Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 | /* * A fairly generic DMA-API to IOMMU-API glue layer. * * Copyright (C) 2014-2015 ARM Ltd. * * based in part on arch/arm/mm/dma-mapping.c: * Copyright (C) 2000-2004 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/acpi_iort.h> #include <linux/device.h> #include <linux/dma-iommu.h> #include <linux/gfp.h> #include <linux/huge_mm.h> #include <linux/iommu.h> #include <linux/iova.h> #include <linux/irq.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/scatterlist.h> #include <linux/vmalloc.h> struct iommu_dma_msi_page { struct list_head list; dma_addr_t iova; phys_addr_t phys; }; enum iommu_dma_cookie_type { IOMMU_DMA_IOVA_COOKIE, IOMMU_DMA_MSI_COOKIE, }; struct iommu_dma_cookie { enum iommu_dma_cookie_type type; union { /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ struct iova_domain iovad; /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ dma_addr_t msi_iova; }; struct list_head msi_page_list; spinlock_t msi_lock; /* Domain for flush queue callback; NULL if flush queue not in use */ struct iommu_domain *fq_domain; }; static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) { if (cookie->type == IOMMU_DMA_IOVA_COOKIE) return cookie->iovad.granule; return PAGE_SIZE; } static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) { struct iommu_dma_cookie *cookie; cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); if (cookie) { spin_lock_init(&cookie->msi_lock); INIT_LIST_HEAD(&cookie->msi_page_list); cookie->type = type; } return cookie; } int iommu_dma_init(void) { return iova_cache_get(); } /** * iommu_get_dma_cookie - Acquire DMA-API resources for a domain * @domain: IOMMU domain to prepare for DMA-API usage * * IOMMU drivers should normally call this from their domain_alloc * callback when domain->type == IOMMU_DOMAIN_DMA. */ int iommu_get_dma_cookie(struct iommu_domain *domain) { if (domain->iova_cookie) return -EEXIST; domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); if (!domain->iova_cookie) return -ENOMEM; return 0; } EXPORT_SYMBOL(iommu_get_dma_cookie); /** * iommu_get_msi_cookie - Acquire just MSI remapping resources * @domain: IOMMU domain to prepare * @base: Start address of IOVA region for MSI mappings * * Users who manage their own IOVA allocation and do not want DMA API support, * but would still like to take advantage of automatic MSI remapping, can use * this to initialise their own domain appropriately. Users should reserve a * contiguous IOVA region, starting at @base, large enough to accommodate the * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address * used by the devices attached to @domain. */ int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) { struct iommu_dma_cookie *cookie; if (domain->type != IOMMU_DOMAIN_UNMANAGED) return -EINVAL; if (domain->iova_cookie) return -EEXIST; cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); if (!cookie) return -ENOMEM; cookie->msi_iova = base; domain->iova_cookie = cookie; return 0; } EXPORT_SYMBOL(iommu_get_msi_cookie); /** * iommu_put_dma_cookie - Release a domain's DMA mapping resources * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or * iommu_get_msi_cookie() * * IOMMU drivers should normally call this from their domain_free callback. */ void iommu_put_dma_cookie(struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi, *tmp; if (!cookie) return; if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) put_iova_domain(&cookie->iovad); list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { list_del(&msi->list); kfree(msi); } kfree(cookie); domain->iova_cookie = NULL; } EXPORT_SYMBOL(iommu_put_dma_cookie); /** * iommu_dma_get_resv_regions - Reserved region driver helper * @dev: Device from iommu_get_resv_regions() * @list: Reserved region list from iommu_get_resv_regions() * * IOMMU drivers can use this to implement their .get_resv_regions callback * for general non-IOMMU-specific reservations. Currently, this covers GICv3 * ITS region reservation on ACPI based ARM platforms that may require HW MSI * reservation. */ void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) { if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) iort_iommu_msi_get_resv_regions(dev, list); } EXPORT_SYMBOL(iommu_dma_get_resv_regions); static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, phys_addr_t start, phys_addr_t end) { struct iova_domain *iovad = &cookie->iovad; struct iommu_dma_msi_page *msi_page; int i, num_pages; start -= iova_offset(iovad, start); num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL); if (!msi_page) return -ENOMEM; for (i = 0; i < num_pages; i++) { msi_page[i].phys = start; msi_page[i].iova = start; INIT_LIST_HEAD(&msi_page[i].list); list_add(&msi_page[i].list, &cookie->msi_page_list); start += iovad->granule; } return 0; } static void iova_reserve_pci_windows(struct pci_dev *dev, struct iova_domain *iovad) { struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); struct resource_entry *window; unsigned long lo, hi; resource_list_for_each_entry(window, &bridge->windows) { if (resource_type(window->res) != IORESOURCE_MEM) continue; lo = iova_pfn(iovad, window->res->start - window->offset); hi = iova_pfn(iovad, window->res->end - window->offset); reserve_iova(iovad, lo, hi); } } static int iova_reserve_iommu_regions(struct device *dev, struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; struct iommu_resv_region *region; LIST_HEAD(resv_regions); int ret = 0; if (dev_is_pci(dev)) iova_reserve_pci_windows(to_pci_dev(dev), iovad); iommu_get_resv_regions(dev, &resv_regions); list_for_each_entry(region, &resv_regions, list) { unsigned long lo, hi; /* We ARE the software that manages these! */ if (region->type == IOMMU_RESV_SW_MSI) continue; lo = iova_pfn(iovad, region->start); hi = iova_pfn(iovad, region->start + region->length - 1); reserve_iova(iovad, lo, hi); if (region->type == IOMMU_RESV_MSI) ret = cookie_init_hw_msi_region(cookie, region->start, region->start + region->length); if (ret) break; } iommu_put_resv_regions(dev, &resv_regions); return ret; } static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) { struct iommu_dma_cookie *cookie; struct iommu_domain *domain; cookie = container_of(iovad, struct iommu_dma_cookie, iovad); domain = cookie->fq_domain; /* * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE * implies that ops->flush_iotlb_all must be non-NULL. */ domain->ops->flush_iotlb_all(domain); } /** * iommu_dma_init_domain - Initialise a DMA mapping domain * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() * @base: IOVA at which the mappable address space starts * @size: Size of IOVA space * @dev: Device the domain is being initialised for * * @base and @size should be exact multiples of IOMMU page granularity to * avoid rounding surprises. If necessary, we reserve the page at address 0 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but * any change which could make prior IOVAs invalid will fail. */ int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size, struct device *dev) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; unsigned long order, base_pfn; int attr; if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) return -EINVAL; /* Use the smallest supported page size for IOVA granularity */ order = __ffs(domain->pgsize_bitmap); base_pfn = max_t(unsigned long, 1, base >> order); /* Check the domain allows at least some access to the device... */ if (domain->geometry.force_aperture) { if (base > domain->geometry.aperture_end || base + size <= domain->geometry.aperture_start) { pr_warn("specified DMA range outside IOMMU capability\n"); return -EFAULT; } /* ...then finally give it a kicking to make sure it fits */ base_pfn = max_t(unsigned long, base_pfn, domain->geometry.aperture_start >> order); } /* start_pfn is always nonzero for an already-initialised domain */ if (iovad->start_pfn) { if (1UL << order != iovad->granule || base_pfn != iovad->start_pfn) { pr_warn("Incompatible range for DMA domain\n"); return -EFAULT; } return 0; } init_iova_domain(iovad, 1UL << order, base_pfn); if (!cookie->fq_domain && !iommu_domain_get_attr(domain, DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { cookie->fq_domain = domain; init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); } if (!dev) return 0; return iova_reserve_iommu_regions(dev, domain); } EXPORT_SYMBOL(iommu_dma_init_domain); /** * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API * page flags. * @dir: Direction of DMA transfer * @coherent: Is the DMA master cache-coherent? * @attrs: DMA attributes for the mapping * * Return: corresponding IOMMU API page protection flags */ int dma_info_to_prot(enum dma_data_direction dir, bool coherent, unsigned long attrs) { int prot = coherent ? IOMMU_CACHE : 0; if (attrs & DMA_ATTR_PRIVILEGED) prot |= IOMMU_PRIV; switch (dir) { case DMA_BIDIRECTIONAL: return prot | IOMMU_READ | IOMMU_WRITE; case DMA_TO_DEVICE: return prot | IOMMU_READ; case DMA_FROM_DEVICE: return prot | IOMMU_WRITE; default: return 0; } } static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, size_t size, dma_addr_t dma_limit, struct device *dev) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; unsigned long shift, iova_len, iova = 0; if (cookie->type == IOMMU_DMA_MSI_COOKIE) { cookie->msi_iova += size; return cookie->msi_iova - size; } shift = iova_shift(iovad); iova_len = size >> shift; /* * Freeing non-power-of-two-sized allocations back into the IOVA caches * will come back to bite us badly, so we have to waste a bit of space * rounding