_mobile_texts] =
pdata->retune_mobile_cfgs[i].name;
/* ...and remember the new version. */
wm8904->num_retune_mobile_texts++;
wm8904->retune_mobile_texts = t;
}
dev_dbg(component->dev, "Allocated %d unique ReTune Mobile names\n",
wm8904->num_retune_mobile_texts);
wm8904->retune_mobile_enum.items = wm8904->num_retune_mobile_texts;
wm8904->retune_mobile_enum.texts = wm8904->retune_mobile_texts;
ret = snd_soc_add_component_controls(component, &control, 1);
if (ret != 0)
dev_err(component->dev,
"Failed to add ReTune Mobile control: %d\n", ret);
}
static void wm8904_handle_pdata(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
struct wm8904_pdata *pdata = wm8904->pdata;
int ret, i;
if (!pdata) {
snd_soc_add_component_controls(component, wm8904_eq_controls,
ARRAY_SIZE(wm8904_eq_controls));
return;
}
dev_dbg(component->dev, "%d DRC configurations\n", pdata->num_drc_cfgs);
if (pdata->num_drc_cfgs) {
struct snd_kcontrol_new control =
SOC_ENUM_EXT("DRC Mode", wm8904->drc_enum,
wm8904_get_drc_enum, wm8904_put_drc_enum);
/* We need an array of texts for the enum API */
wm8904->drc_texts = kmalloc_array(pdata->num_drc_cfgs,
sizeof(char *),
GFP_KERNEL);
if (!wm8904->drc_texts)
return;
for (i = 0; i < pdata->num_drc_cfgs; i++)
wm8904->drc_texts[i] = pdata->drc_cfgs[i].name;
wm8904->drc_enum.items = pdata->num_drc_cfgs;
wm8904->drc_enum.texts = wm8904->drc_texts;
ret = snd_soc_add_component_controls(component, &control, 1);
if (ret != 0)
dev_err(component->dev,
"Failed to add DRC mode control: %d\n", ret);
wm8904_set_drc(component);
}
dev_dbg(component->dev, "%d ReTune Mobile configurations\n",
pdata->num_retune_mobile_cfgs);
if (pdata->num_retune_mobile_cfgs)
wm8904_handle_retune_mobile_pdata(component);
else
snd_soc_add_component_controls(component, wm8904_eq_controls,
ARRAY_SIZE(wm8904_eq_controls));
}
static int wm8904_probe(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
switch (wm8904->devtype) {
case WM8904:
break;
case WM8912:
memset(&wm8904_dai.capture, 0, sizeof(wm8904_dai.capture));
break;
default:
dev_err(component->dev, "Unknown device type %d\n",
wm8904->devtype);
return -EINVAL;
}
wm8904_handle_pdata(component);
wm8904_add_widgets(component);
return 0;
}
static void wm8904_remove(struct snd_soc_component *component)
{
struct wm8904_priv *wm8904 = snd_soc_component_get_drvdata(component);
kfree(wm8904->retune_mobile_texts);
kfree(wm8904->drc_texts);
}
static const struct snd_soc_component_driver soc_component_dev_wm8904 = {
.probe = wm8904_probe,
.remove = wm8904_remove,
.set_bias_level = wm8904_set_bias_level,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config wm8904_regmap = {
.reg_bits = 8,
.val_bits = 16,
.max_register = WM8904_MAX_REGISTER,
.volatile_reg = wm8904_volatile_register,
.readable_reg = wm8904_readable_register,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = wm8904_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(wm8904_reg_defaults),
};
#ifdef CONFIG_OF
static const struct of_device_id wm8904_of_match[] = {
{
.compatible = "wlf,wm8904",
.data = (void *)WM8904,
}, {
.compatible = "wlf,wm8912",
.data = (void *)WM8912,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, wm8904_of_match);
#endif
static int wm8904_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct wm8904_priv *wm8904;
unsigned int val;
int ret, i;
wm8904 = devm_kzalloc(&i2c->dev, sizeof(struct wm8904_priv),
GFP_KERNEL);
if (wm8904 == NULL)
return -ENOMEM;
wm8904->mclk = devm_clk_get(&i2c->dev, "mclk");
if (IS_ERR(wm8904->mclk)) {
ret = PTR_ERR(wm8904->mclk);
dev_err(&i2c->dev, "Failed to get MCLK\n");
return ret;
}
wm8904->regmap = devm_regmap_init_i2c(i2c, &wm8904_regmap);
if (IS_ERR(wm8904->regmap)) {
ret = PTR_ERR(wm8904->regmap);
dev_err(&i2c->dev, "Failed to allocate register map: %d\n",
ret);
return ret;
}
if (i2c->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(wm8904_of_match, i2c->dev.of_node);
if (match == NULL)
return -EINVAL;
wm8904->devtype = (enum wm8904_type)match->data;
