Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <linux/compiler.h> #include "ieee754sp.h" int ieee754sp_class(union ieee754sp x) { COMPXSP; EXPLODEXSP; return xc; } static inline int ieee754sp_isnan(union ieee754sp x) { return ieee754_class_nan(ieee754sp_class(x)); } static inline int ieee754sp_issnan(union ieee754sp x) { int qbit; assert(ieee754sp_isnan(x)); qbit = (SPMANT(x) & SP_MBIT(SP_FBITS - 1)) == SP_MBIT(SP_FBITS - 1); return ieee754_csr.nan2008 ^ qbit; } /* * Raise the Invalid Operation IEEE 754 exception * and convert the signaling NaN supplied to a quiet NaN. */ union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r) { assert(ieee754sp_issnan(r)); ieee754_setcx(IEEE754_INVALID_OPERATION); if (ieee754_csr.nan2008) { SPMANT(r) |= SP_MBIT(SP_FBITS - 1); } else { SPMANT(r) &= ~SP_MBIT(SP_FBITS - 1); if (!ieee754sp_isnan(r)) SPMANT(r) |= SP_MBIT(SP_FBITS - 2); } return r; } static unsigned int ieee754sp_get_rounding(int sn, unsigned int xm) { /* inexact must round of 3 bits */ if (xm & (SP_MBIT(3) - 1)) { switch (ieee754_csr.rm) { case FPU_CSR_RZ: break; case FPU_CSR_RN: xm += 0x3 + ((xm >> 3) & 1); /* xm += (xm&0x8)?0x4:0x3 */ break; case FPU_CSR_RU: /* toward +Infinity */ if (!sn) /* ?? */ xm += 0x8; break; case FPU_CSR_RD: /* toward -Infinity */ if (sn) /* ?? */ xm += 0x8; break; } } return xm; } /* generate a normal/denormal number with over,under handling * sn is sign * xe is an unbiased exponent * xm is 3bit extended precision value. */ union ieee754sp ieee754sp_format(int sn, int xe, unsigned int xm) { assert(xm); /* we don't gen exact zeros (probably should) */ assert((xm >> (SP_FBITS + 1 + 3)) == 0); /* no excess */ assert(xm & (SP_HIDDEN_BIT << 3)); if (xe < SP_EMIN) { /* strip lower bits */ int es = SP_EMIN - xe; if (ieee754_csr.nod) { ieee754_setcx(IEEE754_UNDERFLOW); ieee754_setcx(IEEE754_INEXACT); switch(ieee754_csr.rm) { case FPU_CSR_RN: case FPU_CSR_RZ: return ieee754sp_zero(sn); case FPU_CSR_RU: /* toward +Infinity */ if (sn == 0) return ieee754sp_min(0); else return ieee754sp_zero(1); case FPU_CSR_RD: /* toward -Infinity */ if (sn == 0) return ieee754sp_zero(0); else return ieee754sp_min(1); } } if (xe == SP_EMIN - 1 && ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3)) { /* Not tiny after rounding */ ieee754_setcx(IEEE754_INEXACT); xm = ieee754sp_get_rounding(sn, xm); xm >>= 1; /* Clear grs bits */ xm &= ~(SP_MBIT(3) - 1); xe++; } else { /* sticky right shift es bits */ xm = XSPSRS(xm, es); xe += es; assert((xm & (SP_HIDDEN_BIT << 3)) == 0); assert(xe == SP_EMIN); } } if (xm & (SP_MBIT(3) - 1)) { ieee754_setcx(IEEE754_INEXACT); if ((xm & (SP_HIDDEN_BIT << 3)) == 0) { ieee754_setcx(IEEE754_UNDERFLOW); } /* inexact must round of 3 bits */ xm = ieee754sp_get_rounding(sn, xm); /* adjust exponent for rounding add overflowing */ if (xm >> (SP_FBITS + 1 + 3)) { /* add causes mantissa overflow */ xm >>= 1; xe++; } } /* strip grs bits */ xm >>= 3; assert((xm >> (SP_FBITS + 1)) == 0); /* no excess */ assert(xe >= SP_EMIN); if (xe > SP_EMAX) { ieee754_setcx(IEEE754_OVERFLOW); ieee754_setcx(IEEE754_INEXACT); /* -O can be table indexed by (rm,sn) */ switch (ieee754_csr.rm) { case FPU_CSR_RN: return ieee754sp_inf(sn); case FPU_CSR_RZ: return ieee754sp_max(sn); case FPU_CSR_RU: /* toward +Infinity */ if (sn == 0) return ieee754sp_inf(0); else return ieee754sp_max(1); case FPU_CSR_RD: /* toward -Infinity */ if (sn == 0) return ieee754sp_max(0); else return ieee754sp_inf(1); } } /* gen norm/denorm/zero */ if ((xm & SP_HIDDEN_BIT) == 0) { /* we underflow (tiny/zero) */ assert(xe == SP_EMIN); if (ieee754_csr.mx & IEEE754_UNDERFLOW) ieee754_setcx(IEEE754_UNDERFLOW); return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm); } else { assert((xm >> (SP_FBITS + 1)) == 0); /* no excess */ assert(xm & SP_HIDDEN_BIT); return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT); } } |