up anything cacheable to make sure that can't happen. The * order of the unadjusted size will still match upon freeing. */ if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) iova_len = roundup_pow_of_two(iova_len); if (dev->bus_dma_mask) dma_limit &= dev->bus_dma_mask; if (domain->geometry.force_aperture) dma_limit = min(dma_limit, domain->geometry.aperture_end); /* Try to get PCI devices a SAC address */ if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift, false); if (!iova) iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true); return (dma_addr_t)iova << shift; } static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, dma_addr_t iova, size_t size) { struct iova_domain *iovad = &cookie->iovad; /* The MSI case is only ever cleaning up its most recent allocation */ if (cookie->type == IOMMU_DMA_MSI_COOKIE) cookie->msi_iova -= size; else if (cookie->fq_domain) /* non-strict mode */ queue_iova(iovad, iova_pfn(iovad, iova), size >> iova_shift(iovad), 0); else free_iova_fast(iovad, iova_pfn(iovad, iova), size >> iova_shift(iovad)); } static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, size_t size) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; size_t iova_off = iova_offset(iovad, dma_addr); dma_addr -= iova_off; size = iova_align(iovad, size + iova_off); WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size); if (!cookie->fq_domain) iommu_tlb_sync(domain); iommu_dma_free_iova(cookie, dma_addr, size); } static void __iommu_dma_free_pages(struct page **pages, int count) { while (count--) __free_page(pages[count]); kvfree(pages); } static struct page **__iommu_dma_alloc_pages(struct device *dev, unsigned int count, unsigned long order_mask, gfp_t gfp) { struct page **pages; unsigned int i = 0, nid = dev_to_node(dev); order_mask &= (2U << MAX_ORDER) - 1; if (!order_mask) return NULL; pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); if (!pages) return NULL; /* IOMMU can map any pages, so himem can also be used here */ gfp |= __GFP_NOWARN | __GFP_HIGHMEM; while (count) { struct page *page = NULL; unsigned int order_size; /* * Higher-order allocations are a convenience rather * than a necessity, hence using __GFP_NORETRY until * falling back to minimum-order allocations. */ for (order_mask &= (2U << __fls(count)) - 1; order_mask; order_mask &= ~order_size) { unsigned int order = __fls(order_mask); gfp_t alloc_flags = gfp; order_size = 1U << order; if (order_mask > order_size) alloc_flags |= __GFP_NORETRY; page = alloc_pages_node(nid, alloc_flags, order); if (!page) continue; if (!order) break; if (!PageCompound(page)) { split_page(page, order); break; } else if (!split_huge_page(page)) { break; } __free_pages(page, order); } if (!page) { __iommu_dma_free_pages(pages, i); return NULL; } count -= order_size; while (order_size--) pages[i++] = page++; } return pages; } /** * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() * @dev: Device which owns this buffer * @pages: Array of buffer pages as returned by iommu_dma_alloc() * @size: Size of buffer in bytes * @handle: DMA address of buffer * * Frees both the pages associated with the buffer, and the array * describing them */ void iommu_dma_free(struct device *dev, struct page **pages, size_t size, dma_addr_t *handle) { __iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size); __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); *handle = DMA_MAPPING_ERROR; } /** * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space * @dev: Device to allocate memory for. Must be a real device * attached to an iommu_dma_domain * @size: Size of buffer in bytes * @gfp: Allocation flags * @attrs: DMA attributes for this allocation * @prot: IOMMU mapping flags * @handle: Out argument for allocated DMA handle * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the * given VA/PA are visible to the given non-coherent device. * * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, * but an IOMMU which supports smaller pages might not map the whole thing. * * Return: Array of struct page pointers describing the buffer, * or NULL on failure. */ struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, unsigned long attrs, int prot, dma_addr_t *handle, void (*flush_page)(struct device *, const void *, phys_addr_t)) { struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; struct page **pages; struct sg_table sgt; dma_addr_t iova; unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; *handle = DMA_MAPPING_ERROR; min_size = alloc_sizes & -alloc_sizes; if (min_size < PAGE_SIZE) { min_size = PAGE_SIZE; alloc_sizes |= PAGE_SIZE; } else { size = ALIGN(size, min_size); } if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) alloc_sizes = min_size; count = PAGE_ALIGN(size) >> PAGE_SHIFT; pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, gfp); if (!pages) return NULL; size = iova_align(iovad, size); iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); if (!iova) goto out_free_pages; if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) goto out_free_iova; if (!