} else {
wm8904->devtype = id->driver_data;
}
i2c_set_clientdata(i2c, wm8904);
wm8904->pdata = i2c->dev.platform_data;
for (i = 0; i < ARRAY_SIZE(wm8904->supplies); i++)
wm8904->supplies[i].supply = wm8904_supply_names[i];
ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(wm8904->supplies),
wm8904->supplies);
if (ret != 0) {
dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(wm8904->supplies),
wm8904->supplies);
if (ret != 0) {
dev_err(&i2c->dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
ret = regmap_read(wm8904->regmap, WM8904_SW_RESET_AND_ID, &val);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to read ID register: %d\n", ret);
goto err_enable;
}
if (val != 0x8904) {
dev_err(&i2c->dev, "Device is not a WM8904, ID is %x\n", val);
ret = -EINVAL;
goto err_enable;
}
ret = regmap_read(wm8904->regmap, WM8904_REVISION, &val);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to read device revision: %d\n",
ret);
goto err_enable;
}
dev_info(&i2c->dev, "revision %c\n", val + 'A');
ret = regmap_write(wm8904->regmap, WM8904_SW_RESET_AND_ID, 0);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to issue reset: %d\n", ret);
goto err_enable;
}
/* Change some default settings - latch VU and enable ZC */
regmap_update_bits(wm8904->regmap, WM8904_ADC_DIGITAL_VOLUME_LEFT,
WM8904_ADC_VU, WM8904_ADC_VU);
regmap_update_bits(wm8904->regmap, WM8904_ADC_DIGITAL_VOLUME_RIGHT,
WM8904_ADC_VU, WM8904_ADC_VU);
regmap_update_bits(wm8904->regmap, WM8904_DAC_DIGITAL_VOLUME_LEFT,
WM8904_DAC_VU, WM8904_DAC_VU);
regmap_update_bits(wm8904->regmap, WM8904_DAC_DIGITAL_VOLUME_RIGHT,
WM8904_DAC_VU, WM8904_DAC_VU);
regmap_update_bits(wm8904->regmap, WM8904_ANALOGUE_OUT1_LEFT,
WM8904_HPOUT_VU | WM8904_HPOUTLZC,
WM8904_HPOUT_VU | WM8904_HPOUTLZC);
regmap_update_bits(wm8904->regmap, WM8904_ANALOGUE_OUT1_RIGHT,
WM8904_HPOUT_VU | WM8904_HPOUTRZC,
WM8904_HPOUT_VU | WM8904_HPOUTRZC);
regmap_update_bits(wm8904->regmap, WM8904_ANALOGUE_OUT2_LEFT,
WM8904_LINEOUT_VU | WM8904_LINEOUTLZC,
WM8904_LINEOUT_VU | WM8904_LINEOUTLZC);
regmap_update_bits(wm8904->regmap, WM8904_ANALOGUE_OUT2_RIGHT,
WM8904_LINEOUT_VU | WM8904_LINEOUTRZC,
WM8904_LINEOUT_VU | WM8904_LINEOUTRZC);
regmap_update_bits(wm8904->regmap, WM8904_CLOCK_RATES_0,
WM8904_SR_MODE, 0);
/* Apply configuration from the platform data. */
if (wm8904->pdata) {
for (i = 0; i < WM8904_GPIO_REGS; i++) {
if (!wm8904->pdata->gpio_cfg[i])
continue;
regmap_update_bits(wm8904->regmap,
WM8904_GPIO_CONTROL_1 + i,
0xffff,
wm8904->pdata->gpio_cfg[i]);
}
/* Zero is the default value for these anyway */
for (i = 0; i < WM8904_MIC_REGS; i++)
regmap_update_bits(wm8904->regmap,
WM8904_MIC_BIAS_CONTROL_0 + i,
0xffff,
wm8904->pdata->mic_cfg[i]);
}
/* Set Class W by default - this will be managed by the Class
* G widget at runtime where bypass paths are available.
*/
regmap_update_bits(wm8904->regmap, WM8904_CLASS_W_0,
WM8904_CP_DYN_PWR, WM8904_CP_DYN_PWR);
/* Use normal bias source */
regmap_update_bits(wm8904->regmap, WM8904_BIAS_CONTROL_0,
WM8904_POBCTRL, 0);
/* Can leave the device powered off until we need it */
regcache_cache_only(wm8904->regmap, true);
regulator_bulk_disable(ARRAY_SIZE(wm8904->supplies), wm8904->supplies);
ret = devm_snd_soc_register_component(&i2c->dev,
&soc_component_dev_wm8904, &wm8904_dai, 1);
if (ret != 0)
return ret;
return 0;
err_enable:
regulator_bulk_disable(ARRAY_SIZE(wm8904->supplies), wm8904->supplies);
return ret;
}
static const struct i2c_device_id wm8904_i2c_id[] = {
{ "wm8904", WM8904 },
{ "wm8912", WM8912 },
{ "wm8918", WM8904 }, /* Actually a subset, updates to follow */
{ }
};
MODULE_DEVICE_TABLE(i2c, wm8904_i2c_id);
static struct i2c_driver wm8904_i2c_driver = {
.driver = {
.name = "wm8904",
.of_match_table = of_match_ptr(wm8904_of_match),
},
.probe = wm8904_i2c_probe,
.id_table = wm8904_i2c_id,
};
module_i2c_driver(wm8904_i2c_driver);
MODULE_DESCRIPTION("ASoC WM8904 driver");
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
MODULE_LICENSE("GPL");