(prot & IOMMU_CACHE)) { struct sg_mapping_iter miter; /* * The CPU-centric flushing implied by SG_MITER_TO_SG isn't * sufficient here, so skip it by using the "wrong" direction. */ sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); while (sg_miter_next(&miter)) flush_page(dev, miter.addr, page_to_phys(miter.page)); sg_miter_stop(&miter); } if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) < size) goto out_free_sg; *handle = iova; sg_free_table(&sgt); return pages; out_free_sg: sg_free_table(&sgt); out_free_iova: iommu_dma_free_iova(cookie, iova, size); out_free_pages: __iommu_dma_free_pages(pages, count); return NULL; } /** * iommu_dma_mmap - Map a buffer into provided user VMA * @pages: Array representing buffer from iommu_dma_alloc() * @size: Size of buffer in bytes * @vma: VMA describing requested userspace mapping * * Maps the pages of the buffer in @pages into @vma. The caller is responsible * for verifying the correct size and protection of @vma beforehand. */ int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) { unsigned long uaddr = vma->vm_start; unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; int ret = -ENXIO; for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { ret = vm_insert_page(vma, uaddr, pages[i]); if (ret) break; uaddr += PAGE_SIZE; } return ret; } static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, size_t size, int prot, struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; size_t iova_off = 0; dma_addr_t iova; if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { iova_off = iova_offset(&cookie->iovad, phys); size = iova_align(&cookie->iovad, size + iova_off); } iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); if (!iova) return DMA_MAPPING_ERROR; if (iommu_map(domain, iova, phys - iova_off, size, prot)) { iommu_dma_free_iova(cookie, iova, size); return DMA_MAPPING_ERROR; } return iova + iova_off; } dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, int prot) { return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot, iommu_get_dma_domain(dev)); } void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); } /* * Prepare a successfully-mapped scatterlist to give back to the caller. * * At this point the segments are already laid out by iommu_dma_map_sg() to * avoid individually crossing any boundaries, so we merely need to check a * segment's start address to avoid concatenating across one. */ static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, dma_addr_t dma_addr) { struct scatterlist *s, *cur = sg; unsigned long seg_mask = dma_get_seg_boundary(dev); unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); int i, count = 0; for_each_sg(sg, s, nents, i) { /* Restore this segment's original unaligned fields first */ unsigned int s_iova_off = sg_dma_address(s); unsigned int s_length = sg_dma_len(s); unsigned int s_iova_len = s->length; s->offset += s_iova_off; s->length = s_length; sg_dma_address(s) = DMA_MAPPING_ERROR; sg_dma_len(s) = 0; /* * Now fill in the real DMA data. If... * - there is a valid output segment to append to * - and this segment starts on an IOVA page boundary * - but doesn't fall at a segment boundary * - and wouldn't make the resulting output segment too long */ if (cur_len && !s_iova_off && (dma_addr & seg_mask) && (cur_len + s_length <= max_len)) { /* ...then concatenate it with the previous one */ cur_len += s_length; } else { /* Otherwise start the next output segment */ if (i > 0) cur = sg_next(cur); cur_len = s_length; count++; sg_dma_address(cur) = dma_addr + s_iova_off; } sg_dma_len(cur) = cur_len; dma_addr += s_iova_len; if (s_length + s_iova_off < s_iova_len) cur_len = 0; } return count; } /* * If mapping failed, then just restore the original list, * but making sure the DMA fields are invalidated. */ static void __invalidate_sg(struct scatterlist *sg, int nents) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { if (sg_dma_address(s) != DMA_MAPPING_ERROR) s->offset += sg_dma_address(s); if (sg_dma_len(s)) s->length = sg_dma_len(s); sg_dma_address(s) = DMA_MAPPING_ERROR; sg_dma_len(s) = 0; } } /* * The DMA API client is passing in a scatterlist which could describe * any old buffer layout, but the IOMMU API requires everything to be * aligned to IOMMU pages. Hence the need for this complicated bit of * impedance-matching, to be able to hand off a suitably-aligned list, * but still preserve the original offsets and sizes for the caller. */ int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int prot) { struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iova_domain *iovad = &cookie->iovad; struct scatterlist *s, *prev = NULL; dma_addr_t iova; size_t iova_len = 0; unsigned long mask = dma_get_seg_boundary(dev); int i; /* * Work out how much IOVA space we need, and align the segments to * IOVA granules for the IOMMU driver to handle. With some clever * trickery we can modify the list in-place, but reversibly, by * stashing the unaligned parts in the as-yet-unused DMA fields. */ for_each_sg(sg, s, nents, i) { size_t s_iova_off = iova_offset(iovad, s->offset); size_t s_length = s->length; size_t pad_len = (mask - iova_len + 1) & mask; sg_dma_address(s) = s_iova_off; sg_dma_len(s) = s_length; s->offset -= s_iova_off; s_length = iova_align(iovad, s_length + s_iova_off); s->length = s_length; /* * Due to the alignment of our single IOVA allocation, we can * depend on these assumptions about the segment boundary mask: * - If mask size >= IOVA size, then the IOVA range cannot * possibly fall across a boundary, so we don't care. * - If mask size < IOVA size, then the IOVA range must start * exactly on a boundary, therefore we can lay things out * based purely on segment lengths without needing to know * the actual addresses beforehand. * - The mask must be a power of 2, so pad_len == 0 if * iova_len == 0, thus we cannot dereference prev the first * time through here (i.e. before it has a meaningful value). */ if (pad_len && pad_len < s_length - 1) { prev->length += pad_len; iova_len += pad_len; } iova_len += s_length; prev = s; } iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); if (!iova) goto out_restore_sg; /* * We'll leave any physical concatenation to the IOMMU driver's * implementation - it knows better than we do. */ if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) goto out_free_iova; return __finalise_sg(dev, sg, nents, iova); out_free_iova: iommu_dma_free_iova(cookie, iova, iova_len); out_restore_sg: __invalidate_sg(sg, nents); return 0; } void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t start, end; struct scatterlist *tmp; int i; /* * The scatterlist segments are mapped into a single * contiguous IOVA allocation, so this is incredibly easy. */ start = sg_dma_address(sg); for_each_sg(sg_next(sg), tmp, nents - 1, i) { if (sg_dma_len(tmp) == 0) break; sg = tmp; } end = sg_dma_address(sg) + sg_dma_len(sg); __iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start); } dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, size_t size, enum dma_data_direction dir, unsigned long attrs) { return __iommu_dma_map(dev, phys, size, dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO, iommu_get_dma_domain(dev)); } void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { __iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size); } static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, phys_addr_t msi_addr, struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi_page; dma_addr_t iova; int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; size_t size = cookie_msi_granule(cookie); msi_addr &= ~(phys_addr_t)(size - 1); list_for_each_entry(msi_page, &cookie->msi_page_list, list) if (msi_page->phys == msi_addr) return msi_page; msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); if (!msi_page) return NULL; iova = __iommu_dma_map(dev, msi_addr, size, prot, domain); if (iova == DMA_MAPPING_ERROR) goto out_free_page; INIT_LIST_HEAD(&msi_page->list); msi_page->phys = msi_addr; msi_page->iova = iova; list_add(&msi_page->list, &cookie->msi_page_list); return msi_page; out_free_page: kfree(msi_page); return NULL; } void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) { struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct iommu_dma_cookie *cookie; struct iommu_dma_msi_page *msi_page; phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; unsigned long flags; if (!domain || !domain->iova_cookie) return; cookie = domain->iova_cookie; /* * We disable IRQs to rule out a possible inversion against * irq_desc_lock if, say, someone tries to retarget the affinity * of an MSI from within an IPI handler. */ spin_lock_irqsave(&cookie->msi_lock, flags); msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); spin_unlock_irqrestore(&cookie->msi_lock, flags); if (WARN_ON(!msi_page)) { /* * We're called from a void callback, so the best we can do is * 'fail' by filling the message with obviously bogus values. * Since we got this far due to an IOMMU being present, it's * not like the existing address would have worked anyway... */ msg->address_hi = ~0U; msg->address_lo = ~0U; msg->data = ~0U; } else { msg->address_hi = upper_32_bits(msi_page->iova); msg->address_lo &= cookie_msi_granule(cookie) - 1; msg->address_lo += lower_32_bits(msi_page->iova); } } |